Properties

Label 65.6.a.d.1.6
Level $65$
Weight $6$
Character 65.1
Self dual yes
Analytic conductor $10.425$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [65,6,Mod(1,65)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(65, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("65.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 65 = 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 65.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.4249482878\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 163x^{4} - 8x^{3} + 6120x^{2} + 6624x - 19440 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{4}\cdot 3 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(9.61672\) of defining polynomial
Character \(\chi\) \(=\) 65.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+9.61672 q^{2} +28.9791 q^{3} +60.4813 q^{4} -25.0000 q^{5} +278.684 q^{6} -189.995 q^{7} +273.896 q^{8} +596.790 q^{9} +O(q^{10})\) \(q+9.61672 q^{2} +28.9791 q^{3} +60.4813 q^{4} -25.0000 q^{5} +278.684 q^{6} -189.995 q^{7} +273.896 q^{8} +596.790 q^{9} -240.418 q^{10} -566.944 q^{11} +1752.69 q^{12} +169.000 q^{13} -1827.13 q^{14} -724.478 q^{15} +698.582 q^{16} -686.585 q^{17} +5739.16 q^{18} +125.865 q^{19} -1512.03 q^{20} -5505.88 q^{21} -5452.14 q^{22} +3481.79 q^{23} +7937.27 q^{24} +625.000 q^{25} +1625.23 q^{26} +10252.5 q^{27} -11491.1 q^{28} +1909.26 q^{29} -6967.10 q^{30} +6579.43 q^{31} -2046.61 q^{32} -16429.5 q^{33} -6602.70 q^{34} +4749.87 q^{35} +36094.6 q^{36} +6923.49 q^{37} +1210.41 q^{38} +4897.47 q^{39} -6847.40 q^{40} -1117.84 q^{41} -52948.5 q^{42} -3465.64 q^{43} -34289.5 q^{44} -14919.8 q^{45} +33483.4 q^{46} +7747.01 q^{47} +20244.3 q^{48} +19291.0 q^{49} +6010.45 q^{50} -19896.6 q^{51} +10221.3 q^{52} -15186.2 q^{53} +98595.7 q^{54} +14173.6 q^{55} -52038.8 q^{56} +3647.45 q^{57} +18360.8 q^{58} -48418.6 q^{59} -43817.4 q^{60} -14031.1 q^{61} +63272.5 q^{62} -113387. q^{63} -42036.3 q^{64} -4225.00 q^{65} -157998. q^{66} -33089.4 q^{67} -41525.5 q^{68} +100899. q^{69} +45678.2 q^{70} +21014.6 q^{71} +163459. q^{72} -83446.8 q^{73} +66581.3 q^{74} +18112.0 q^{75} +7612.47 q^{76} +107716. q^{77} +47097.6 q^{78} +74858.5 q^{79} -17464.6 q^{80} +152089. q^{81} -10750.0 q^{82} +51860.8 q^{83} -333003. q^{84} +17164.6 q^{85} -33328.1 q^{86} +55328.7 q^{87} -155284. q^{88} +122582. q^{89} -143479. q^{90} -32109.1 q^{91} +210583. q^{92} +190666. q^{93} +74500.8 q^{94} -3146.62 q^{95} -59309.0 q^{96} +19305.3 q^{97} +185516. q^{98} -338346. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 38 q^{3} + 134 q^{4} - 150 q^{5} + 318 q^{6} + 220 q^{7} + 24 q^{8} + 518 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 38 q^{3} + 134 q^{4} - 150 q^{5} + 318 q^{6} + 220 q^{7} + 24 q^{8} + 518 q^{9} - 170 q^{11} + 2238 q^{12} + 1014 q^{13} - 1440 q^{14} - 950 q^{15} + 3506 q^{16} + 728 q^{17} + 7788 q^{18} + 1218 q^{19} - 3350 q^{20} - 396 q^{21} + 5154 q^{22} + 8954 q^{23} + 12618 q^{24} + 3750 q^{25} + 13112 q^{27} + 13212 q^{28} + 8364 q^{29} - 7950 q^{30} + 2862 q^{31} - 29672 q^{32} - 3772 q^{33} - 21484 q^{34} - 5500 q^{35} - 2138 q^{36} + 13840 q^{37} - 27706 q^{38} + 6422 q^{39} - 600 q^{40} + 2248 q^{41} - 47028 q^{42} + 3822 q^{43} - 73482 q^{44} - 12950 q^{45} - 39886 q^{46} - 10860 q^{47} + 13962 q^{48} + 85902 q^{49} - 55028 q^{51} + 22646 q^{52} + 6584 q^{53} + 45504 q^{54} + 4250 q^{55} - 188800 q^{56} + 11692 q^{57} - 88500 q^{58} - 28874 q^{59} - 55950 q^{60} + 972 q^{61} + 123466 q^{62} - 125236 q^{63} + 14022 q^{64} - 25350 q^{65} - 158040 q^{66} + 60040 q^{67} + 3504 q^{68} + 153088 q^{69} + 36000 q^{70} - 74174 q^{71} + 298668 q^{72} + 48960 q^{73} + 226112 q^{74} + 23750 q^{75} - 93422 q^{76} + 231588 q^{77} + 53742 q^{78} + 214508 q^{79} - 87650 q^{80} + 116006 q^{81} + 58732 q^{82} + 123260 q^{83} - 235268 q^{84} - 18200 q^{85} - 304666 q^{86} + 228144 q^{87} + 127622 q^{88} + 94028 q^{89} - 194700 q^{90} + 37180 q^{91} + 430298 q^{92} + 192892 q^{93} - 125920 q^{94} - 30450 q^{95} - 385858 q^{96} + 246284 q^{97} - 4736 q^{98} - 32270 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 9.61672 1.70001 0.850006 0.526773i \(-0.176598\pi\)
0.850006 + 0.526773i \(0.176598\pi\)
\(3\) 28.9791 1.85901 0.929506 0.368807i \(-0.120234\pi\)
0.929506 + 0.368807i \(0.120234\pi\)
\(4\) 60.4813 1.89004
\(5\) −25.0000 −0.447214
\(6\) 278.684 3.16034
\(7\) −189.995 −1.46554 −0.732768 0.680478i \(-0.761772\pi\)
−0.732768 + 0.680478i \(0.761772\pi\)
\(8\) 273.896 1.51308
\(9\) 596.790 2.45593
\(10\) −240.418 −0.760268
\(11\) −566.944 −1.41273 −0.706363 0.707849i \(-0.749666\pi\)
−0.706363 + 0.707849i \(0.749666\pi\)
\(12\) 1752.69 3.51361
\(13\) 169.000 0.277350
\(14\) −1827.13 −2.49143
\(15\) −724.478 −0.831376
\(16\) 698.582 0.682209
\(17\) −686.585 −0.576198 −0.288099 0.957601i \(-0.593023\pi\)
−0.288099 + 0.957601i \(0.593023\pi\)
\(18\) 5739.16 4.17510
\(19\) 125.865 0.0799872 0.0399936 0.999200i \(-0.487266\pi\)
0.0399936 + 0.999200i \(0.487266\pi\)
\(20\) −1512.03 −0.845251
\(21\) −5505.88 −2.72445
\(22\) −5452.14 −2.40165
\(23\) 3481.79 1.37241 0.686203 0.727410i \(-0.259276\pi\)
0.686203 + 0.727410i \(0.259276\pi\)
\(24\) 7937.27 2.81283
\(25\) 625.000 0.200000
\(26\) 1625.23 0.471498
\(27\) 10252.5 2.70659
\(28\) −11491.1 −2.76992
\(29\) 1909.26 0.421570 0.210785 0.977532i \(-0.432398\pi\)
0.210785 + 0.977532i \(0.432398\pi\)
\(30\) −6967.10 −1.41335
\(31\) 6579.43 1.22966 0.614828 0.788661i \(-0.289225\pi\)
0.614828 + 0.788661i \(0.289225\pi\)
\(32\) −2046.61 −0.353314
\(33\) −16429.5 −2.62628
\(34\) −6602.70 −0.979544
\(35\) 4749.87 0.655408
\(36\) 36094.6 4.64180
\(37\) 6923.49 0.831421 0.415710 0.909497i \(-0.363533\pi\)
0.415710 + 0.909497i \(0.363533\pi\)
\(38\) 1210.41 0.135979
\(39\) 4897.47 0.515597
\(40\) −6847.40 −0.676669
\(41\) −1117.84 −0.103853 −0.0519266 0.998651i \(-0.516536\pi\)
−0.0519266 + 0.998651i \(0.516536\pi\)
\(42\) −52948.5 −4.63160
\(43\) −3465.64 −0.285833 −0.142916 0.989735i \(-0.545648\pi\)
−0.142916 + 0.989735i \(0.545648\pi\)
\(44\) −34289.5 −2.67011
\(45\) −14919.8 −1.09832
\(46\) 33483.4 2.33311
\(47\) 7747.01 0.511552 0.255776 0.966736i \(-0.417669\pi\)
0.255776 + 0.966736i \(0.417669\pi\)
\(48\) 20244.3 1.26824
\(49\) 19291.0 1.14780
\(50\) 6010.45 0.340002
\(51\) −19896.6 −1.07116
\(52\) 10221.3 0.524203
\(53\) −15186.2 −0.742609 −0.371305 0.928511i \(-0.621089\pi\)
−0.371305 + 0.928511i \(0.621089\pi\)
\(54\) 98595.7 4.60123
\(55\) 14173.6 0.631791
\(56\) −52038.8 −2.21747
\(57\) 3647.45 0.148697
\(58\) 18360.8 0.716675
\(59\) −48418.6 −1.81085 −0.905424 0.424508i \(-0.860447\pi\)
−0.905424 + 0.424508i \(0.860447\pi\)
\(60\) −43817.4 −1.57133
\(61\) −14031.1 −0.482801 −0.241400 0.970426i \(-0.577607\pi\)
−0.241400 + 0.970426i \(0.577607\pi\)
\(62\) 63272.5 2.09043
\(63\) −113387. −3.59925
\(64\) −42036.3 −1.28285
\(65\) −4225.00 −0.124035
\(66\) −157998. −4.46470
\(67\) −33089.4 −0.900537 −0.450268 0.892893i \(-0.648672\pi\)
−0.450268 + 0.892893i \(0.648672\pi\)
\(68\) −41525.5 −1.08904
\(69\) 100899. 2.55132
\(70\) 45678.2 1.11420
\(71\) 21014.6 0.494738 0.247369 0.968921i \(-0.420434\pi\)
0.247369 + 0.968921i \(0.420434\pi\)
\(72\) 163459. 3.71601
\(73\) −83446.8 −1.83275 −0.916373 0.400325i \(-0.868897\pi\)
−0.916373 + 0.400325i \(0.868897\pi\)
\(74\) 66581.3 1.41342
\(75\) 18112.0 0.371802
\(76\) 7612.47 0.151179
\(77\) 107716. 2.07040
\(78\) 47097.6 0.876521
\(79\) 74858.5 1.34950 0.674751 0.738045i \(-0.264251\pi\)
0.674751 + 0.738045i \(0.264251\pi\)
\(80\) −17464.6 −0.305093
\(81\) 152089. 2.57565
\(82\) −10750.0 −0.176552
\(83\) 51860.8 0.826311 0.413156 0.910660i \(-0.364427\pi\)
0.413156 + 0.910660i \(0.364427\pi\)
\(84\) −333003. −5.14932
\(85\) 17164.6 0.257684
\(86\) −33328.1 −0.485919
\(87\) 55328.7 0.783705
\(88\) −155284. −2.13756
\(89\) 122582. 1.64041 0.820205 0.572070i \(-0.193859\pi\)
0.820205 + 0.572070i \(0.193859\pi\)
\(90\) −143479. −1.86716
\(91\) −32109.1 −0.406467
\(92\) 210583. 2.59390
\(93\) 190666. 2.28595
\(94\) 74500.8 0.869644
\(95\) −3146.62 −0.0357714
\(96\) −59309.0 −0.656814
\(97\) 19305.3 0.208328 0.104164 0.994560i \(-0.466783\pi\)
0.104164 + 0.994560i \(0.466783\pi\)
\(98\) 185516. 1.95127
\(99\) −338346. −3.46955
\(100\) 37800.8 0.378008
\(101\) −83222.2 −0.811775 −0.405888 0.913923i \(-0.633038\pi\)
−0.405888 + 0.913923i \(0.633038\pi\)
\(102\) −191340. −1.82098
\(103\) 109529. 1.01727 0.508634 0.860983i \(-0.330151\pi\)
0.508634 + 0.860983i \(0.330151\pi\)
\(104\) 46288.5 0.419652
\(105\) 137647. 1.21841
\(106\) −146042. −1.26244
\(107\) −65171.1 −0.550295 −0.275148 0.961402i \(-0.588727\pi\)
−0.275148 + 0.961402i \(0.588727\pi\)
\(108\) 620086. 5.11555
\(109\) −180012. −1.45123 −0.725615 0.688101i \(-0.758445\pi\)
−0.725615 + 0.688101i \(0.758445\pi\)
\(110\) 136303. 1.07405
\(111\) 200637. 1.54562
\(112\) −132727. −0.999802
\(113\) −63753.0 −0.469683 −0.234841 0.972034i \(-0.575457\pi\)
−0.234841 + 0.972034i \(0.575457\pi\)
\(114\) 35076.5 0.252787
\(115\) −87044.7 −0.613759
\(116\) 115474. 0.796785
\(117\) 100858. 0.681151
\(118\) −465628. −3.07846
\(119\) 130448. 0.844440
\(120\) −198432. −1.25794
\(121\) 160374. 0.995797
\(122\) −134933. −0.820767
\(123\) −32394.0 −0.193064
\(124\) 397932. 2.32410
\(125\) −15625.0 −0.0894427
\(126\) −1.09041e6 −6.11877
\(127\) −18792.2 −0.103388 −0.0516939 0.998663i \(-0.516462\pi\)
−0.0516939 + 0.998663i \(0.516462\pi\)
\(128\) −338760. −1.82754
\(129\) −100431. −0.531367
\(130\) −40630.6 −0.210860
\(131\) −18190.6 −0.0926122 −0.0463061 0.998927i \(-0.514745\pi\)
−0.0463061 + 0.998927i \(0.514745\pi\)
\(132\) −993679. −4.96377
\(133\) −23913.7 −0.117224
\(134\) −318211. −1.53092
\(135\) −256313. −1.21042
\(136\) −188053. −0.871833
\(137\) 106188. 0.483363 0.241682 0.970356i \(-0.422301\pi\)
0.241682 + 0.970356i \(0.422301\pi\)
\(138\) 970319. 4.33727
\(139\) 33944.0 0.149014 0.0745069 0.997221i \(-0.476262\pi\)
0.0745069 + 0.997221i \(0.476262\pi\)
\(140\) 287278. 1.23875
\(141\) 224502. 0.950981
\(142\) 202092. 0.841061
\(143\) −95813.5 −0.391820
\(144\) 416907. 1.67546
\(145\) −47731.5 −0.188532
\(146\) −802484. −3.11569
\(147\) 559037. 2.13377
\(148\) 418741. 1.57142
\(149\) 248671. 0.917612 0.458806 0.888536i \(-0.348277\pi\)
0.458806 + 0.888536i \(0.348277\pi\)
\(150\) 174178. 0.632068
\(151\) 62344.4 0.222513 0.111256 0.993792i \(-0.464512\pi\)
0.111256 + 0.993792i \(0.464512\pi\)
\(152\) 34473.9 0.121027
\(153\) −409747. −1.41510
\(154\) 1.03588e6 3.51971
\(155\) −164486. −0.549919
\(156\) 296205. 0.974499
\(157\) −275219. −0.891106 −0.445553 0.895256i \(-0.646993\pi\)
−0.445553 + 0.895256i \(0.646993\pi\)
\(158\) 719893. 2.29417
\(159\) −440084. −1.38052
\(160\) 51165.3 0.158007
\(161\) −661521. −2.01131
\(162\) 1.46260e6 4.37863
\(163\) −53135.9 −0.156646 −0.0783229 0.996928i \(-0.524957\pi\)
−0.0783229 + 0.996928i \(0.524957\pi\)
\(164\) −67608.4 −0.196287
\(165\) 410738. 1.17451
\(166\) 498730. 1.40474
\(167\) 412563. 1.14472 0.572360 0.820002i \(-0.306028\pi\)
0.572360 + 0.820002i \(0.306028\pi\)
\(168\) −1.50804e6 −4.12230
\(169\) 28561.0 0.0769231
\(170\) 165067. 0.438065
\(171\) 75114.9 0.196443
\(172\) −209606. −0.540235
\(173\) −584248. −1.48416 −0.742082 0.670309i \(-0.766162\pi\)
−0.742082 + 0.670309i \(0.766162\pi\)
\(174\) 532081. 1.33231
\(175\) −118747. −0.293107
\(176\) −396057. −0.963775
\(177\) −1.40313e6 −3.36639
\(178\) 1.17884e6 2.78872
\(179\) −19918.7 −0.0464652 −0.0232326 0.999730i \(-0.507396\pi\)
−0.0232326 + 0.999730i \(0.507396\pi\)
\(180\) −902365. −2.07588
\(181\) 585612. 1.32866 0.664329 0.747440i \(-0.268717\pi\)
0.664329 + 0.747440i \(0.268717\pi\)
\(182\) −308784. −0.690998
\(183\) −406610. −0.897533
\(184\) 953648. 2.07656
\(185\) −173087. −0.371823
\(186\) 1.83358e6 3.88614
\(187\) 389255. 0.814011
\(188\) 468549. 0.966853
\(189\) −1.94793e6 −3.96660
\(190\) −30260.2 −0.0608117
\(191\) −257249. −0.510235 −0.255117 0.966910i \(-0.582114\pi\)
−0.255117 + 0.966910i \(0.582114\pi\)
\(192\) −1.21818e6 −2.38483
\(193\) 729315. 1.40936 0.704680 0.709525i \(-0.251091\pi\)
0.704680 + 0.709525i \(0.251091\pi\)
\(194\) 185653. 0.354159
\(195\) −122437. −0.230582
\(196\) 1.16674e6 2.16938
\(197\) 614173. 1.12752 0.563761 0.825938i \(-0.309354\pi\)
0.563761 + 0.825938i \(0.309354\pi\)
\(198\) −3.25378e6 −5.89828
\(199\) −2188.99 −0.00391842 −0.00195921 0.999998i \(-0.500624\pi\)
−0.00195921 + 0.999998i \(0.500624\pi\)
\(200\) 171185. 0.302615
\(201\) −958901. −1.67411
\(202\) −800325. −1.38003
\(203\) −362749. −0.617827
\(204\) −1.20337e6 −2.02453
\(205\) 27946.0 0.0464446
\(206\) 1.05331e6 1.72937
\(207\) 2.07790e6 3.37053
\(208\) 118060. 0.189211
\(209\) −71358.3 −0.113000
\(210\) 1.32371e6 2.07131
\(211\) 95873.8 0.148250 0.0741248 0.997249i \(-0.476384\pi\)
0.0741248 + 0.997249i \(0.476384\pi\)
\(212\) −918483. −1.40356
\(213\) 608985. 0.919725
\(214\) −626732. −0.935508
\(215\) 86641.0 0.127828
\(216\) 2.80813e6 4.09527
\(217\) −1.25006e6 −1.80211
\(218\) −1.73113e6 −2.46711
\(219\) −2.41822e6 −3.40710
\(220\) 857237. 1.19411
\(221\) −116033. −0.159809
\(222\) 1.92947e6 2.62757
\(223\) 822496. 1.10757 0.553786 0.832659i \(-0.313183\pi\)
0.553786 + 0.832659i \(0.313183\pi\)
\(224\) 388845. 0.517794
\(225\) 372994. 0.491185
\(226\) −613095. −0.798466
\(227\) −431133. −0.555325 −0.277662 0.960679i \(-0.589560\pi\)
−0.277662 + 0.960679i \(0.589560\pi\)
\(228\) 220603. 0.281044
\(229\) 962073. 1.21233 0.606163 0.795341i \(-0.292708\pi\)
0.606163 + 0.795341i \(0.292708\pi\)
\(230\) −837084. −1.04340
\(231\) 3.12153e6 3.84890
\(232\) 522939. 0.637869
\(233\) −517023. −0.623907 −0.311953 0.950097i \(-0.600983\pi\)
−0.311953 + 0.950097i \(0.600983\pi\)
\(234\) 969918. 1.15797
\(235\) −193675. −0.228773
\(236\) −2.92842e6 −3.42257
\(237\) 2.16934e6 2.50874
\(238\) 1.25448e6 1.43556
\(239\) −573574. −0.649523 −0.324761 0.945796i \(-0.605284\pi\)
−0.324761 + 0.945796i \(0.605284\pi\)
\(240\) −506108. −0.567172
\(241\) −967200. −1.07269 −0.536344 0.843999i \(-0.680195\pi\)
−0.536344 + 0.843999i \(0.680195\pi\)
\(242\) 1.54227e6 1.69287
\(243\) 1.91606e6 2.08158
\(244\) −848620. −0.912513
\(245\) −482275. −0.513310
\(246\) −311524. −0.328212
\(247\) 21271.2 0.0221845
\(248\) 1.80208e6 1.86057
\(249\) 1.50288e6 1.53612
\(250\) −150261. −0.152054
\(251\) −1.51519e6 −1.51804 −0.759018 0.651069i \(-0.774321\pi\)
−0.759018 + 0.651069i \(0.774321\pi\)
\(252\) −6.85779e6 −6.80272
\(253\) −1.97398e6 −1.93883
\(254\) −180720. −0.175760
\(255\) 497416. 0.479037
\(256\) −1.91259e6 −1.82399
\(257\) 408239. 0.385551 0.192775 0.981243i \(-0.438251\pi\)
0.192775 + 0.981243i \(0.438251\pi\)
\(258\) −965819. −0.903330
\(259\) −1.31543e6 −1.21848
\(260\) −255533. −0.234431
\(261\) 1.13943e6 1.03535
\(262\) −174934. −0.157442
\(263\) −1.24387e6 −1.10888 −0.554440 0.832224i \(-0.687068\pi\)
−0.554440 + 0.832224i \(0.687068\pi\)
\(264\) −4.49999e6 −3.97376
\(265\) 379656. 0.332105
\(266\) −229971. −0.199282
\(267\) 3.55233e6 3.04954
\(268\) −2.00129e6 −1.70205
\(269\) −971010. −0.818169 −0.409084 0.912497i \(-0.634152\pi\)
−0.409084 + 0.912497i \(0.634152\pi\)
\(270\) −2.46489e6 −2.05773
\(271\) 647163. 0.535292 0.267646 0.963517i \(-0.413754\pi\)
0.267646 + 0.963517i \(0.413754\pi\)
\(272\) −479636. −0.393088
\(273\) −930494. −0.755626
\(274\) 1.02118e6 0.821724
\(275\) −354340. −0.282545
\(276\) 6.10251e6 4.82209
\(277\) 684624. 0.536109 0.268054 0.963404i \(-0.413619\pi\)
0.268054 + 0.963404i \(0.413619\pi\)
\(278\) 326430. 0.253325
\(279\) 3.92654e6 3.01995
\(280\) 1.30097e6 0.991682
\(281\) −2.08097e6 −1.57217 −0.786085 0.618118i \(-0.787895\pi\)
−0.786085 + 0.618118i \(0.787895\pi\)
\(282\) 2.15897e6 1.61668
\(283\) 2.09568e6 1.55546 0.777730 0.628598i \(-0.216371\pi\)
0.777730 + 0.628598i \(0.216371\pi\)
\(284\) 1.27099e6 0.935075
\(285\) −91186.4 −0.0664994
\(286\) −921411. −0.666098
\(287\) 212384. 0.152201
\(288\) −1.22140e6 −0.867712
\(289\) −948458. −0.667995
\(290\) −459020. −0.320507
\(291\) 559450. 0.387284
\(292\) −5.04697e6 −3.46396
\(293\) 170648. 0.116127 0.0580633 0.998313i \(-0.481507\pi\)
0.0580633 + 0.998313i \(0.481507\pi\)
\(294\) 5.37610e6 3.62743
\(295\) 1.21046e6 0.809836
\(296\) 1.89632e6 1.25800
\(297\) −5.81261e6 −3.82367
\(298\) 2.39140e6 1.55995
\(299\) 588422. 0.380637
\(300\) 1.09543e6 0.702721
\(301\) 658453. 0.418898
\(302\) 599549. 0.378275
\(303\) −2.41171e6 −1.50910
\(304\) 87926.9 0.0545680
\(305\) 350778. 0.215915
\(306\) −3.94042e6 −2.40569
\(307\) −42275.0 −0.0255998 −0.0127999 0.999918i \(-0.504074\pi\)
−0.0127999 + 0.999918i \(0.504074\pi\)
\(308\) 6.51482e6 3.91314
\(309\) 3.17405e6 1.89111
\(310\) −1.58181e6 −0.934869
\(311\) −1.35058e6 −0.791808 −0.395904 0.918292i \(-0.629569\pi\)
−0.395904 + 0.918292i \(0.629569\pi\)
\(312\) 1.34140e6 0.780138
\(313\) 2.22900e6 1.28603 0.643013 0.765856i \(-0.277684\pi\)
0.643013 + 0.765856i \(0.277684\pi\)
\(314\) −2.64670e6 −1.51489
\(315\) 2.83468e6 1.60963
\(316\) 4.52754e6 2.55061
\(317\) −3.24898e6 −1.81593 −0.907964 0.419048i \(-0.862364\pi\)
−0.907964 + 0.419048i \(0.862364\pi\)
\(318\) −4.23216e6 −2.34690
\(319\) −1.08244e6 −0.595564
\(320\) 1.05091e6 0.573706
\(321\) −1.88860e6 −1.02301
\(322\) −6.36166e6 −3.41925
\(323\) −86416.9 −0.0460885
\(324\) 9.19856e6 4.86808
\(325\) 105625. 0.0554700
\(326\) −510993. −0.266300
\(327\) −5.21661e6 −2.69786
\(328\) −306172. −0.157138
\(329\) −1.47189e6 −0.749698
\(330\) 3.94995e6 1.99667
\(331\) 1.81129e6 0.908694 0.454347 0.890825i \(-0.349873\pi\)
0.454347 + 0.890825i \(0.349873\pi\)
\(332\) 3.13660e6 1.56176
\(333\) 4.13187e6 2.04191
\(334\) 3.96750e6 1.94604
\(335\) 827234. 0.402732
\(336\) −3.84631e6 −1.85864
\(337\) −1.43117e6 −0.686461 −0.343231 0.939251i \(-0.611521\pi\)
−0.343231 + 0.939251i \(0.611521\pi\)
\(338\) 274663. 0.130770
\(339\) −1.84751e6 −0.873146
\(340\) 1.03814e6 0.487032
\(341\) −3.73016e6 −1.73717
\(342\) 722359. 0.333955
\(343\) −471949. −0.216601
\(344\) −949225. −0.432487
\(345\) −2.52248e6 −1.14098
\(346\) −5.61855e6 −2.52310
\(347\) 2.89201e6 1.28937 0.644683 0.764450i \(-0.276989\pi\)
0.644683 + 0.764450i \(0.276989\pi\)
\(348\) 3.34635e6 1.48123
\(349\) −3.29833e6 −1.44954 −0.724771 0.688990i \(-0.758054\pi\)
−0.724771 + 0.688990i \(0.758054\pi\)
\(350\) −1.14195e6 −0.498286
\(351\) 1.73268e6 0.750672
\(352\) 1.16031e6 0.499136
\(353\) 2.87329e6 1.22728 0.613639 0.789587i \(-0.289705\pi\)
0.613639 + 0.789587i \(0.289705\pi\)
\(354\) −1.34935e7 −5.72290
\(355\) −525365. −0.221254
\(356\) 7.41393e6 3.10044
\(357\) 3.78026e6 1.56982
\(358\) −191552. −0.0789914
\(359\) −655112. −0.268274 −0.134137 0.990963i \(-0.542826\pi\)
−0.134137 + 0.990963i \(0.542826\pi\)
\(360\) −4.08646e6 −1.66185
\(361\) −2.46026e6 −0.993602
\(362\) 5.63166e6 2.25873
\(363\) 4.64750e6 1.85120
\(364\) −1.94200e6 −0.768238
\(365\) 2.08617e6 0.819629
\(366\) −3.91025e6 −1.52582
\(367\) 3.46555e6 1.34310 0.671549 0.740960i \(-0.265629\pi\)
0.671549 + 0.740960i \(0.265629\pi\)
\(368\) 2.43231e6 0.936268
\(369\) −667116. −0.255056
\(370\) −1.66453e6 −0.632103
\(371\) 2.88531e6 1.08832
\(372\) 1.15317e7 4.32053
\(373\) 3.97540e6 1.47948 0.739739 0.672894i \(-0.234949\pi\)
0.739739 + 0.672894i \(0.234949\pi\)
\(374\) 3.74336e6 1.38383
\(375\) −452799. −0.166275
\(376\) 2.12188e6 0.774017
\(377\) 322665. 0.116923
\(378\) −1.87327e7 −6.74326
\(379\) −187178. −0.0669357 −0.0334679 0.999440i \(-0.510655\pi\)
−0.0334679 + 0.999440i \(0.510655\pi\)
\(380\) −190312. −0.0676093
\(381\) −544583. −0.192199
\(382\) −2.47389e6 −0.867405
\(383\) −2.85416e6 −0.994216 −0.497108 0.867689i \(-0.665605\pi\)
−0.497108 + 0.867689i \(0.665605\pi\)
\(384\) −9.81696e6 −3.39742
\(385\) −2.69291e6 −0.925912
\(386\) 7.01362e6 2.39593
\(387\) −2.06826e6 −0.701985
\(388\) 1.16761e6 0.393747
\(389\) −3.54177e6 −1.18671 −0.593357 0.804939i \(-0.702198\pi\)
−0.593357 + 0.804939i \(0.702198\pi\)
\(390\) −1.17744e6 −0.391992
\(391\) −2.39054e6 −0.790778
\(392\) 5.28373e6 1.73670
\(393\) −527147. −0.172167
\(394\) 5.90633e6 1.91680
\(395\) −1.87146e6 −0.603516
\(396\) −2.04636e7 −6.55759
\(397\) −1.24829e6 −0.397501 −0.198751 0.980050i \(-0.563688\pi\)
−0.198751 + 0.980050i \(0.563688\pi\)
\(398\) −21050.9 −0.00666136
\(399\) −692997. −0.217921
\(400\) 436614. 0.136442
\(401\) −2.74122e6 −0.851299 −0.425650 0.904888i \(-0.639954\pi\)
−0.425650 + 0.904888i \(0.639954\pi\)
\(402\) −9.22148e6 −2.84600
\(403\) 1.11192e6 0.341045
\(404\) −5.03339e6 −1.53429
\(405\) −3.80224e6 −1.15187
\(406\) −3.48846e6 −1.05031
\(407\) −3.92523e6 −1.17457
\(408\) −5.44961e6 −1.62075
\(409\) 6.13745e6 1.81418 0.907089 0.420940i \(-0.138300\pi\)
0.907089 + 0.420940i \(0.138300\pi\)
\(410\) 268749. 0.0789563
\(411\) 3.07723e6 0.898579
\(412\) 6.62444e6 1.92267
\(413\) 9.19928e6 2.65386
\(414\) 1.99825e7 5.72994
\(415\) −1.29652e6 −0.369538
\(416\) −345877. −0.0979916
\(417\) 983668. 0.277018
\(418\) −686232. −0.192101
\(419\) 1.95897e6 0.545120 0.272560 0.962139i \(-0.412130\pi\)
0.272560 + 0.962139i \(0.412130\pi\)
\(420\) 8.32507e6 2.30284
\(421\) 5.26629e6 1.44810 0.724051 0.689746i \(-0.242278\pi\)
0.724051 + 0.689746i \(0.242278\pi\)
\(422\) 921991. 0.252026
\(423\) 4.62334e6 1.25633
\(424\) −4.15945e6 −1.12363
\(425\) −429116. −0.115240
\(426\) 5.85644e6 1.56354
\(427\) 2.66584e6 0.707562
\(428\) −3.94163e6 −1.04008
\(429\) −2.77659e6 −0.728398
\(430\) 833202. 0.217310
\(431\) −3.23336e6 −0.838420 −0.419210 0.907889i \(-0.637693\pi\)
−0.419210 + 0.907889i \(0.637693\pi\)
\(432\) 7.16224e6 1.84646
\(433\) −3.49771e6 −0.896529 −0.448265 0.893901i \(-0.647958\pi\)
−0.448265 + 0.893901i \(0.647958\pi\)
\(434\) −1.20214e7 −3.06360
\(435\) −1.38322e6 −0.350483
\(436\) −1.08874e7 −2.74288
\(437\) 438235. 0.109775
\(438\) −2.32553e7 −5.79211
\(439\) −29404.2 −0.00728197 −0.00364098 0.999993i \(-0.501159\pi\)
−0.00364098 + 0.999993i \(0.501159\pi\)
\(440\) 3.88209e6 0.955948
\(441\) 1.15127e7 2.81890
\(442\) −1.11586e6 −0.271677
\(443\) 545860. 0.132151 0.0660757 0.997815i \(-0.478952\pi\)
0.0660757 + 0.997815i \(0.478952\pi\)
\(444\) 1.21348e7 2.92128
\(445\) −3.06455e6 −0.733614
\(446\) 7.90971e6 1.88288
\(447\) 7.20626e6 1.70585
\(448\) 7.98668e6 1.88006
\(449\) −5.46505e6 −1.27932 −0.639658 0.768660i \(-0.720924\pi\)
−0.639658 + 0.768660i \(0.720924\pi\)
\(450\) 3.58698e6 0.835021
\(451\) 633752. 0.146716
\(452\) −3.85586e6 −0.887719
\(453\) 1.80669e6 0.413654
\(454\) −4.14609e6 −0.944059
\(455\) 802728. 0.181777
\(456\) 999024. 0.224990
\(457\) −5.34706e6 −1.19764 −0.598818 0.800885i \(-0.704363\pi\)
−0.598818 + 0.800885i \(0.704363\pi\)
\(458\) 9.25198e6 2.06097
\(459\) −7.03924e6 −1.55953
\(460\) −5.26457e6 −1.16003
\(461\) 3.14978e6 0.690284 0.345142 0.938550i \(-0.387831\pi\)
0.345142 + 0.938550i \(0.387831\pi\)
\(462\) 3.00188e7 6.54318
\(463\) −5.22334e6 −1.13239 −0.566194 0.824272i \(-0.691585\pi\)
−0.566194 + 0.824272i \(0.691585\pi\)
\(464\) 1.33378e6 0.287599
\(465\) −4.76665e6 −1.02231
\(466\) −4.97206e6 −1.06065
\(467\) 6.64502e6 1.40995 0.704976 0.709231i \(-0.250958\pi\)
0.704976 + 0.709231i \(0.250958\pi\)
\(468\) 6.09999e6 1.28740
\(469\) 6.28681e6 1.31977
\(470\) −1.86252e6 −0.388917
\(471\) −7.97561e6 −1.65658
\(472\) −1.32617e7 −2.73995
\(473\) 1.96482e6 0.403804
\(474\) 2.08619e7 4.26489
\(475\) 78665.5 0.0159974
\(476\) 7.88963e6 1.59602
\(477\) −9.06300e6 −1.82379
\(478\) −5.51590e6 −1.10420
\(479\) 6.76505e6 1.34720 0.673600 0.739096i \(-0.264747\pi\)
0.673600 + 0.739096i \(0.264747\pi\)
\(480\) 1.48273e6 0.293736
\(481\) 1.17007e6 0.230595
\(482\) −9.30129e6 −1.82358
\(483\) −1.91703e7 −3.73905
\(484\) 9.69962e6 1.88209
\(485\) −482632. −0.0931669
\(486\) 1.84262e7 3.53871
\(487\) 1.34500e6 0.256980 0.128490 0.991711i \(-0.458987\pi\)
0.128490 + 0.991711i \(0.458987\pi\)
\(488\) −3.84307e6 −0.730515
\(489\) −1.53983e6 −0.291207
\(490\) −4.63791e6 −0.872633
\(491\) −7.33455e6 −1.37300 −0.686498 0.727131i \(-0.740853\pi\)
−0.686498 + 0.727131i \(0.740853\pi\)
\(492\) −1.95923e6 −0.364899
\(493\) −1.31087e6 −0.242908
\(494\) 204559. 0.0377138
\(495\) 8.45866e6 1.55163
\(496\) 4.59627e6 0.838883
\(497\) −3.99267e6 −0.725057
\(498\) 1.44528e7 2.61143
\(499\) 4.61062e6 0.828912 0.414456 0.910069i \(-0.363972\pi\)
0.414456 + 0.910069i \(0.363972\pi\)
\(500\) −945020. −0.169050
\(501\) 1.19557e7 2.12805
\(502\) −1.45711e7 −2.58068
\(503\) 7.67903e6 1.35328 0.676638 0.736316i \(-0.263436\pi\)
0.676638 + 0.736316i \(0.263436\pi\)
\(504\) −3.10563e7 −5.44594
\(505\) 2.08056e6 0.363037
\(506\) −1.89832e7 −3.29604
\(507\) 827673. 0.143001
\(508\) −1.13658e6 −0.195407
\(509\) 3.69348e6 0.631890 0.315945 0.948778i \(-0.397678\pi\)
0.315945 + 0.948778i \(0.397678\pi\)
\(510\) 4.78351e6 0.814369
\(511\) 1.58545e7 2.68596
\(512\) −7.55257e6 −1.27327
\(513\) 1.29043e6 0.216492
\(514\) 3.92592e6 0.655441
\(515\) −2.73822e6 −0.454936
\(516\) −6.07421e6 −1.00430
\(517\) −4.39212e6 −0.722683
\(518\) −1.26501e7 −2.07143
\(519\) −1.69310e7 −2.75908
\(520\) −1.15721e6 −0.187674
\(521\) 1.07885e7 1.74127 0.870636 0.491927i \(-0.163707\pi\)
0.870636 + 0.491927i \(0.163707\pi\)
\(522\) 1.09576e7 1.76010
\(523\) 7.52060e6 1.20226 0.601130 0.799151i \(-0.294717\pi\)
0.601130 + 0.799151i \(0.294717\pi\)
\(524\) −1.10019e6 −0.175041
\(525\) −3.44118e6 −0.544890
\(526\) −1.19619e7 −1.88511
\(527\) −4.51734e6 −0.708526
\(528\) −1.14774e7 −1.79167
\(529\) 5.68650e6 0.883498
\(530\) 3.65104e6 0.564582
\(531\) −2.88957e7 −4.44731
\(532\) −1.44633e6 −0.221558
\(533\) −188915. −0.0288037
\(534\) 3.41617e7 5.18426
\(535\) 1.62928e6 0.246099
\(536\) −9.06305e6 −1.36258
\(537\) −577226. −0.0863794
\(538\) −9.33793e6 −1.39090
\(539\) −1.09369e7 −1.62152
\(540\) −1.55022e7 −2.28774
\(541\) −5.06833e6 −0.744512 −0.372256 0.928130i \(-0.621416\pi\)
−0.372256 + 0.928130i \(0.621416\pi\)
\(542\) 6.22358e6 0.910002
\(543\) 1.69705e7 2.46999
\(544\) 1.40517e6 0.203579
\(545\) 4.50031e6 0.649010
\(546\) −8.94830e6 −1.28457
\(547\) 6.41454e6 0.916636 0.458318 0.888788i \(-0.348452\pi\)
0.458318 + 0.888788i \(0.348452\pi\)
\(548\) 6.42238e6 0.913576
\(549\) −8.37364e6 −1.18572
\(550\) −3.40759e6 −0.480330
\(551\) 240309. 0.0337202
\(552\) 2.76359e7 3.86034
\(553\) −1.42227e7 −1.97774
\(554\) 6.58384e6 0.911391
\(555\) −5.01592e6 −0.691223
\(556\) 2.05298e6 0.281642
\(557\) −4.77336e6 −0.651908 −0.325954 0.945386i \(-0.605685\pi\)
−0.325954 + 0.945386i \(0.605685\pi\)
\(558\) 3.77604e7 5.13394
\(559\) −585693. −0.0792758
\(560\) 3.31817e6 0.447125
\(561\) 1.12803e7 1.51326
\(562\) −2.00121e7 −2.67271
\(563\) −4.94279e6 −0.657205 −0.328603 0.944468i \(-0.606578\pi\)
−0.328603 + 0.944468i \(0.606578\pi\)
\(564\) 1.35781e7 1.79739
\(565\) 1.59383e6 0.210048
\(566\) 2.01536e7 2.64430
\(567\) −2.88962e7 −3.77471
\(568\) 5.75582e6 0.748577
\(569\) 1.01177e7 1.31008 0.655042 0.755592i \(-0.272651\pi\)
0.655042 + 0.755592i \(0.272651\pi\)
\(570\) −876914. −0.113050
\(571\) −4.01134e6 −0.514872 −0.257436 0.966295i \(-0.582878\pi\)
−0.257436 + 0.966295i \(0.582878\pi\)
\(572\) −5.79492e6 −0.740555
\(573\) −7.45485e6 −0.948533
\(574\) 2.04243e6 0.258743
\(575\) 2.17612e6 0.274481
\(576\) −2.50869e7 −3.15058
\(577\) 715280. 0.0894410 0.0447205 0.999000i \(-0.485760\pi\)
0.0447205 + 0.999000i \(0.485760\pi\)
\(578\) −9.12105e6 −1.13560
\(579\) 2.11349e7 2.62002
\(580\) −2.88686e6 −0.356333
\(581\) −9.85327e6 −1.21099
\(582\) 5.38008e6 0.658386
\(583\) 8.60974e6 1.04910
\(584\) −2.28558e7 −2.77309
\(585\) −2.52144e6 −0.304620
\(586\) 1.64107e6 0.197417
\(587\) 7.23624e6 0.866798 0.433399 0.901202i \(-0.357314\pi\)
0.433399 + 0.901202i \(0.357314\pi\)
\(588\) 3.38112e7 4.03290
\(589\) 828119. 0.0983568
\(590\) 1.16407e7 1.37673
\(591\) 1.77982e7 2.09608
\(592\) 4.83663e6 0.567203
\(593\) −9.23201e6 −1.07810 −0.539050 0.842274i \(-0.681217\pi\)
−0.539050 + 0.842274i \(0.681217\pi\)
\(594\) −5.58982e7 −6.50028
\(595\) −3.26119e6 −0.377645
\(596\) 1.50399e7 1.73432
\(597\) −63435.0 −0.00728439
\(598\) 5.65869e6 0.647087
\(599\) −1.13007e7 −1.28688 −0.643441 0.765495i \(-0.722494\pi\)
−0.643441 + 0.765495i \(0.722494\pi\)
\(600\) 4.96080e6 0.562566
\(601\) −1.57883e6 −0.178299 −0.0891494 0.996018i \(-0.528415\pi\)
−0.0891494 + 0.996018i \(0.528415\pi\)
\(602\) 6.33216e6 0.712132
\(603\) −1.97474e7 −2.21165
\(604\) 3.77067e6 0.420558
\(605\) −4.00935e6 −0.445334
\(606\) −2.31927e7 −2.56549
\(607\) 1.76228e7 1.94135 0.970673 0.240405i \(-0.0772803\pi\)
0.970673 + 0.240405i \(0.0772803\pi\)
\(608\) −257596. −0.0282606
\(609\) −1.05122e7 −1.14855
\(610\) 3.37334e6 0.367058
\(611\) 1.30925e6 0.141879
\(612\) −2.47820e7 −2.67460
\(613\) 985236. 0.105898 0.0529492 0.998597i \(-0.483138\pi\)
0.0529492 + 0.998597i \(0.483138\pi\)
\(614\) −406546. −0.0435200
\(615\) 809851. 0.0863410
\(616\) 2.95031e7 3.13268
\(617\) 1.09020e7 1.15290 0.576451 0.817132i \(-0.304437\pi\)
0.576451 + 0.817132i \(0.304437\pi\)
\(618\) 3.05239e7 3.21491
\(619\) 1.39085e7 1.45900 0.729499 0.683982i \(-0.239753\pi\)
0.729499 + 0.683982i \(0.239753\pi\)
\(620\) −9.94830e6 −1.03937
\(621\) 3.56971e7 3.71453
\(622\) −1.29882e7 −1.34608
\(623\) −2.32900e7 −2.40408
\(624\) 3.42129e6 0.351745
\(625\) 390625. 0.0400000
\(626\) 2.14357e7 2.18626
\(627\) −2.06790e6 −0.210068
\(628\) −1.66456e7 −1.68422
\(629\) −4.75357e6 −0.479063
\(630\) 2.72603e7 2.73640
\(631\) −3.18595e6 −0.318541 −0.159271 0.987235i \(-0.550914\pi\)
−0.159271 + 0.987235i \(0.550914\pi\)
\(632\) 2.05035e7 2.04190
\(633\) 2.77834e6 0.275598
\(634\) −3.12445e7 −3.08710
\(635\) 469806. 0.0462364
\(636\) −2.66168e7 −2.60924
\(637\) 3.26018e6 0.318341
\(638\) −1.04095e7 −1.01247
\(639\) 1.25413e7 1.21504
\(640\) 8.46899e6 0.817301
\(641\) −9.63334e6 −0.926044 −0.463022 0.886347i \(-0.653235\pi\)
−0.463022 + 0.886347i \(0.653235\pi\)
\(642\) −1.81622e7 −1.73912
\(643\) 1.78705e7 1.70455 0.852276 0.523093i \(-0.175222\pi\)
0.852276 + 0.523093i \(0.175222\pi\)
\(644\) −4.00096e7 −3.80146
\(645\) 2.51078e6 0.237634
\(646\) −831047. −0.0783510
\(647\) 1.14547e6 0.107578 0.0537891 0.998552i \(-0.482870\pi\)
0.0537891 + 0.998552i \(0.482870\pi\)
\(648\) 4.16567e7 3.89716
\(649\) 2.74506e7 2.55823
\(650\) 1.01577e6 0.0942997
\(651\) −3.62256e7 −3.35014
\(652\) −3.21372e6 −0.296067
\(653\) −1.04972e7 −0.963366 −0.481683 0.876345i \(-0.659974\pi\)
−0.481683 + 0.876345i \(0.659974\pi\)
\(654\) −5.01666e7 −4.58639
\(655\) 454765. 0.0414175
\(656\) −780903. −0.0708496
\(657\) −4.98002e7 −4.50109
\(658\) −1.41548e7 −1.27449
\(659\) −1.21009e7 −1.08543 −0.542717 0.839915i \(-0.682605\pi\)
−0.542717 + 0.839915i \(0.682605\pi\)
\(660\) 2.48420e7 2.21986
\(661\) −6.81298e6 −0.606504 −0.303252 0.952910i \(-0.598072\pi\)
−0.303252 + 0.952910i \(0.598072\pi\)
\(662\) 1.74186e7 1.54479
\(663\) −3.36253e6 −0.297086
\(664\) 1.42045e7 1.25027
\(665\) 597842. 0.0524242
\(666\) 3.97350e7 3.47127
\(667\) 6.64764e6 0.578566
\(668\) 2.49523e7 2.16357
\(669\) 2.38352e7 2.05899
\(670\) 7.95528e6 0.684649
\(671\) 7.95486e6 0.682066
\(672\) 1.12684e7 0.962585
\(673\) −9.41818e6 −0.801548 −0.400774 0.916177i \(-0.631259\pi\)
−0.400774 + 0.916177i \(0.631259\pi\)
\(674\) −1.37631e7 −1.16699
\(675\) 6.40783e6 0.541317
\(676\) 1.72741e6 0.145388
\(677\) 2.81424e6 0.235988 0.117994 0.993014i \(-0.462354\pi\)
0.117994 + 0.993014i \(0.462354\pi\)
\(678\) −1.77670e7 −1.48436
\(679\) −3.66790e6 −0.305312
\(680\) 4.70133e6 0.389895
\(681\) −1.24939e7 −1.03236
\(682\) −3.58719e7 −2.95321
\(683\) 1.31222e6 0.107635 0.0538176 0.998551i \(-0.482861\pi\)
0.0538176 + 0.998551i \(0.482861\pi\)
\(684\) 4.54304e6 0.371284
\(685\) −2.65470e6 −0.216167
\(686\) −4.53860e6 −0.368224
\(687\) 2.78800e7 2.25373
\(688\) −2.42103e6 −0.194998
\(689\) −2.56647e6 −0.205963
\(690\) −2.42580e7 −1.93969
\(691\) −8.31043e6 −0.662107 −0.331054 0.943612i \(-0.607404\pi\)
−0.331054 + 0.943612i \(0.607404\pi\)
\(692\) −3.53361e7 −2.80513
\(693\) 6.42840e7 5.08476
\(694\) 2.78117e7 2.19194
\(695\) −848600. −0.0666410
\(696\) 1.51543e7 1.18581
\(697\) 767492. 0.0598401
\(698\) −3.17191e7 −2.46424
\(699\) −1.49829e7 −1.15985
\(700\) −7.18195e6 −0.553984
\(701\) −1.04904e7 −0.806298 −0.403149 0.915134i \(-0.632084\pi\)
−0.403149 + 0.915134i \(0.632084\pi\)
\(702\) 1.66627e7 1.27615
\(703\) 871424. 0.0665030
\(704\) 2.38322e7 1.81231
\(705\) −5.61254e6 −0.425292
\(706\) 2.76316e7 2.08639
\(707\) 1.58118e7 1.18969
\(708\) −8.48630e7 −6.36261
\(709\) 1.69019e7 1.26276 0.631380 0.775474i \(-0.282489\pi\)
0.631380 + 0.775474i \(0.282489\pi\)
\(710\) −5.05229e6 −0.376134
\(711\) 4.46748e7 3.31428
\(712\) 3.35748e7 2.48207
\(713\) 2.29082e7 1.68759
\(714\) 3.63537e7 2.66872
\(715\) 2.39534e6 0.175227
\(716\) −1.20471e6 −0.0878211
\(717\) −1.66217e7 −1.20747
\(718\) −6.30003e6 −0.456070
\(719\) −4.94815e6 −0.356961 −0.178481 0.983943i \(-0.557118\pi\)
−0.178481 + 0.983943i \(0.557118\pi\)
\(720\) −1.04227e7 −0.749286
\(721\) −2.08099e7 −1.49084
\(722\) −2.36596e7 −1.68913
\(723\) −2.80286e7 −1.99414
\(724\) 3.54185e7 2.51122
\(725\) 1.19329e6 0.0843141
\(726\) 4.46937e7 3.14706
\(727\) 1.84144e7 1.29218 0.646089 0.763262i \(-0.276404\pi\)
0.646089 + 0.763262i \(0.276404\pi\)
\(728\) −8.79456e6 −0.615015
\(729\) 1.85679e7 1.29403
\(730\) 2.00621e7 1.39338
\(731\) 2.37946e6 0.164696
\(732\) −2.45923e7 −1.69637
\(733\) −1.37224e7 −0.943344 −0.471672 0.881774i \(-0.656349\pi\)
−0.471672 + 0.881774i \(0.656349\pi\)
\(734\) 3.33273e7 2.28328
\(735\) −1.39759e7 −0.954250
\(736\) −7.12586e6 −0.484890
\(737\) 1.87598e7 1.27221
\(738\) −6.41546e6 −0.433598
\(739\) −3.74000e6 −0.251919 −0.125960 0.992035i \(-0.540201\pi\)
−0.125960 + 0.992035i \(0.540201\pi\)
\(740\) −1.04685e7 −0.702759
\(741\) 616420. 0.0412412
\(742\) 2.77472e7 1.85016
\(743\) 8.50626e6 0.565284 0.282642 0.959226i \(-0.408789\pi\)
0.282642 + 0.959226i \(0.408789\pi\)
\(744\) 5.22227e7 3.45881
\(745\) −6.21677e6 −0.410369
\(746\) 3.82303e7 2.51513
\(747\) 3.09500e7 2.02936
\(748\) 2.35426e7 1.53851
\(749\) 1.23822e7 0.806477
\(750\) −4.35444e6 −0.282670
\(751\) −1.43639e7 −0.929335 −0.464667 0.885485i \(-0.653826\pi\)
−0.464667 + 0.885485i \(0.653826\pi\)
\(752\) 5.41192e6 0.348985
\(753\) −4.39088e7 −2.82205
\(754\) 3.10298e6 0.198770
\(755\) −1.55861e6 −0.0995108
\(756\) −1.17813e8 −7.49703
\(757\) 1.37525e7 0.872253 0.436126 0.899885i \(-0.356350\pi\)
0.436126 + 0.899885i \(0.356350\pi\)
\(758\) −1.80004e6 −0.113791
\(759\) −5.72041e7 −3.60432
\(760\) −861848. −0.0541248
\(761\) −1.54163e7 −0.964978 −0.482489 0.875902i \(-0.660267\pi\)
−0.482489 + 0.875902i \(0.660267\pi\)
\(762\) −5.23710e6 −0.326741
\(763\) 3.42014e7 2.12683
\(764\) −1.55587e7 −0.964364
\(765\) 1.02437e7 0.632852
\(766\) −2.74476e7 −1.69018
\(767\) −8.18274e6 −0.502239
\(768\) −5.54253e7 −3.39082
\(769\) −2.69620e7 −1.64413 −0.822065 0.569393i \(-0.807178\pi\)
−0.822065 + 0.569393i \(0.807178\pi\)
\(770\) −2.58969e7 −1.57406
\(771\) 1.18304e7 0.716743
\(772\) 4.41099e7 2.66375
\(773\) −2.34249e7 −1.41003 −0.705017 0.709191i \(-0.749061\pi\)
−0.705017 + 0.709191i \(0.749061\pi\)
\(774\) −1.98899e7 −1.19338
\(775\) 4.11214e6 0.245931
\(776\) 5.28764e6 0.315216
\(777\) −3.81199e7 −2.26516
\(778\) −3.40602e7 −2.01743
\(779\) −140697. −0.00830693
\(780\) −7.40513e6 −0.435809
\(781\) −1.19141e7 −0.698930
\(782\) −2.29892e7 −1.34433
\(783\) 1.95748e7 1.14102
\(784\) 1.34764e7 0.783037
\(785\) 6.88047e6 0.398515
\(786\) −5.06943e6 −0.292686
\(787\) 6.92601e6 0.398608 0.199304 0.979938i \(-0.436132\pi\)
0.199304 + 0.979938i \(0.436132\pi\)
\(788\) 3.71459e7 2.13106
\(789\) −3.60462e7 −2.06142
\(790\) −1.79973e7 −1.02598
\(791\) 1.21127e7 0.688337
\(792\) −9.26718e7 −5.24970
\(793\) −2.37126e6 −0.133905
\(794\) −1.20044e7 −0.675757
\(795\) 1.10021e7 0.617387
\(796\) −132393. −0.00740597
\(797\) −6.71294e6 −0.374341 −0.187170 0.982327i \(-0.559932\pi\)
−0.187170 + 0.982327i \(0.559932\pi\)
\(798\) −6.66436e6 −0.370468
\(799\) −5.31898e6 −0.294755
\(800\) −1.27913e6 −0.0706627
\(801\) 7.31559e7 4.02873
\(802\) −2.63615e7 −1.44722
\(803\) 4.73096e7 2.58917
\(804\) −5.79955e7 −3.16413
\(805\) 1.65380e7 0.899485
\(806\) 1.06931e7 0.579781
\(807\) −2.81390e7 −1.52099
\(808\) −2.27943e7 −1.22828
\(809\) 1.59763e7 0.858235 0.429117 0.903249i \(-0.358825\pi\)
0.429117 + 0.903249i \(0.358825\pi\)
\(810\) −3.65650e7 −1.95818
\(811\) −2.53698e7 −1.35445 −0.677227 0.735774i \(-0.736819\pi\)
−0.677227 + 0.735774i \(0.736819\pi\)
\(812\) −2.19395e7 −1.16772
\(813\) 1.87542e7 0.995114
\(814\) −3.77478e7 −1.99678
\(815\) 1.32840e6 0.0700541
\(816\) −1.38994e7 −0.730755
\(817\) −436202. −0.0228630
\(818\) 5.90221e7 3.08412
\(819\) −1.91624e7 −0.998252
\(820\) 1.69021e6 0.0877821
\(821\) 1.23967e7 0.641874 0.320937 0.947101i \(-0.396002\pi\)
0.320937 + 0.947101i \(0.396002\pi\)
\(822\) 2.95929e7 1.52759
\(823\) −1.23249e7 −0.634286 −0.317143 0.948378i \(-0.602723\pi\)
−0.317143 + 0.948378i \(0.602723\pi\)
\(824\) 2.99995e7 1.53920
\(825\) −1.02685e7 −0.525255
\(826\) 8.84669e7 4.51160
\(827\) −2.17696e6 −0.110684 −0.0553422 0.998467i \(-0.517625\pi\)
−0.0553422 + 0.998467i \(0.517625\pi\)
\(828\) 1.25674e8 6.37043
\(829\) −948009. −0.0479100 −0.0239550 0.999713i \(-0.507626\pi\)
−0.0239550 + 0.999713i \(0.507626\pi\)
\(830\) −1.24683e7 −0.628218
\(831\) 1.98398e7 0.996633
\(832\) −7.10414e6 −0.355798
\(833\) −1.32449e7 −0.661358
\(834\) 9.45966e6 0.470934
\(835\) −1.03141e7 −0.511934
\(836\) −4.31584e6 −0.213575
\(837\) 6.74558e7 3.32817
\(838\) 1.88388e7 0.926711
\(839\) 2.05015e7 1.00550 0.502748 0.864433i \(-0.332322\pi\)
0.502748 + 0.864433i \(0.332322\pi\)
\(840\) 3.77010e7 1.84355
\(841\) −1.68659e7 −0.822278
\(842\) 5.06444e7 2.46179
\(843\) −6.03046e7 −2.92268
\(844\) 5.79856e6 0.280198
\(845\) −714025. −0.0344010
\(846\) 4.44614e7 2.13578
\(847\) −3.04702e7 −1.45938
\(848\) −1.06088e7 −0.506615
\(849\) 6.07310e7 2.89162
\(850\) −4.12668e6 −0.195909
\(851\) 2.41061e7 1.14105
\(852\) 3.68322e7 1.73832
\(853\) 3.75405e7 1.76655 0.883277 0.468851i \(-0.155332\pi\)
0.883277 + 0.468851i \(0.155332\pi\)
\(854\) 2.56366e7 1.20286
\(855\) −1.87787e6 −0.0878518
\(856\) −1.78501e7 −0.832639
\(857\) 2.62833e7 1.22244 0.611221 0.791460i \(-0.290678\pi\)
0.611221 + 0.791460i \(0.290678\pi\)
\(858\) −2.67017e7 −1.23828
\(859\) −1.04479e7 −0.483110 −0.241555 0.970387i \(-0.577657\pi\)
−0.241555 + 0.970387i \(0.577657\pi\)
\(860\) 5.24016e6 0.241601
\(861\) 6.15470e6 0.282943
\(862\) −3.10944e7 −1.42532
\(863\) −8.76214e6 −0.400482 −0.200241 0.979747i \(-0.564173\pi\)
−0.200241 + 0.979747i \(0.564173\pi\)
\(864\) −2.09829e7 −0.956274
\(865\) 1.46062e7 0.663739
\(866\) −3.36365e7 −1.52411
\(867\) −2.74855e7 −1.24181
\(868\) −7.56050e7 −3.40605
\(869\) −4.24406e7 −1.90648
\(870\) −1.33020e7 −0.595826
\(871\) −5.59210e6 −0.249764
\(872\) −4.93047e7 −2.19582
\(873\) 1.15212e7 0.511637
\(874\) 4.21438e6 0.186619
\(875\) 2.96867e6 0.131082
\(876\) −1.46257e8 −6.43955
\(877\) −1.51823e7 −0.666558 −0.333279 0.942828i \(-0.608155\pi\)
−0.333279 + 0.942828i \(0.608155\pi\)
\(878\) −282772. −0.0123794
\(879\) 4.94523e6 0.215881
\(880\) 9.90142e6 0.431013
\(881\) 2.86755e7 1.24472 0.622359 0.782732i \(-0.286175\pi\)
0.622359 + 0.782732i \(0.286175\pi\)
\(882\) 1.10714e8 4.79217
\(883\) −1.89214e6 −0.0816681 −0.0408340 0.999166i \(-0.513001\pi\)
−0.0408340 + 0.999166i \(0.513001\pi\)
\(884\) −7.01781e6 −0.302045
\(885\) 3.50782e7 1.50550
\(886\) 5.24938e6 0.224659
\(887\) 1.08388e7 0.462564 0.231282 0.972887i \(-0.425708\pi\)
0.231282 + 0.972887i \(0.425708\pi\)
\(888\) 5.49536e7 2.33864
\(889\) 3.57043e6 0.151519
\(890\) −2.94710e7 −1.24715
\(891\) −8.62262e7 −3.63869
\(892\) 4.97456e7 2.09335
\(893\) 975077. 0.0409176
\(894\) 6.93006e7 2.89997
\(895\) 497967. 0.0207799
\(896\) 6.43626e7 2.67833
\(897\) 1.70520e7 0.707609
\(898\) −5.25558e7 −2.17485
\(899\) 1.25618e7 0.518387
\(900\) 2.25591e7 0.928360
\(901\) 1.04266e7 0.427890
\(902\) 6.09462e6 0.249419
\(903\) 1.90814e7 0.778737
\(904\) −1.74617e7 −0.710666
\(905\) −1.46403e7 −0.594194
\(906\) 1.73744e7 0.703217
\(907\) −2.32175e7 −0.937123 −0.468561 0.883431i \(-0.655227\pi\)
−0.468561 + 0.883431i \(0.655227\pi\)
\(908\) −2.60755e7 −1.04959
\(909\) −4.96662e7 −1.99366
\(910\) 7.71961e6 0.309024
\(911\) −2.42940e6 −0.0969849 −0.0484924 0.998824i \(-0.515442\pi\)
−0.0484924 + 0.998824i \(0.515442\pi\)
\(912\) 2.54805e6 0.101443
\(913\) −2.94021e7 −1.16735
\(914\) −5.14212e7 −2.03599
\(915\) 1.01652e7 0.401389
\(916\) 5.81874e7 2.29134
\(917\) 3.45612e6 0.135727
\(918\) −6.76943e7 −2.65122
\(919\) −3.69038e7 −1.44139 −0.720697 0.693251i \(-0.756178\pi\)
−0.720697 + 0.693251i \(0.756178\pi\)
\(920\) −2.38412e7 −0.928664
\(921\) −1.22509e6 −0.0475904
\(922\) 3.02906e7 1.17349
\(923\) 3.55147e6 0.137216
\(924\) 1.88794e8 7.27458
\(925\) 4.32718e6 0.166284
\(926\) −5.02314e7 −1.92507
\(927\) 6.53657e7 2.49833
\(928\) −3.90751e6 −0.148947
\(929\) 2.16356e7 0.822489 0.411245 0.911525i \(-0.365094\pi\)
0.411245 + 0.911525i \(0.365094\pi\)
\(930\) −4.58395e7 −1.73793
\(931\) 2.42806e6 0.0918090
\(932\) −3.12702e7 −1.17921
\(933\) −3.91387e7 −1.47198
\(934\) 6.39033e7 2.39693
\(935\) −9.73138e6 −0.364037
\(936\) 2.76245e7 1.03063
\(937\) −1.41082e7 −0.524956 −0.262478 0.964938i \(-0.584540\pi\)
−0.262478 + 0.964938i \(0.584540\pi\)
\(938\) 6.04584e7 2.24362
\(939\) 6.45945e7 2.39074
\(940\) −1.17137e7 −0.432390
\(941\) −4.39029e7 −1.61629 −0.808145 0.588983i \(-0.799528\pi\)
−0.808145 + 0.588983i \(0.799528\pi\)
\(942\) −7.66992e7 −2.81620
\(943\) −3.89208e6 −0.142529
\(944\) −3.38244e7 −1.23538
\(945\) 4.86982e7 1.77392
\(946\) 1.88951e7 0.686471
\(947\) 4.04056e6 0.146409 0.0732044 0.997317i \(-0.476677\pi\)
0.0732044 + 0.997317i \(0.476677\pi\)
\(948\) 1.31204e8 4.74162
\(949\) −1.41025e7 −0.508312
\(950\) 756504. 0.0271958
\(951\) −9.41526e7 −3.37583
\(952\) 3.57291e7 1.27770
\(953\) 2.21804e7 0.791110 0.395555 0.918442i \(-0.370552\pi\)
0.395555 + 0.918442i \(0.370552\pi\)
\(954\) −8.71563e7 −3.10047
\(955\) 6.43122e6 0.228184
\(956\) −3.46905e7 −1.22762
\(957\) −3.13683e7 −1.10716
\(958\) 6.50576e7 2.29026
\(959\) −2.01752e7 −0.708387
\(960\) 3.04544e7 1.06653
\(961\) 1.46597e7 0.512055
\(962\) 1.12522e7 0.392013
\(963\) −3.88935e7 −1.35148
\(964\) −5.84975e7 −2.02742
\(965\) −1.82329e7 −0.630285
\(966\) −1.84356e8 −6.35643
\(967\) 2.23431e7 0.768383 0.384191 0.923253i \(-0.374480\pi\)
0.384191 + 0.923253i \(0.374480\pi\)
\(968\) 4.39258e7 1.50672
\(969\) −2.50429e6 −0.0856791
\(970\) −4.64134e6 −0.158385
\(971\) −5.29498e7 −1.80226 −0.901128 0.433554i \(-0.857259\pi\)
−0.901128 + 0.433554i \(0.857259\pi\)
\(972\) 1.15885e8 3.93426
\(973\) −6.44919e6 −0.218385
\(974\) 1.29345e7 0.436869
\(975\) 3.06092e6 0.103119
\(976\) −9.80190e6 −0.329371
\(977\) 1.28543e7 0.430836 0.215418 0.976522i \(-0.430889\pi\)
0.215418 + 0.976522i \(0.430889\pi\)
\(978\) −1.48081e7 −0.495054
\(979\) −6.94972e7 −2.31745
\(980\) −2.91686e7 −0.970176
\(981\) −1.07430e8 −3.56412
\(982\) −7.05343e7 −2.33411
\(983\) −2.18478e7 −0.721149 −0.360574 0.932730i \(-0.617419\pi\)
−0.360574 + 0.932730i \(0.617419\pi\)
\(984\) −8.87260e6 −0.292121
\(985\) −1.53543e7 −0.504243
\(986\) −1.26063e7 −0.412947
\(987\) −4.26541e7 −1.39370
\(988\) 1.28651e6 0.0419295
\(989\) −1.20666e7 −0.392279
\(990\) 8.13445e7 2.63779
\(991\) 1.64896e7 0.533368 0.266684 0.963784i \(-0.414072\pi\)
0.266684 + 0.963784i \(0.414072\pi\)
\(992\) −1.34655e7 −0.434454
\(993\) 5.24896e7 1.68927
\(994\) −3.83964e7 −1.23261
\(995\) 54724.7 0.00175237
\(996\) 9.08961e7 2.90333
\(997\) 5.04197e7 1.60643 0.803216 0.595688i \(-0.203121\pi\)
0.803216 + 0.595688i \(0.203121\pi\)
\(998\) 4.43391e7 1.40916
\(999\) 7.09833e7 2.25031
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 65.6.a.d.1.6 6
3.2 odd 2 585.6.a.m.1.1 6
4.3 odd 2 1040.6.a.q.1.1 6
5.2 odd 4 325.6.b.g.274.11 12
5.3 odd 4 325.6.b.g.274.2 12
5.4 even 2 325.6.a.g.1.1 6
13.12 even 2 845.6.a.h.1.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.6.a.d.1.6 6 1.1 even 1 trivial
325.6.a.g.1.1 6 5.4 even 2
325.6.b.g.274.2 12 5.3 odd 4
325.6.b.g.274.11 12 5.2 odd 4
585.6.a.m.1.1 6 3.2 odd 2
845.6.a.h.1.1 6 13.12 even 2
1040.6.a.q.1.1 6 4.3 odd 2