Properties

Label 65.6.a.d.1.5
Level $65$
Weight $6$
Character 65.1
Self dual yes
Analytic conductor $10.425$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [65,6,Mod(1,65)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(65, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("65.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 65 = 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 65.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.4249482878\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 163x^{4} - 8x^{3} + 6120x^{2} + 6624x - 19440 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{4}\cdot 3 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(8.51599\) of defining polynomial
Character \(\chi\) \(=\) 65.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.51599 q^{2} +11.2297 q^{3} +40.5221 q^{4} -25.0000 q^{5} +95.6316 q^{6} +229.647 q^{7} +72.5738 q^{8} -116.895 q^{9} -212.900 q^{10} +502.772 q^{11} +455.049 q^{12} +169.000 q^{13} +1955.67 q^{14} -280.741 q^{15} -678.668 q^{16} -453.600 q^{17} -995.476 q^{18} -1894.12 q^{19} -1013.05 q^{20} +2578.86 q^{21} +4281.60 q^{22} -1313.22 q^{23} +814.979 q^{24} +625.000 q^{25} +1439.20 q^{26} -4041.49 q^{27} +9305.78 q^{28} -4570.28 q^{29} -2390.79 q^{30} +3205.38 q^{31} -8101.89 q^{32} +5645.95 q^{33} -3862.86 q^{34} -5741.18 q^{35} -4736.82 q^{36} +7686.60 q^{37} -16130.3 q^{38} +1897.81 q^{39} -1814.35 q^{40} +16247.4 q^{41} +21961.5 q^{42} -15615.8 q^{43} +20373.4 q^{44} +2922.37 q^{45} -11183.4 q^{46} -24741.7 q^{47} -7621.21 q^{48} +35930.9 q^{49} +5322.49 q^{50} -5093.78 q^{51} +6848.23 q^{52} -19027.8 q^{53} -34417.3 q^{54} -12569.3 q^{55} +16666.4 q^{56} -21270.4 q^{57} -38920.5 q^{58} +24196.1 q^{59} -11376.2 q^{60} -22730.3 q^{61} +27297.0 q^{62} -26844.6 q^{63} -47278.3 q^{64} -4225.00 q^{65} +48080.9 q^{66} +65647.6 q^{67} -18380.8 q^{68} -14747.0 q^{69} -48891.8 q^{70} -24448.0 q^{71} -8483.51 q^{72} -17510.1 q^{73} +65459.0 q^{74} +7018.53 q^{75} -76753.8 q^{76} +115460. q^{77} +16161.7 q^{78} +53681.2 q^{79} +16966.7 q^{80} -16979.1 q^{81} +138363. q^{82} +27706.4 q^{83} +104501. q^{84} +11340.0 q^{85} -132984. q^{86} -51322.7 q^{87} +36488.1 q^{88} +35466.0 q^{89} +24886.9 q^{90} +38810.4 q^{91} -53214.4 q^{92} +35995.3 q^{93} -210700. q^{94} +47353.1 q^{95} -90981.4 q^{96} +58497.8 q^{97} +305987. q^{98} -58771.5 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 38 q^{3} + 134 q^{4} - 150 q^{5} + 318 q^{6} + 220 q^{7} + 24 q^{8} + 518 q^{9} - 170 q^{11} + 2238 q^{12} + 1014 q^{13} - 1440 q^{14} - 950 q^{15} + 3506 q^{16} + 728 q^{17} + 7788 q^{18} + 1218 q^{19}+ \cdots - 32270 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 8.51599 1.50543 0.752714 0.658347i \(-0.228744\pi\)
0.752714 + 0.658347i \(0.228744\pi\)
\(3\) 11.2297 0.720382 0.360191 0.932878i \(-0.382711\pi\)
0.360191 + 0.932878i \(0.382711\pi\)
\(4\) 40.5221 1.26631
\(5\) −25.0000 −0.447214
\(6\) 95.6316 1.08448
\(7\) 229.647 1.77140 0.885699 0.464260i \(-0.153680\pi\)
0.885699 + 0.464260i \(0.153680\pi\)
\(8\) 72.5738 0.400918
\(9\) −116.895 −0.481049
\(10\) −212.900 −0.673248
\(11\) 502.772 1.25282 0.626411 0.779493i \(-0.284523\pi\)
0.626411 + 0.779493i \(0.284523\pi\)
\(12\) 455.049 0.912231
\(13\) 169.000 0.277350
\(14\) 1955.67 2.66671
\(15\) −280.741 −0.322165
\(16\) −678.668 −0.662762
\(17\) −453.600 −0.380672 −0.190336 0.981719i \(-0.560958\pi\)
−0.190336 + 0.981719i \(0.560958\pi\)
\(18\) −995.476 −0.724185
\(19\) −1894.12 −1.20372 −0.601859 0.798603i \(-0.705573\pi\)
−0.601859 + 0.798603i \(0.705573\pi\)
\(20\) −1013.05 −0.566313
\(21\) 2578.86 1.27608
\(22\) 4281.60 1.88603
\(23\) −1313.22 −0.517628 −0.258814 0.965927i \(-0.583332\pi\)
−0.258814 + 0.965927i \(0.583332\pi\)
\(24\) 814.979 0.288814
\(25\) 625.000 0.200000
\(26\) 1439.20 0.417531
\(27\) −4041.49 −1.06692
\(28\) 9305.78 2.24315
\(29\) −4570.28 −1.00913 −0.504566 0.863373i \(-0.668348\pi\)
−0.504566 + 0.863373i \(0.668348\pi\)
\(30\) −2390.79 −0.484996
\(31\) 3205.38 0.599067 0.299534 0.954086i \(-0.403169\pi\)
0.299534 + 0.954086i \(0.403169\pi\)
\(32\) −8101.89 −1.39866
\(33\) 5645.95 0.902511
\(34\) −3862.86 −0.573075
\(35\) −5741.18 −0.792193
\(36\) −4736.82 −0.609160
\(37\) 7686.60 0.923060 0.461530 0.887125i \(-0.347301\pi\)
0.461530 + 0.887125i \(0.347301\pi\)
\(38\) −16130.3 −1.81211
\(39\) 1897.81 0.199798
\(40\) −1814.35 −0.179296
\(41\) 16247.4 1.50947 0.754737 0.656028i \(-0.227765\pi\)
0.754737 + 0.656028i \(0.227765\pi\)
\(42\) 21961.5 1.92105
\(43\) −15615.8 −1.28793 −0.643965 0.765055i \(-0.722712\pi\)
−0.643965 + 0.765055i \(0.722712\pi\)
\(44\) 20373.4 1.58647
\(45\) 2922.37 0.215132
\(46\) −11183.4 −0.779252
\(47\) −24741.7 −1.63375 −0.816875 0.576815i \(-0.804295\pi\)
−0.816875 + 0.576815i \(0.804295\pi\)
\(48\) −7621.21 −0.477442
\(49\) 35930.9 2.13785
\(50\) 5322.49 0.301086
\(51\) −5093.78 −0.274230
\(52\) 6848.23 0.351212
\(53\) −19027.8 −0.930460 −0.465230 0.885190i \(-0.654028\pi\)
−0.465230 + 0.885190i \(0.654028\pi\)
\(54\) −34417.3 −1.60617
\(55\) −12569.3 −0.560279
\(56\) 16666.4 0.710185
\(57\) −21270.4 −0.867137
\(58\) −38920.5 −1.51918
\(59\) 24196.1 0.904932 0.452466 0.891782i \(-0.350544\pi\)
0.452466 + 0.891782i \(0.350544\pi\)
\(60\) −11376.2 −0.407962
\(61\) −22730.3 −0.782133 −0.391067 0.920362i \(-0.627894\pi\)
−0.391067 + 0.920362i \(0.627894\pi\)
\(62\) 27297.0 0.901853
\(63\) −26844.6 −0.852130
\(64\) −47278.3 −1.44282
\(65\) −4225.00 −0.124035
\(66\) 48080.9 1.35867
\(67\) 65647.6 1.78662 0.893309 0.449442i \(-0.148377\pi\)
0.893309 + 0.449442i \(0.148377\pi\)
\(68\) −18380.8 −0.482051
\(69\) −14747.0 −0.372890
\(70\) −48891.8 −1.19259
\(71\) −24448.0 −0.575568 −0.287784 0.957695i \(-0.592919\pi\)
−0.287784 + 0.957695i \(0.592919\pi\)
\(72\) −8483.51 −0.192861
\(73\) −17510.1 −0.384576 −0.192288 0.981339i \(-0.561591\pi\)
−0.192288 + 0.981339i \(0.561591\pi\)
\(74\) 65459.0 1.38960
\(75\) 7018.53 0.144076
\(76\) −76753.8 −1.52429
\(77\) 115460. 2.21925
\(78\) 16161.7 0.300782
\(79\) 53681.2 0.967730 0.483865 0.875143i \(-0.339233\pi\)
0.483865 + 0.875143i \(0.339233\pi\)
\(80\) 16966.7 0.296396
\(81\) −16979.1 −0.287543
\(82\) 138363. 2.27240
\(83\) 27706.4 0.441454 0.220727 0.975336i \(-0.429157\pi\)
0.220727 + 0.975336i \(0.429157\pi\)
\(84\) 104501. 1.61592
\(85\) 11340.0 0.170242
\(86\) −132984. −1.93889
\(87\) −51322.7 −0.726961
\(88\) 36488.1 0.502278
\(89\) 35466.0 0.474610 0.237305 0.971435i \(-0.423736\pi\)
0.237305 + 0.971435i \(0.423736\pi\)
\(90\) 24886.9 0.323865
\(91\) 38810.4 0.491298
\(92\) −53214.4 −0.655480
\(93\) 35995.3 0.431558
\(94\) −210700. −2.45949
\(95\) 47353.1 0.538319
\(96\) −90981.4 −1.00757
\(97\) 58497.8 0.631263 0.315632 0.948882i \(-0.397784\pi\)
0.315632 + 0.948882i \(0.397784\pi\)
\(98\) 305987. 3.21838
\(99\) −58771.5 −0.602669
\(100\) 25326.3 0.253263
\(101\) 119105. 1.16179 0.580894 0.813979i \(-0.302703\pi\)
0.580894 + 0.813979i \(0.302703\pi\)
\(102\) −43378.5 −0.412833
\(103\) 140545. 1.30533 0.652667 0.757645i \(-0.273650\pi\)
0.652667 + 0.757645i \(0.273650\pi\)
\(104\) 12265.0 0.111195
\(105\) −64471.5 −0.570682
\(106\) −162040. −1.40074
\(107\) 155974. 1.31703 0.658513 0.752570i \(-0.271186\pi\)
0.658513 + 0.752570i \(0.271186\pi\)
\(108\) −163770. −1.35106
\(109\) 78243.4 0.630785 0.315392 0.948961i \(-0.397864\pi\)
0.315392 + 0.948961i \(0.397864\pi\)
\(110\) −107040. −0.843460
\(111\) 86317.8 0.664956
\(112\) −155854. −1.17402
\(113\) −28676.6 −0.211267 −0.105634 0.994405i \(-0.533687\pi\)
−0.105634 + 0.994405i \(0.533687\pi\)
\(114\) −181138. −1.30541
\(115\) 32830.5 0.231490
\(116\) −185197. −1.27788
\(117\) −19755.2 −0.133419
\(118\) 206054. 1.36231
\(119\) −104168. −0.674322
\(120\) −20374.5 −0.129162
\(121\) 91728.6 0.569562
\(122\) −193571. −1.17745
\(123\) 182453. 1.08740
\(124\) 129889. 0.758608
\(125\) −15625.0 −0.0894427
\(126\) −228608. −1.28282
\(127\) −198070. −1.08970 −0.544852 0.838532i \(-0.683414\pi\)
−0.544852 + 0.838532i \(0.683414\pi\)
\(128\) −143360. −0.773401
\(129\) −175360. −0.927803
\(130\) −35980.1 −0.186725
\(131\) −376991. −1.91934 −0.959671 0.281126i \(-0.909292\pi\)
−0.959671 + 0.281126i \(0.909292\pi\)
\(132\) 228786. 1.14286
\(133\) −434981. −2.13226
\(134\) 559054. 2.68963
\(135\) 101037. 0.477142
\(136\) −32919.5 −0.152618
\(137\) 115360. 0.525114 0.262557 0.964916i \(-0.415434\pi\)
0.262557 + 0.964916i \(0.415434\pi\)
\(138\) −125585. −0.561360
\(139\) −349891. −1.53602 −0.768008 0.640440i \(-0.778752\pi\)
−0.768008 + 0.640440i \(0.778752\pi\)
\(140\) −232645. −1.00317
\(141\) −277841. −1.17692
\(142\) −208198. −0.866476
\(143\) 84968.5 0.347470
\(144\) 79332.9 0.318821
\(145\) 114257. 0.451298
\(146\) −149116. −0.578952
\(147\) 403491. 1.54007
\(148\) 311477. 1.16888
\(149\) −161771. −0.596947 −0.298473 0.954418i \(-0.596477\pi\)
−0.298473 + 0.954418i \(0.596477\pi\)
\(150\) 59769.7 0.216897
\(151\) 258115. 0.921237 0.460618 0.887598i \(-0.347628\pi\)
0.460618 + 0.887598i \(0.347628\pi\)
\(152\) −137464. −0.482591
\(153\) 53023.6 0.183122
\(154\) 983258. 3.34092
\(155\) −80134.6 −0.267911
\(156\) 76903.2 0.253007
\(157\) 444441. 1.43901 0.719507 0.694486i \(-0.244368\pi\)
0.719507 + 0.694486i \(0.244368\pi\)
\(158\) 457148. 1.45685
\(159\) −213675. −0.670287
\(160\) 202547. 0.625499
\(161\) −301577. −0.916926
\(162\) −144594. −0.432875
\(163\) −140828. −0.415166 −0.207583 0.978217i \(-0.566560\pi\)
−0.207583 + 0.978217i \(0.566560\pi\)
\(164\) 658380. 1.91147
\(165\) −141149. −0.403615
\(166\) 235948. 0.664577
\(167\) −78814.3 −0.218682 −0.109341 0.994004i \(-0.534874\pi\)
−0.109341 + 0.994004i \(0.534874\pi\)
\(168\) 187158. 0.511605
\(169\) 28561.0 0.0769231
\(170\) 96571.4 0.256287
\(171\) 221414. 0.579047
\(172\) −632784. −1.63093
\(173\) 282076. 0.716558 0.358279 0.933615i \(-0.383364\pi\)
0.358279 + 0.933615i \(0.383364\pi\)
\(174\) −437063. −1.09439
\(175\) 143530. 0.354280
\(176\) −341215. −0.830323
\(177\) 271714. 0.651897
\(178\) 302028. 0.714492
\(179\) −112083. −0.261460 −0.130730 0.991418i \(-0.541732\pi\)
−0.130730 + 0.991418i \(0.541732\pi\)
\(180\) 118421. 0.272424
\(181\) 151962. 0.344777 0.172389 0.985029i \(-0.444852\pi\)
0.172389 + 0.985029i \(0.444852\pi\)
\(182\) 330509. 0.739613
\(183\) −255254. −0.563435
\(184\) −95305.4 −0.207526
\(185\) −192165. −0.412805
\(186\) 306536. 0.649679
\(187\) −228058. −0.476914
\(188\) −1.00259e6 −2.06884
\(189\) −928118. −1.88994
\(190\) 403259. 0.810400
\(191\) −616584. −1.22295 −0.611475 0.791264i \(-0.709423\pi\)
−0.611475 + 0.791264i \(0.709423\pi\)
\(192\) −530918. −1.03938
\(193\) −590265. −1.14065 −0.570327 0.821418i \(-0.693183\pi\)
−0.570327 + 0.821418i \(0.693183\pi\)
\(194\) 498167. 0.950321
\(195\) −47445.3 −0.0893524
\(196\) 1.45599e6 2.70719
\(197\) −585138. −1.07422 −0.537109 0.843513i \(-0.680484\pi\)
−0.537109 + 0.843513i \(0.680484\pi\)
\(198\) −500497. −0.907275
\(199\) 455610. 0.815570 0.407785 0.913078i \(-0.366301\pi\)
0.407785 + 0.913078i \(0.366301\pi\)
\(200\) 45358.6 0.0801835
\(201\) 737200. 1.28705
\(202\) 1.01430e6 1.74899
\(203\) −1.04955e6 −1.78758
\(204\) −206410. −0.347261
\(205\) −406186. −0.675057
\(206\) 1.19688e6 1.96509
\(207\) 153509. 0.249005
\(208\) −114695. −0.183817
\(209\) −952313. −1.50804
\(210\) −549038. −0.859121
\(211\) 477952. 0.739057 0.369529 0.929219i \(-0.379519\pi\)
0.369529 + 0.929219i \(0.379519\pi\)
\(212\) −771044. −1.17826
\(213\) −274542. −0.414629
\(214\) 1.32828e6 1.98269
\(215\) 390394. 0.575980
\(216\) −293307. −0.427748
\(217\) 736108. 1.06119
\(218\) 666320. 0.949601
\(219\) −196633. −0.277042
\(220\) −509334. −0.709489
\(221\) −76658.5 −0.105579
\(222\) 735082. 1.00104
\(223\) 1.38878e6 1.87013 0.935065 0.354478i \(-0.115341\pi\)
0.935065 + 0.354478i \(0.115341\pi\)
\(224\) −1.86058e6 −2.47758
\(225\) −73059.3 −0.0962098
\(226\) −244210. −0.318048
\(227\) −159073. −0.204896 −0.102448 0.994738i \(-0.532667\pi\)
−0.102448 + 0.994738i \(0.532667\pi\)
\(228\) −861919. −1.09807
\(229\) −333919. −0.420777 −0.210389 0.977618i \(-0.567473\pi\)
−0.210389 + 0.977618i \(0.567473\pi\)
\(230\) 279584. 0.348492
\(231\) 1.29658e6 1.59871
\(232\) −331683. −0.404579
\(233\) −453757. −0.547562 −0.273781 0.961792i \(-0.588274\pi\)
−0.273781 + 0.961792i \(0.588274\pi\)
\(234\) −168235. −0.200853
\(235\) 618543. 0.730635
\(236\) 980477. 1.14593
\(237\) 602821. 0.697136
\(238\) −887095. −1.01514
\(239\) −752595. −0.852249 −0.426124 0.904665i \(-0.640121\pi\)
−0.426124 + 0.904665i \(0.640121\pi\)
\(240\) 190530. 0.213519
\(241\) 219818. 0.243792 0.121896 0.992543i \(-0.461103\pi\)
0.121896 + 0.992543i \(0.461103\pi\)
\(242\) 781160. 0.857435
\(243\) 791414. 0.859781
\(244\) −921079. −0.990427
\(245\) −898272. −0.956077
\(246\) 1.55377e6 1.63700
\(247\) −320107. −0.333851
\(248\) 232627. 0.240177
\(249\) 311133. 0.318015
\(250\) −133062. −0.134650
\(251\) −673696. −0.674963 −0.337481 0.941332i \(-0.609575\pi\)
−0.337481 + 0.941332i \(0.609575\pi\)
\(252\) −1.08780e6 −1.07906
\(253\) −660250. −0.648496
\(254\) −1.68676e6 −1.64047
\(255\) 127344. 0.122639
\(256\) 292048. 0.278518
\(257\) −95463.7 −0.0901582 −0.0450791 0.998983i \(-0.514354\pi\)
−0.0450791 + 0.998983i \(0.514354\pi\)
\(258\) −1.49336e6 −1.39674
\(259\) 1.76521e6 1.63511
\(260\) −171206. −0.157067
\(261\) 534243. 0.485442
\(262\) −3.21045e6 −2.88943
\(263\) −140198. −0.124983 −0.0624916 0.998045i \(-0.519905\pi\)
−0.0624916 + 0.998045i \(0.519905\pi\)
\(264\) 409748. 0.361832
\(265\) 475694. 0.416114
\(266\) −3.70429e6 −3.20997
\(267\) 398271. 0.341901
\(268\) 2.66018e6 2.26242
\(269\) 987335. 0.831924 0.415962 0.909382i \(-0.363445\pi\)
0.415962 + 0.909382i \(0.363445\pi\)
\(270\) 860433. 0.718303
\(271\) −1.09742e6 −0.907713 −0.453857 0.891075i \(-0.649952\pi\)
−0.453857 + 0.891075i \(0.649952\pi\)
\(272\) 307844. 0.252295
\(273\) 435827. 0.353922
\(274\) 982404. 0.790522
\(275\) 314232. 0.250564
\(276\) −597579. −0.472196
\(277\) −1.75035e6 −1.37065 −0.685325 0.728238i \(-0.740340\pi\)
−0.685325 + 0.728238i \(0.740340\pi\)
\(278\) −2.97967e6 −2.31236
\(279\) −374693. −0.288181
\(280\) −416660. −0.317604
\(281\) 783692. 0.592079 0.296039 0.955176i \(-0.404334\pi\)
0.296039 + 0.955176i \(0.404334\pi\)
\(282\) −2.36609e6 −1.77178
\(283\) 1.32705e6 0.984963 0.492482 0.870323i \(-0.336090\pi\)
0.492482 + 0.870323i \(0.336090\pi\)
\(284\) −990682. −0.728850
\(285\) 531759. 0.387795
\(286\) 723590. 0.523092
\(287\) 3.73118e6 2.67388
\(288\) 947070. 0.672823
\(289\) −1.21410e6 −0.855089
\(290\) 973012. 0.679396
\(291\) 656910. 0.454751
\(292\) −709547. −0.486995
\(293\) 495312. 0.337062 0.168531 0.985696i \(-0.446098\pi\)
0.168531 + 0.985696i \(0.446098\pi\)
\(294\) 3.43613e6 2.31847
\(295\) −604903. −0.404698
\(296\) 557846. 0.370071
\(297\) −2.03195e6 −1.33666
\(298\) −1.37764e6 −0.898660
\(299\) −221934. −0.143564
\(300\) 284405. 0.182446
\(301\) −3.58612e6 −2.28144
\(302\) 2.19811e6 1.38686
\(303\) 1.33751e6 0.836932
\(304\) 1.28548e6 0.797778
\(305\) 568258. 0.349781
\(306\) 451548. 0.275677
\(307\) −691003. −0.418441 −0.209221 0.977868i \(-0.567093\pi\)
−0.209221 + 0.977868i \(0.567093\pi\)
\(308\) 4.67869e6 2.81026
\(309\) 1.57827e6 0.940340
\(310\) −682425. −0.403321
\(311\) 1.51561e6 0.888560 0.444280 0.895888i \(-0.353460\pi\)
0.444280 + 0.895888i \(0.353460\pi\)
\(312\) 137731. 0.0801026
\(313\) 829838. 0.478776 0.239388 0.970924i \(-0.423053\pi\)
0.239388 + 0.970924i \(0.423053\pi\)
\(314\) 3.78485e6 2.16633
\(315\) 671115. 0.381084
\(316\) 2.17527e6 1.22545
\(317\) −2.54241e6 −1.42101 −0.710507 0.703691i \(-0.751534\pi\)
−0.710507 + 0.703691i \(0.751534\pi\)
\(318\) −1.81965e6 −1.00907
\(319\) −2.29781e6 −1.26426
\(320\) 1.18196e6 0.645248
\(321\) 1.75154e6 0.948762
\(322\) −2.56823e6 −1.38037
\(323\) 859176. 0.458222
\(324\) −688028. −0.364119
\(325\) 105625. 0.0554700
\(326\) −1.19929e6 −0.625002
\(327\) 878646. 0.454406
\(328\) 1.17914e6 0.605174
\(329\) −5.68187e6 −2.89402
\(330\) −1.20202e6 −0.607614
\(331\) −2.87653e6 −1.44311 −0.721553 0.692359i \(-0.756572\pi\)
−0.721553 + 0.692359i \(0.756572\pi\)
\(332\) 1.12272e6 0.559019
\(333\) −898525. −0.444037
\(334\) −671182. −0.329211
\(335\) −1.64119e6 −0.799000
\(336\) −1.75019e6 −0.845740
\(337\) 1.34564e6 0.645437 0.322719 0.946495i \(-0.395403\pi\)
0.322719 + 0.946495i \(0.395403\pi\)
\(338\) 243225. 0.115802
\(339\) −322029. −0.152193
\(340\) 459521. 0.215580
\(341\) 1.61158e6 0.750525
\(342\) 1.88556e6 0.871714
\(343\) 4.39175e6 2.01559
\(344\) −1.13330e6 −0.516354
\(345\) 368675. 0.166762
\(346\) 2.40216e6 1.07873
\(347\) 3.90267e6 1.73995 0.869977 0.493092i \(-0.164133\pi\)
0.869977 + 0.493092i \(0.164133\pi\)
\(348\) −2.07970e6 −0.920562
\(349\) 4.23422e6 1.86084 0.930422 0.366489i \(-0.119440\pi\)
0.930422 + 0.366489i \(0.119440\pi\)
\(350\) 1.22230e6 0.533343
\(351\) −683013. −0.295911
\(352\) −4.07340e6 −1.75227
\(353\) −3.24104e6 −1.38436 −0.692178 0.721727i \(-0.743349\pi\)
−0.692178 + 0.721727i \(0.743349\pi\)
\(354\) 2.31391e6 0.981384
\(355\) 611199. 0.257402
\(356\) 1.43716e6 0.601006
\(357\) −1.16977e6 −0.485770
\(358\) −954495. −0.393610
\(359\) 2.89904e6 1.18718 0.593591 0.804767i \(-0.297710\pi\)
0.593591 + 0.804767i \(0.297710\pi\)
\(360\) 212088. 0.0862501
\(361\) 1.11161e6 0.448936
\(362\) 1.29411e6 0.519038
\(363\) 1.03008e6 0.410303
\(364\) 1.57268e6 0.622137
\(365\) 437753. 0.171988
\(366\) −2.17374e6 −0.848211
\(367\) −463452. −0.179614 −0.0898068 0.995959i \(-0.528625\pi\)
−0.0898068 + 0.995959i \(0.528625\pi\)
\(368\) 891241. 0.343064
\(369\) −1.89924e6 −0.726131
\(370\) −1.63648e6 −0.621448
\(371\) −4.36967e6 −1.64822
\(372\) 1.45861e6 0.546488
\(373\) 1.91392e6 0.712283 0.356142 0.934432i \(-0.384092\pi\)
0.356142 + 0.934432i \(0.384092\pi\)
\(374\) −1.94214e6 −0.717961
\(375\) −175463. −0.0644330
\(376\) −1.79560e6 −0.654999
\(377\) −772378. −0.279883
\(378\) −7.90385e6 −2.84517
\(379\) −815893. −0.291766 −0.145883 0.989302i \(-0.546602\pi\)
−0.145883 + 0.989302i \(0.546602\pi\)
\(380\) 1.91885e6 0.681681
\(381\) −2.22425e6 −0.785004
\(382\) −5.25082e6 −1.84106
\(383\) 2.97503e6 1.03632 0.518160 0.855283i \(-0.326617\pi\)
0.518160 + 0.855283i \(0.326617\pi\)
\(384\) −1.60989e6 −0.557144
\(385\) −2.88651e6 −0.992477
\(386\) −5.02669e6 −1.71717
\(387\) 1.82541e6 0.619558
\(388\) 2.37045e6 0.799378
\(389\) −4.54774e6 −1.52378 −0.761889 0.647707i \(-0.775728\pi\)
−0.761889 + 0.647707i \(0.775728\pi\)
\(390\) −404043. −0.134514
\(391\) 595677. 0.197047
\(392\) 2.60764e6 0.857102
\(393\) −4.23347e6 −1.38266
\(394\) −4.98303e6 −1.61716
\(395\) −1.34203e6 −0.432782
\(396\) −2.38154e6 −0.763168
\(397\) 1.81318e6 0.577385 0.288693 0.957422i \(-0.406779\pi\)
0.288693 + 0.957422i \(0.406779\pi\)
\(398\) 3.87997e6 1.22778
\(399\) −4.88468e6 −1.53604
\(400\) −424168. −0.132552
\(401\) 2.43351e6 0.755740 0.377870 0.925859i \(-0.376657\pi\)
0.377870 + 0.925859i \(0.376657\pi\)
\(402\) 6.27798e6 1.93756
\(403\) 541710. 0.166151
\(404\) 4.82639e6 1.47119
\(405\) 424477. 0.128593
\(406\) −8.93798e6 −2.69107
\(407\) 3.86461e6 1.15643
\(408\) −369675. −0.109943
\(409\) 1.67145e6 0.494066 0.247033 0.969007i \(-0.420544\pi\)
0.247033 + 0.969007i \(0.420544\pi\)
\(410\) −3.45908e6 −1.01625
\(411\) 1.29545e6 0.378283
\(412\) 5.69517e6 1.65296
\(413\) 5.55658e6 1.60299
\(414\) 1.30728e6 0.374859
\(415\) −692660. −0.197424
\(416\) −1.36922e6 −0.387918
\(417\) −3.92915e6 −1.10652
\(418\) −8.10988e6 −2.27025
\(419\) −6.10400e6 −1.69855 −0.849277 0.527948i \(-0.822962\pi\)
−0.849277 + 0.527948i \(0.822962\pi\)
\(420\) −2.61252e6 −0.722663
\(421\) 2.83501e6 0.779559 0.389780 0.920908i \(-0.372551\pi\)
0.389780 + 0.920908i \(0.372551\pi\)
\(422\) 4.07023e6 1.11260
\(423\) 2.89218e6 0.785914
\(424\) −1.38092e6 −0.373038
\(425\) −283500. −0.0761344
\(426\) −2.33800e6 −0.624194
\(427\) −5.21996e6 −1.38547
\(428\) 6.32041e6 1.66777
\(429\) 954166. 0.250311
\(430\) 3.32459e6 0.867097
\(431\) −666945. −0.172941 −0.0864703 0.996254i \(-0.527559\pi\)
−0.0864703 + 0.996254i \(0.527559\pi\)
\(432\) 2.74283e6 0.707115
\(433\) 6.17798e6 1.58353 0.791766 0.610825i \(-0.209162\pi\)
0.791766 + 0.610825i \(0.209162\pi\)
\(434\) 6.26868e6 1.59754
\(435\) 1.28307e6 0.325107
\(436\) 3.17058e6 0.798772
\(437\) 2.48740e6 0.623078
\(438\) −1.67452e6 −0.417067
\(439\) 6.33242e6 1.56823 0.784113 0.620618i \(-0.213118\pi\)
0.784113 + 0.620618i \(0.213118\pi\)
\(440\) −912202. −0.224626
\(441\) −4.20014e6 −1.02841
\(442\) −652823. −0.158942
\(443\) −5.49568e6 −1.33049 −0.665246 0.746624i \(-0.731673\pi\)
−0.665246 + 0.746624i \(0.731673\pi\)
\(444\) 3.49778e6 0.842044
\(445\) −886650. −0.212252
\(446\) 1.18268e7 2.81535
\(447\) −1.81663e6 −0.430030
\(448\) −1.08573e7 −2.55581
\(449\) −2.72617e6 −0.638170 −0.319085 0.947726i \(-0.603376\pi\)
−0.319085 + 0.947726i \(0.603376\pi\)
\(450\) −622173. −0.144837
\(451\) 8.16876e6 1.89110
\(452\) −1.16204e6 −0.267531
\(453\) 2.89854e6 0.663643
\(454\) −1.35467e6 −0.308456
\(455\) −970260. −0.219715
\(456\) −1.54367e6 −0.347650
\(457\) −2.69725e6 −0.604131 −0.302065 0.953287i \(-0.597676\pi\)
−0.302065 + 0.953287i \(0.597676\pi\)
\(458\) −2.84365e6 −0.633450
\(459\) 1.83322e6 0.406148
\(460\) 1.33036e6 0.293140
\(461\) 6.41429e6 1.40571 0.702856 0.711332i \(-0.251908\pi\)
0.702856 + 0.711332i \(0.251908\pi\)
\(462\) 1.10416e7 2.40674
\(463\) −6.06138e6 −1.31407 −0.657035 0.753860i \(-0.728190\pi\)
−0.657035 + 0.753860i \(0.728190\pi\)
\(464\) 3.10171e6 0.668815
\(465\) −899883. −0.192998
\(466\) −3.86419e6 −0.824315
\(467\) −4.16010e6 −0.882697 −0.441348 0.897336i \(-0.645500\pi\)
−0.441348 + 0.897336i \(0.645500\pi\)
\(468\) −800523. −0.168950
\(469\) 1.50758e7 3.16481
\(470\) 5.26751e6 1.09992
\(471\) 4.99092e6 1.03664
\(472\) 1.75601e6 0.362803
\(473\) −7.85117e6 −1.61355
\(474\) 5.13362e6 1.04949
\(475\) −1.18383e6 −0.240743
\(476\) −4.22111e6 −0.853904
\(477\) 2.22425e6 0.447597
\(478\) −6.40909e6 −1.28300
\(479\) −4.84248e6 −0.964338 −0.482169 0.876078i \(-0.660151\pi\)
−0.482169 + 0.876078i \(0.660151\pi\)
\(480\) 2.27454e6 0.450598
\(481\) 1.29904e6 0.256011
\(482\) 1.87196e6 0.367012
\(483\) −3.38661e6 −0.660537
\(484\) 3.71703e6 0.721245
\(485\) −1.46245e6 −0.282309
\(486\) 6.73967e6 1.29434
\(487\) 5.38041e6 1.02800 0.514000 0.857790i \(-0.328163\pi\)
0.514000 + 0.857790i \(0.328163\pi\)
\(488\) −1.64963e6 −0.313571
\(489\) −1.58145e6 −0.299078
\(490\) −7.64967e6 −1.43930
\(491\) 7.11622e6 1.33213 0.666063 0.745895i \(-0.267978\pi\)
0.666063 + 0.745895i \(0.267978\pi\)
\(492\) 7.39338e6 1.37699
\(493\) 2.07308e6 0.384149
\(494\) −2.72603e6 −0.502589
\(495\) 1.46929e6 0.269522
\(496\) −2.17539e6 −0.397039
\(497\) −5.61441e6 −1.01956
\(498\) 2.64961e6 0.478749
\(499\) −4.84522e6 −0.871088 −0.435544 0.900167i \(-0.643444\pi\)
−0.435544 + 0.900167i \(0.643444\pi\)
\(500\) −633157. −0.113263
\(501\) −885057. −0.157535
\(502\) −5.73719e6 −1.01611
\(503\) −9.07263e6 −1.59887 −0.799435 0.600752i \(-0.794868\pi\)
−0.799435 + 0.600752i \(0.794868\pi\)
\(504\) −1.94822e6 −0.341634
\(505\) −2.97763e6 −0.519567
\(506\) −5.62268e6 −0.976264
\(507\) 320730. 0.0554140
\(508\) −8.02619e6 −1.37991
\(509\) 4.27353e6 0.731126 0.365563 0.930787i \(-0.380877\pi\)
0.365563 + 0.930787i \(0.380877\pi\)
\(510\) 1.08446e6 0.184625
\(511\) −4.02116e6 −0.681238
\(512\) 7.07461e6 1.19269
\(513\) 7.65509e6 1.28427
\(514\) −812968. −0.135727
\(515\) −3.51362e6 −0.583763
\(516\) −7.10594e6 −1.17489
\(517\) −1.24394e7 −2.04680
\(518\) 1.50325e7 2.46154
\(519\) 3.16762e6 0.516196
\(520\) −306624. −0.0497277
\(521\) −1.08227e7 −1.74679 −0.873396 0.487010i \(-0.838087\pi\)
−0.873396 + 0.487010i \(0.838087\pi\)
\(522\) 4.54961e6 0.730799
\(523\) 8.74432e6 1.39789 0.698943 0.715178i \(-0.253654\pi\)
0.698943 + 0.715178i \(0.253654\pi\)
\(524\) −1.52764e7 −2.43049
\(525\) 1.61179e6 0.255217
\(526\) −1.19392e6 −0.188153
\(527\) −1.45396e6 −0.228048
\(528\) −3.83173e6 −0.598150
\(529\) −4.71180e6 −0.732061
\(530\) 4.05100e6 0.626431
\(531\) −2.82841e6 −0.435317
\(532\) −1.76263e7 −2.70012
\(533\) 2.74582e6 0.418653
\(534\) 3.39167e6 0.514708
\(535\) −3.89936e6 −0.588992
\(536\) 4.76430e6 0.716287
\(537\) −1.25865e6 −0.188352
\(538\) 8.40813e6 1.25240
\(539\) 1.80650e7 2.67835
\(540\) 4.09424e6 0.604212
\(541\) −1.21182e7 −1.78011 −0.890054 0.455856i \(-0.849333\pi\)
−0.890054 + 0.455856i \(0.849333\pi\)
\(542\) −9.34560e6 −1.36650
\(543\) 1.70648e6 0.248372
\(544\) 3.67502e6 0.532430
\(545\) −1.95608e6 −0.282096
\(546\) 3.71150e6 0.532804
\(547\) 8.62953e6 1.23316 0.616579 0.787293i \(-0.288518\pi\)
0.616579 + 0.787293i \(0.288518\pi\)
\(548\) 4.67463e6 0.664960
\(549\) 2.65706e6 0.376245
\(550\) 2.67600e6 0.377207
\(551\) 8.65669e6 1.21471
\(552\) −1.07025e6 −0.149498
\(553\) 1.23277e7 1.71424
\(554\) −1.49060e7 −2.06341
\(555\) −2.15795e6 −0.297378
\(556\) −1.41783e7 −1.94508
\(557\) −5.42393e6 −0.740758 −0.370379 0.928881i \(-0.620772\pi\)
−0.370379 + 0.928881i \(0.620772\pi\)
\(558\) −3.19088e6 −0.433836
\(559\) −2.63907e6 −0.357208
\(560\) 3.89636e6 0.525036
\(561\) −2.56101e6 −0.343561
\(562\) 6.67391e6 0.891332
\(563\) 4.98711e6 0.663099 0.331549 0.943438i \(-0.392429\pi\)
0.331549 + 0.943438i \(0.392429\pi\)
\(564\) −1.12587e7 −1.49036
\(565\) 716916. 0.0944816
\(566\) 1.13011e7 1.48279
\(567\) −3.89920e6 −0.509352
\(568\) −1.77428e6 −0.230755
\(569\) −7.02975e6 −0.910246 −0.455123 0.890429i \(-0.650405\pi\)
−0.455123 + 0.890429i \(0.650405\pi\)
\(570\) 4.52845e6 0.583798
\(571\) −4.95071e6 −0.635443 −0.317722 0.948184i \(-0.602918\pi\)
−0.317722 + 0.948184i \(0.602918\pi\)
\(572\) 3.44310e6 0.440007
\(573\) −6.92402e6 −0.880992
\(574\) 3.17747e7 4.02533
\(575\) −820763. −0.103526
\(576\) 5.52659e6 0.694066
\(577\) 860779. 0.107635 0.0538173 0.998551i \(-0.482861\pi\)
0.0538173 + 0.998551i \(0.482861\pi\)
\(578\) −1.03393e7 −1.28727
\(579\) −6.62847e6 −0.821707
\(580\) 4.62993e6 0.571485
\(581\) 6.36270e6 0.781990
\(582\) 5.59424e6 0.684595
\(583\) −9.56662e6 −1.16570
\(584\) −1.27078e6 −0.154183
\(585\) 493881. 0.0596668
\(586\) 4.21807e6 0.507423
\(587\) −6.96051e6 −0.833769 −0.416884 0.908959i \(-0.636878\pi\)
−0.416884 + 0.908959i \(0.636878\pi\)
\(588\) 1.63503e7 1.95021
\(589\) −6.07140e6 −0.721108
\(590\) −5.15135e6 −0.609244
\(591\) −6.57089e6 −0.773848
\(592\) −5.21665e6 −0.611769
\(593\) 3.89146e6 0.454439 0.227220 0.973844i \(-0.427036\pi\)
0.227220 + 0.973844i \(0.427036\pi\)
\(594\) −1.73041e7 −2.01225
\(595\) 2.60420e6 0.301566
\(596\) −6.55530e6 −0.755922
\(597\) 5.11635e6 0.587522
\(598\) −1.88999e6 −0.216126
\(599\) −2.95768e6 −0.336809 −0.168405 0.985718i \(-0.553862\pi\)
−0.168405 + 0.985718i \(0.553862\pi\)
\(600\) 509362. 0.0577628
\(601\) −3.86928e6 −0.436962 −0.218481 0.975841i \(-0.570110\pi\)
−0.218481 + 0.975841i \(0.570110\pi\)
\(602\) −3.05394e7 −3.43454
\(603\) −7.67387e6 −0.859452
\(604\) 1.04594e7 1.16658
\(605\) −2.29321e6 −0.254716
\(606\) 1.13902e7 1.25994
\(607\) 3.31072e6 0.364713 0.182356 0.983233i \(-0.441628\pi\)
0.182356 + 0.983233i \(0.441628\pi\)
\(608\) 1.53460e7 1.68359
\(609\) −1.17861e7 −1.28774
\(610\) 4.83928e6 0.526570
\(611\) −4.18135e6 −0.453121
\(612\) 2.14863e6 0.231890
\(613\) 1.00301e7 1.07809 0.539046 0.842276i \(-0.318785\pi\)
0.539046 + 0.842276i \(0.318785\pi\)
\(614\) −5.88458e6 −0.629933
\(615\) −4.56133e6 −0.486299
\(616\) 8.37939e6 0.889735
\(617\) −1.03851e6 −0.109824 −0.0549121 0.998491i \(-0.517488\pi\)
−0.0549121 + 0.998491i \(0.517488\pi\)
\(618\) 1.34405e7 1.41561
\(619\) −3.76934e6 −0.395402 −0.197701 0.980262i \(-0.563348\pi\)
−0.197701 + 0.980262i \(0.563348\pi\)
\(620\) −3.24722e6 −0.339260
\(621\) 5.30737e6 0.552269
\(622\) 1.29069e7 1.33766
\(623\) 8.14467e6 0.840724
\(624\) −1.28798e6 −0.132419
\(625\) 390625. 0.0400000
\(626\) 7.06689e6 0.720763
\(627\) −1.06941e7 −1.08637
\(628\) 1.80097e7 1.82224
\(629\) −3.48665e6 −0.351383
\(630\) 5.71521e6 0.573695
\(631\) 1.12994e7 1.12975 0.564874 0.825177i \(-0.308925\pi\)
0.564874 + 0.825177i \(0.308925\pi\)
\(632\) 3.89585e6 0.387980
\(633\) 5.36723e6 0.532404
\(634\) −2.16512e7 −2.13923
\(635\) 4.95174e6 0.487331
\(636\) −8.65855e6 −0.848794
\(637\) 6.07232e6 0.592933
\(638\) −1.95681e7 −1.90326
\(639\) 2.85784e6 0.276876
\(640\) 3.58401e6 0.345875
\(641\) 7.88738e6 0.758207 0.379104 0.925354i \(-0.376232\pi\)
0.379104 + 0.925354i \(0.376232\pi\)
\(642\) 1.49161e7 1.42829
\(643\) −1.12400e7 −1.07211 −0.536056 0.844183i \(-0.680086\pi\)
−0.536056 + 0.844183i \(0.680086\pi\)
\(644\) −1.22205e7 −1.16112
\(645\) 4.38399e6 0.414926
\(646\) 7.31673e6 0.689820
\(647\) 3.37493e6 0.316960 0.158480 0.987362i \(-0.449341\pi\)
0.158480 + 0.987362i \(0.449341\pi\)
\(648\) −1.23224e6 −0.115281
\(649\) 1.21651e7 1.13372
\(650\) 899501. 0.0835061
\(651\) 8.26623e6 0.764461
\(652\) −5.70666e6 −0.525730
\(653\) −9.31325e6 −0.854709 −0.427355 0.904084i \(-0.640554\pi\)
−0.427355 + 0.904084i \(0.640554\pi\)
\(654\) 7.48254e6 0.684076
\(655\) 9.42476e6 0.858356
\(656\) −1.10266e7 −1.00042
\(657\) 2.04685e6 0.185000
\(658\) −4.83868e7 −4.35674
\(659\) −1.79159e7 −1.60704 −0.803519 0.595279i \(-0.797041\pi\)
−0.803519 + 0.595279i \(0.797041\pi\)
\(660\) −5.71964e6 −0.511104
\(661\) 6.41296e6 0.570893 0.285447 0.958395i \(-0.407858\pi\)
0.285447 + 0.958395i \(0.407858\pi\)
\(662\) −2.44965e7 −2.17249
\(663\) −860848. −0.0760576
\(664\) 2.01076e6 0.176987
\(665\) 1.08745e7 0.953577
\(666\) −7.65183e6 −0.668466
\(667\) 6.00179e6 0.522355
\(668\) −3.19372e6 −0.276921
\(669\) 1.55955e7 1.34721
\(670\) −1.39764e7 −1.20284
\(671\) −1.14282e7 −0.979874
\(672\) −2.08936e7 −1.78481
\(673\) 1.79299e7 1.52595 0.762977 0.646426i \(-0.223737\pi\)
0.762977 + 0.646426i \(0.223737\pi\)
\(674\) 1.14594e7 0.971659
\(675\) −2.52593e6 −0.213384
\(676\) 1.15735e6 0.0974088
\(677\) −1.90216e7 −1.59505 −0.797526 0.603284i \(-0.793858\pi\)
−0.797526 + 0.603284i \(0.793858\pi\)
\(678\) −2.74239e6 −0.229116
\(679\) 1.34339e7 1.11822
\(680\) 822988. 0.0682529
\(681\) −1.78634e6 −0.147603
\(682\) 1.37242e7 1.12986
\(683\) −7.06814e6 −0.579767 −0.289884 0.957062i \(-0.593617\pi\)
−0.289884 + 0.957062i \(0.593617\pi\)
\(684\) 8.97214e6 0.733256
\(685\) −2.88400e6 −0.234838
\(686\) 3.74001e7 3.03433
\(687\) −3.74979e6 −0.303121
\(688\) 1.05979e7 0.853591
\(689\) −3.21569e6 −0.258063
\(690\) 3.13963e6 0.251048
\(691\) −1.15060e6 −0.0916703 −0.0458352 0.998949i \(-0.514595\pi\)
−0.0458352 + 0.998949i \(0.514595\pi\)
\(692\) 1.14303e7 0.907388
\(693\) −1.34967e7 −1.06757
\(694\) 3.32351e7 2.61938
\(695\) 8.74728e6 0.686928
\(696\) −3.72468e6 −0.291452
\(697\) −7.36985e6 −0.574615
\(698\) 3.60586e7 2.80137
\(699\) −5.09553e6 −0.394454
\(700\) 5.81611e6 0.448630
\(701\) −2.35577e6 −0.181066 −0.0905331 0.995893i \(-0.528857\pi\)
−0.0905331 + 0.995893i \(0.528857\pi\)
\(702\) −5.81653e6 −0.445473
\(703\) −1.45594e7 −1.11110
\(704\) −2.37702e7 −1.80759
\(705\) 6.94603e6 0.526337
\(706\) −2.76007e7 −2.08405
\(707\) 2.73522e7 2.05799
\(708\) 1.10104e7 0.825507
\(709\) −2.42423e6 −0.181117 −0.0905585 0.995891i \(-0.528865\pi\)
−0.0905585 + 0.995891i \(0.528865\pi\)
\(710\) 5.20496e6 0.387500
\(711\) −6.27506e6 −0.465526
\(712\) 2.57390e6 0.190280
\(713\) −4.20937e6 −0.310094
\(714\) −9.96176e6 −0.731292
\(715\) −2.12421e6 −0.155393
\(716\) −4.54182e6 −0.331091
\(717\) −8.45138e6 −0.613945
\(718\) 2.46882e7 1.78722
\(719\) 1.50460e7 1.08542 0.542712 0.839919i \(-0.317398\pi\)
0.542712 + 0.839919i \(0.317398\pi\)
\(720\) −1.98332e6 −0.142581
\(721\) 3.22757e7 2.31227
\(722\) 9.46645e6 0.675841
\(723\) 2.46847e6 0.175624
\(724\) 6.15782e6 0.436597
\(725\) −2.85643e6 −0.201826
\(726\) 8.77215e6 0.617681
\(727\) 1.82431e7 1.28016 0.640078 0.768310i \(-0.278902\pi\)
0.640078 + 0.768310i \(0.278902\pi\)
\(728\) 2.81662e6 0.196970
\(729\) 1.30132e7 0.906914
\(730\) 3.72790e6 0.258915
\(731\) 7.08332e6 0.490279
\(732\) −1.03434e7 −0.713486
\(733\) −3.52470e6 −0.242305 −0.121152 0.992634i \(-0.538659\pi\)
−0.121152 + 0.992634i \(0.538659\pi\)
\(734\) −3.94675e6 −0.270395
\(735\) −1.00873e7 −0.688741
\(736\) 1.06396e7 0.723985
\(737\) 3.30058e7 2.23832
\(738\) −1.61739e7 −1.09314
\(739\) −1.26675e7 −0.853255 −0.426627 0.904427i \(-0.640298\pi\)
−0.426627 + 0.904427i \(0.640298\pi\)
\(740\) −7.78692e6 −0.522741
\(741\) −3.59469e6 −0.240501
\(742\) −3.72121e7 −2.48127
\(743\) −2.58128e7 −1.71539 −0.857694 0.514160i \(-0.828104\pi\)
−0.857694 + 0.514160i \(0.828104\pi\)
\(744\) 2.61232e6 0.173019
\(745\) 4.04428e6 0.266963
\(746\) 1.62990e7 1.07229
\(747\) −3.23874e6 −0.212361
\(748\) −9.24136e6 −0.603924
\(749\) 3.58191e7 2.33298
\(750\) −1.49424e6 −0.0969992
\(751\) −4.98464e6 −0.322503 −0.161251 0.986913i \(-0.551553\pi\)
−0.161251 + 0.986913i \(0.551553\pi\)
\(752\) 1.67914e7 1.08279
\(753\) −7.56537e6 −0.486231
\(754\) −6.57756e6 −0.421344
\(755\) −6.45288e6 −0.411990
\(756\) −3.76093e7 −2.39326
\(757\) −2.60215e7 −1.65041 −0.825206 0.564831i \(-0.808941\pi\)
−0.825206 + 0.564831i \(0.808941\pi\)
\(758\) −6.94813e6 −0.439233
\(759\) −7.41438e6 −0.467165
\(760\) 3.43660e6 0.215821
\(761\) 1.00530e7 0.629264 0.314632 0.949214i \(-0.398119\pi\)
0.314632 + 0.949214i \(0.398119\pi\)
\(762\) −1.89417e7 −1.18177
\(763\) 1.79684e7 1.11737
\(764\) −2.49852e7 −1.54864
\(765\) −1.32559e6 −0.0818947
\(766\) 2.53353e7 1.56011
\(767\) 4.08915e6 0.250983
\(768\) 3.27959e6 0.200640
\(769\) −1.26849e7 −0.773522 −0.386761 0.922180i \(-0.626406\pi\)
−0.386761 + 0.922180i \(0.626406\pi\)
\(770\) −2.45814e7 −1.49410
\(771\) −1.07202e6 −0.0649484
\(772\) −2.39188e7 −1.44443
\(773\) 744727. 0.0448279 0.0224139 0.999749i \(-0.492865\pi\)
0.0224139 + 0.999749i \(0.492865\pi\)
\(774\) 1.55451e7 0.932700
\(775\) 2.00336e6 0.119813
\(776\) 4.24541e6 0.253084
\(777\) 1.98227e7 1.17790
\(778\) −3.87285e7 −2.29394
\(779\) −3.07747e7 −1.81698
\(780\) −1.92258e6 −0.113148
\(781\) −1.22917e7 −0.721084
\(782\) 5.07278e6 0.296640
\(783\) 1.84708e7 1.07667
\(784\) −2.43851e7 −1.41689
\(785\) −1.11110e7 −0.643546
\(786\) −3.60522e7 −2.08150
\(787\) −2.69272e7 −1.54972 −0.774861 0.632132i \(-0.782180\pi\)
−0.774861 + 0.632132i \(0.782180\pi\)
\(788\) −2.37110e7 −1.36030
\(789\) −1.57437e6 −0.0900357
\(790\) −1.14287e7 −0.651522
\(791\) −6.58551e6 −0.374238
\(792\) −4.26527e6 −0.241621
\(793\) −3.84142e6 −0.216925
\(794\) 1.54411e7 0.869212
\(795\) 5.34188e6 0.299762
\(796\) 1.84623e7 1.03277
\(797\) 2.60489e7 1.45259 0.726296 0.687382i \(-0.241240\pi\)
0.726296 + 0.687382i \(0.241240\pi\)
\(798\) −4.15979e7 −2.31241
\(799\) 1.12229e7 0.621923
\(800\) −5.06368e6 −0.279732
\(801\) −4.14580e6 −0.228311
\(802\) 2.07238e7 1.13771
\(803\) −8.80361e6 −0.481805
\(804\) 2.98729e7 1.62981
\(805\) 7.53944e6 0.410062
\(806\) 4.61319e6 0.250129
\(807\) 1.10874e7 0.599304
\(808\) 8.64391e6 0.465781
\(809\) −9.26480e6 −0.497697 −0.248848 0.968542i \(-0.580052\pi\)
−0.248848 + 0.968542i \(0.580052\pi\)
\(810\) 3.61485e6 0.193587
\(811\) −7.02749e6 −0.375187 −0.187594 0.982247i \(-0.560069\pi\)
−0.187594 + 0.982247i \(0.560069\pi\)
\(812\) −4.25301e7 −2.26363
\(813\) −1.23236e7 −0.653901
\(814\) 3.29110e7 1.74092
\(815\) 3.52071e6 0.185668
\(816\) 3.45698e6 0.181749
\(817\) 2.95782e7 1.55030
\(818\) 1.42340e7 0.743781
\(819\) −4.53674e6 −0.236338
\(820\) −1.64595e7 −0.854835
\(821\) −5.97329e6 −0.309283 −0.154641 0.987971i \(-0.549422\pi\)
−0.154641 + 0.987971i \(0.549422\pi\)
\(822\) 1.10321e7 0.569478
\(823\) 3.83061e7 1.97137 0.985684 0.168601i \(-0.0539249\pi\)
0.985684 + 0.168601i \(0.0539249\pi\)
\(824\) 1.01999e7 0.523331
\(825\) 3.52872e6 0.180502
\(826\) 4.73197e7 2.41319
\(827\) 2.55362e7 1.29835 0.649177 0.760637i \(-0.275113\pi\)
0.649177 + 0.760637i \(0.275113\pi\)
\(828\) 6.22049e6 0.315318
\(829\) −3.30695e7 −1.67125 −0.835625 0.549301i \(-0.814894\pi\)
−0.835625 + 0.549301i \(0.814894\pi\)
\(830\) −5.89869e6 −0.297208
\(831\) −1.96559e7 −0.987392
\(832\) −7.99002e6 −0.400166
\(833\) −1.62983e7 −0.813821
\(834\) −3.34606e7 −1.66579
\(835\) 1.97036e6 0.0977978
\(836\) −3.85897e7 −1.90966
\(837\) −1.29545e7 −0.639158
\(838\) −5.19816e7 −2.55705
\(839\) −5.58580e6 −0.273956 −0.136978 0.990574i \(-0.543739\pi\)
−0.136978 + 0.990574i \(0.543739\pi\)
\(840\) −4.67894e6 −0.228797
\(841\) 376341. 0.0183481
\(842\) 2.41429e7 1.17357
\(843\) 8.80059e6 0.426523
\(844\) 1.93676e7 0.935879
\(845\) −714025. −0.0344010
\(846\) 2.46298e7 1.18314
\(847\) 2.10652e7 1.00892
\(848\) 1.29135e7 0.616674
\(849\) 1.49023e7 0.709550
\(850\) −2.41429e6 −0.114615
\(851\) −1.00942e7 −0.477802
\(852\) −1.11250e7 −0.525051
\(853\) 1.67371e7 0.787604 0.393802 0.919195i \(-0.371160\pi\)
0.393802 + 0.919195i \(0.371160\pi\)
\(854\) −4.44531e7 −2.08573
\(855\) −5.53534e6 −0.258958
\(856\) 1.13197e7 0.528019
\(857\) 2.22774e7 1.03613 0.518063 0.855343i \(-0.326653\pi\)
0.518063 + 0.855343i \(0.326653\pi\)
\(858\) 8.12567e6 0.376826
\(859\) 2.58125e7 1.19357 0.596785 0.802401i \(-0.296445\pi\)
0.596785 + 0.802401i \(0.296445\pi\)
\(860\) 1.58196e7 0.729372
\(861\) 4.18999e7 1.92622
\(862\) −5.67970e6 −0.260350
\(863\) 1.79739e7 0.821517 0.410758 0.911744i \(-0.365264\pi\)
0.410758 + 0.911744i \(0.365264\pi\)
\(864\) 3.27438e7 1.49226
\(865\) −7.05191e6 −0.320454
\(866\) 5.26116e7 2.38389
\(867\) −1.36340e7 −0.615991
\(868\) 2.98286e7 1.34380
\(869\) 2.69894e7 1.21239
\(870\) 1.09266e7 0.489425
\(871\) 1.10944e7 0.495519
\(872\) 5.67842e6 0.252893
\(873\) −6.83810e6 −0.303669
\(874\) 2.11827e7 0.937999
\(875\) −3.58824e6 −0.158439
\(876\) −7.96797e6 −0.350822
\(877\) −1.87373e7 −0.822637 −0.411318 0.911492i \(-0.634932\pi\)
−0.411318 + 0.911492i \(0.634932\pi\)
\(878\) 5.39268e7 2.36085
\(879\) 5.56218e6 0.242813
\(880\) 8.53038e6 0.371332
\(881\) 5.88375e6 0.255396 0.127698 0.991813i \(-0.459241\pi\)
0.127698 + 0.991813i \(0.459241\pi\)
\(882\) −3.57683e7 −1.54820
\(883\) −2.17863e7 −0.940333 −0.470166 0.882578i \(-0.655806\pi\)
−0.470166 + 0.882578i \(0.655806\pi\)
\(884\) −3.10636e6 −0.133697
\(885\) −6.79285e6 −0.291537
\(886\) −4.68012e7 −2.00296
\(887\) 3.27848e6 0.139915 0.0699574 0.997550i \(-0.477714\pi\)
0.0699574 + 0.997550i \(0.477714\pi\)
\(888\) 6.26442e6 0.266593
\(889\) −4.54862e7 −1.93030
\(890\) −7.55070e6 −0.319531
\(891\) −8.53661e6 −0.360240
\(892\) 5.62763e7 2.36817
\(893\) 4.68639e7 1.96657
\(894\) −1.54704e7 −0.647379
\(895\) 2.80207e6 0.116929
\(896\) −3.29223e7 −1.37000
\(897\) −2.49224e6 −0.103421
\(898\) −2.32160e7 −0.960719
\(899\) −1.46495e7 −0.604538
\(900\) −2.96052e6 −0.121832
\(901\) 8.63100e6 0.354200
\(902\) 6.95651e7 2.84692
\(903\) −4.02709e7 −1.64351
\(904\) −2.08117e6 −0.0847007
\(905\) −3.79905e6 −0.154189
\(906\) 2.46840e7 0.999067
\(907\) −1.09733e7 −0.442914 −0.221457 0.975170i \(-0.571081\pi\)
−0.221457 + 0.975170i \(0.571081\pi\)
\(908\) −6.44598e6 −0.259462
\(909\) −1.39228e7 −0.558877
\(910\) −8.26272e6 −0.330765
\(911\) −3.55315e7 −1.41846 −0.709232 0.704975i \(-0.750958\pi\)
−0.709232 + 0.704975i \(0.750958\pi\)
\(912\) 1.44355e7 0.574705
\(913\) 1.39300e7 0.553063
\(914\) −2.29698e7 −0.909476
\(915\) 6.38134e6 0.251976
\(916\) −1.35311e7 −0.532837
\(917\) −8.65749e7 −3.39992
\(918\) 1.56117e7 0.611426
\(919\) 2.84725e7 1.11208 0.556042 0.831154i \(-0.312319\pi\)
0.556042 + 0.831154i \(0.312319\pi\)
\(920\) 2.38264e6 0.0928086
\(921\) −7.75973e6 −0.301438
\(922\) 5.46240e7 2.11620
\(923\) −4.13170e6 −0.159634
\(924\) 5.25400e7 2.02446
\(925\) 4.80413e6 0.184612
\(926\) −5.16186e7 −1.97824
\(927\) −1.64290e7 −0.627930
\(928\) 3.70279e7 1.41143
\(929\) 8.20156e6 0.311786 0.155893 0.987774i \(-0.450174\pi\)
0.155893 + 0.987774i \(0.450174\pi\)
\(930\) −7.66340e6 −0.290545
\(931\) −6.80576e7 −2.57337
\(932\) −1.83872e7 −0.693386
\(933\) 1.70198e7 0.640103
\(934\) −3.54274e7 −1.32884
\(935\) 5.70144e6 0.213283
\(936\) −1.43371e6 −0.0534900
\(937\) 2.94945e7 1.09747 0.548734 0.835997i \(-0.315110\pi\)
0.548734 + 0.835997i \(0.315110\pi\)
\(938\) 1.28385e8 4.76440
\(939\) 9.31879e6 0.344902
\(940\) 2.50647e7 0.925214
\(941\) 2.45596e7 0.904165 0.452083 0.891976i \(-0.350681\pi\)
0.452083 + 0.891976i \(0.350681\pi\)
\(942\) 4.25026e7 1.56059
\(943\) −2.13365e7 −0.781346
\(944\) −1.64211e7 −0.599754
\(945\) 2.32030e7 0.845208
\(946\) −6.68605e7 −2.42908
\(947\) 8.92873e6 0.323530 0.161765 0.986829i \(-0.448281\pi\)
0.161765 + 0.986829i \(0.448281\pi\)
\(948\) 2.44275e7 0.882793
\(949\) −2.95921e6 −0.106662
\(950\) −1.00815e7 −0.362422
\(951\) −2.85504e7 −1.02367
\(952\) −7.55988e6 −0.270348
\(953\) −3.05698e7 −1.09033 −0.545167 0.838327i \(-0.683534\pi\)
−0.545167 + 0.838327i \(0.683534\pi\)
\(954\) 1.89417e7 0.673825
\(955\) 1.54146e7 0.546920
\(956\) −3.04967e7 −1.07922
\(957\) −2.58036e7 −0.910753
\(958\) −4.12385e7 −1.45174
\(959\) 2.64921e7 0.930186
\(960\) 1.32730e7 0.464825
\(961\) −1.83547e7 −0.641118
\(962\) 1.10626e7 0.385406
\(963\) −1.82326e7 −0.633554
\(964\) 8.90746e6 0.308718
\(965\) 1.47566e7 0.510116
\(966\) −2.88403e7 −0.994391
\(967\) −1.99903e7 −0.687469 −0.343734 0.939067i \(-0.611692\pi\)
−0.343734 + 0.939067i \(0.611692\pi\)
\(968\) 6.65709e6 0.228348
\(969\) 9.64825e6 0.330095
\(970\) −1.24542e7 −0.424997
\(971\) −5.02538e7 −1.71049 −0.855245 0.518224i \(-0.826593\pi\)
−0.855245 + 0.518224i \(0.826593\pi\)
\(972\) 3.20697e7 1.08875
\(973\) −8.03515e7 −2.72090
\(974\) 4.58195e7 1.54758
\(975\) 1.18613e6 0.0399596
\(976\) 1.54263e7 0.518368
\(977\) 2.08198e6 0.0697816 0.0348908 0.999391i \(-0.488892\pi\)
0.0348908 + 0.999391i \(0.488892\pi\)
\(978\) −1.34677e7 −0.450241
\(979\) 1.78313e7 0.594602
\(980\) −3.63998e7 −1.21069
\(981\) −9.14625e6 −0.303439
\(982\) 6.06016e7 2.00542
\(983\) 3.36402e7 1.11039 0.555194 0.831721i \(-0.312644\pi\)
0.555194 + 0.831721i \(0.312644\pi\)
\(984\) 1.32413e7 0.435957
\(985\) 1.46284e7 0.480405
\(986\) 1.76543e7 0.578308
\(987\) −6.38054e7 −2.08480
\(988\) −1.29714e7 −0.422761
\(989\) 2.05069e7 0.666669
\(990\) 1.25124e7 0.405746
\(991\) −3.75872e6 −0.121578 −0.0607891 0.998151i \(-0.519362\pi\)
−0.0607891 + 0.998151i \(0.519362\pi\)
\(992\) −2.59697e7 −0.837891
\(993\) −3.23024e7 −1.03959
\(994\) −4.78122e7 −1.53487
\(995\) −1.13903e7 −0.364734
\(996\) 1.26078e7 0.402708
\(997\) 1.49889e6 0.0477563 0.0238782 0.999715i \(-0.492399\pi\)
0.0238782 + 0.999715i \(0.492399\pi\)
\(998\) −4.12619e7 −1.31136
\(999\) −3.10654e7 −0.984833
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 65.6.a.d.1.5 6
3.2 odd 2 585.6.a.m.1.2 6
4.3 odd 2 1040.6.a.q.1.3 6
5.2 odd 4 325.6.b.g.274.10 12
5.3 odd 4 325.6.b.g.274.3 12
5.4 even 2 325.6.a.g.1.2 6
13.12 even 2 845.6.a.h.1.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.6.a.d.1.5 6 1.1 even 1 trivial
325.6.a.g.1.2 6 5.4 even 2
325.6.b.g.274.3 12 5.3 odd 4
325.6.b.g.274.10 12 5.2 odd 4
585.6.a.m.1.2 6 3.2 odd 2
845.6.a.h.1.2 6 13.12 even 2
1040.6.a.q.1.3 6 4.3 odd 2