Properties

Label 65.6.a.d.1.4
Level $65$
Weight $6$
Character 65.1
Self dual yes
Analytic conductor $10.425$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [65,6,Mod(1,65)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(65, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("65.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 65 = 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 65.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.4249482878\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 163x^{4} - 8x^{3} + 6120x^{2} + 6624x - 19440 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{4}\cdot 3 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(1.34530\) of defining polynomial
Character \(\chi\) \(=\) 65.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.34530 q^{2} -19.6439 q^{3} -30.1902 q^{4} -25.0000 q^{5} -26.4269 q^{6} +48.6530 q^{7} -83.6645 q^{8} +142.882 q^{9} -33.6325 q^{10} +283.440 q^{11} +593.052 q^{12} +169.000 q^{13} +65.4530 q^{14} +491.097 q^{15} +853.531 q^{16} +789.522 q^{17} +192.219 q^{18} +83.3795 q^{19} +754.754 q^{20} -955.734 q^{21} +381.312 q^{22} -1935.13 q^{23} +1643.49 q^{24} +625.000 q^{25} +227.356 q^{26} +1966.71 q^{27} -1468.84 q^{28} +222.752 q^{29} +660.673 q^{30} -2789.48 q^{31} +3825.52 q^{32} -5567.86 q^{33} +1062.15 q^{34} -1216.33 q^{35} -4313.62 q^{36} +8369.56 q^{37} +112.170 q^{38} -3319.81 q^{39} +2091.61 q^{40} +1218.51 q^{41} -1285.75 q^{42} +5638.89 q^{43} -8557.10 q^{44} -3572.04 q^{45} -2603.34 q^{46} +17776.2 q^{47} -16766.7 q^{48} -14439.9 q^{49} +840.813 q^{50} -15509.3 q^{51} -5102.14 q^{52} +10834.4 q^{53} +2645.82 q^{54} -7086.00 q^{55} -4070.53 q^{56} -1637.90 q^{57} +299.668 q^{58} -5363.36 q^{59} -14826.3 q^{60} -18670.7 q^{61} -3752.69 q^{62} +6951.63 q^{63} -22166.5 q^{64} -4225.00 q^{65} -7490.44 q^{66} +13985.1 q^{67} -23835.8 q^{68} +38013.5 q^{69} -1636.32 q^{70} +50969.5 q^{71} -11954.1 q^{72} +42394.9 q^{73} +11259.6 q^{74} -12277.4 q^{75} -2517.24 q^{76} +13790.2 q^{77} -4466.15 q^{78} +106279. q^{79} -21338.3 q^{80} -73354.1 q^{81} +1639.26 q^{82} +75513.6 q^{83} +28853.8 q^{84} -19738.1 q^{85} +7586.01 q^{86} -4375.71 q^{87} -23713.8 q^{88} +77017.8 q^{89} -4805.47 q^{90} +8222.36 q^{91} +58422.0 q^{92} +54796.2 q^{93} +23914.4 q^{94} -2084.49 q^{95} -75148.0 q^{96} +126702. q^{97} -19426.0 q^{98} +40498.4 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 38 q^{3} + 134 q^{4} - 150 q^{5} + 318 q^{6} + 220 q^{7} + 24 q^{8} + 518 q^{9} - 170 q^{11} + 2238 q^{12} + 1014 q^{13} - 1440 q^{14} - 950 q^{15} + 3506 q^{16} + 728 q^{17} + 7788 q^{18} + 1218 q^{19}+ \cdots - 32270 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.34530 0.237818 0.118909 0.992905i \(-0.462060\pi\)
0.118909 + 0.992905i \(0.462060\pi\)
\(3\) −19.6439 −1.26015 −0.630077 0.776532i \(-0.716977\pi\)
−0.630077 + 0.776532i \(0.716977\pi\)
\(4\) −30.1902 −0.943443
\(5\) −25.0000 −0.447214
\(6\) −26.4269 −0.299687
\(7\) 48.6530 0.375288 0.187644 0.982237i \(-0.439915\pi\)
0.187644 + 0.982237i \(0.439915\pi\)
\(8\) −83.6645 −0.462185
\(9\) 142.882 0.587990
\(10\) −33.6325 −0.106355
\(11\) 283.440 0.706284 0.353142 0.935570i \(-0.385113\pi\)
0.353142 + 0.935570i \(0.385113\pi\)
\(12\) 593.052 1.18888
\(13\) 169.000 0.277350
\(14\) 65.4530 0.0892502
\(15\) 491.097 0.563558
\(16\) 853.531 0.833527
\(17\) 789.522 0.662586 0.331293 0.943528i \(-0.392515\pi\)
0.331293 + 0.943528i \(0.392515\pi\)
\(18\) 192.219 0.139835
\(19\) 83.3795 0.0529877 0.0264939 0.999649i \(-0.491566\pi\)
0.0264939 + 0.999649i \(0.491566\pi\)
\(20\) 754.754 0.421920
\(21\) −955.734 −0.472921
\(22\) 381.312 0.167967
\(23\) −1935.13 −0.762767 −0.381383 0.924417i \(-0.624552\pi\)
−0.381383 + 0.924417i \(0.624552\pi\)
\(24\) 1643.49 0.582425
\(25\) 625.000 0.200000
\(26\) 227.356 0.0659588
\(27\) 1966.71 0.519196
\(28\) −1468.84 −0.354063
\(29\) 222.752 0.0491843 0.0245922 0.999698i \(-0.492171\pi\)
0.0245922 + 0.999698i \(0.492171\pi\)
\(30\) 660.673 0.134024
\(31\) −2789.48 −0.521338 −0.260669 0.965428i \(-0.583943\pi\)
−0.260669 + 0.965428i \(0.583943\pi\)
\(32\) 3825.52 0.660413
\(33\) −5567.86 −0.890027
\(34\) 1062.15 0.157575
\(35\) −1216.33 −0.167834
\(36\) −4313.62 −0.554735
\(37\) 8369.56 1.00507 0.502537 0.864555i \(-0.332400\pi\)
0.502537 + 0.864555i \(0.332400\pi\)
\(38\) 112.170 0.0126014
\(39\) −3319.81 −0.349504
\(40\) 2091.61 0.206696
\(41\) 1218.51 0.113206 0.0566029 0.998397i \(-0.481973\pi\)
0.0566029 + 0.998397i \(0.481973\pi\)
\(42\) −1285.75 −0.112469
\(43\) 5638.89 0.465075 0.232537 0.972587i \(-0.425297\pi\)
0.232537 + 0.972587i \(0.425297\pi\)
\(44\) −8557.10 −0.666338
\(45\) −3572.04 −0.262957
\(46\) −2603.34 −0.181399
\(47\) 17776.2 1.17380 0.586902 0.809658i \(-0.300348\pi\)
0.586902 + 0.809658i \(0.300348\pi\)
\(48\) −16766.7 −1.05037
\(49\) −14439.9 −0.859159
\(50\) 840.813 0.0475636
\(51\) −15509.3 −0.834961
\(52\) −5102.14 −0.261664
\(53\) 10834.4 0.529803 0.264902 0.964275i \(-0.414661\pi\)
0.264902 + 0.964275i \(0.414661\pi\)
\(54\) 2645.82 0.123474
\(55\) −7086.00 −0.315860
\(56\) −4070.53 −0.173453
\(57\) −1637.90 −0.0667727
\(58\) 299.668 0.0116969
\(59\) −5363.36 −0.200589 −0.100295 0.994958i \(-0.531979\pi\)
−0.100295 + 0.994958i \(0.531979\pi\)
\(60\) −14826.3 −0.531685
\(61\) −18670.7 −0.642445 −0.321222 0.947004i \(-0.604094\pi\)
−0.321222 + 0.947004i \(0.604094\pi\)
\(62\) −3752.69 −0.123983
\(63\) 6951.63 0.220666
\(64\) −22166.5 −0.676469
\(65\) −4225.00 −0.124035
\(66\) −7490.44 −0.211664
\(67\) 13985.1 0.380607 0.190304 0.981725i \(-0.439053\pi\)
0.190304 + 0.981725i \(0.439053\pi\)
\(68\) −23835.8 −0.625112
\(69\) 38013.5 0.961204
\(70\) −1636.32 −0.0399139
\(71\) 50969.5 1.19995 0.599976 0.800018i \(-0.295177\pi\)
0.599976 + 0.800018i \(0.295177\pi\)
\(72\) −11954.1 −0.271761
\(73\) 42394.9 0.931122 0.465561 0.885016i \(-0.345853\pi\)
0.465561 + 0.885016i \(0.345853\pi\)
\(74\) 11259.6 0.239025
\(75\) −12277.4 −0.252031
\(76\) −2517.24 −0.0499909
\(77\) 13790.2 0.265060
\(78\) −4466.15 −0.0831183
\(79\) 106279. 1.91593 0.957964 0.286888i \(-0.0926208\pi\)
0.957964 + 0.286888i \(0.0926208\pi\)
\(80\) −21338.3 −0.372765
\(81\) −73354.1 −1.24226
\(82\) 1639.26 0.0269224
\(83\) 75513.6 1.20318 0.601589 0.798806i \(-0.294535\pi\)
0.601589 + 0.798806i \(0.294535\pi\)
\(84\) 28853.8 0.446174
\(85\) −19738.1 −0.296317
\(86\) 7586.01 0.110603
\(87\) −4375.71 −0.0619799
\(88\) −23713.8 −0.326434
\(89\) 77017.8 1.03066 0.515331 0.856991i \(-0.327669\pi\)
0.515331 + 0.856991i \(0.327669\pi\)
\(90\) −4805.47 −0.0625359
\(91\) 8222.36 0.104086
\(92\) 58422.0 0.719627
\(93\) 54796.2 0.656966
\(94\) 23914.4 0.279151
\(95\) −2084.49 −0.0236968
\(96\) −75148.0 −0.832222
\(97\) 126702. 1.36727 0.683637 0.729822i \(-0.260397\pi\)
0.683637 + 0.729822i \(0.260397\pi\)
\(98\) −19426.0 −0.204323
\(99\) 40498.4 0.415288
\(100\) −18868.9 −0.188689
\(101\) −177513. −1.73151 −0.865757 0.500464i \(-0.833163\pi\)
−0.865757 + 0.500464i \(0.833163\pi\)
\(102\) −20864.6 −0.198569
\(103\) 149599. 1.38943 0.694714 0.719286i \(-0.255531\pi\)
0.694714 + 0.719286i \(0.255531\pi\)
\(104\) −14139.3 −0.128187
\(105\) 23893.3 0.211497
\(106\) 14575.5 0.125997
\(107\) −111466. −0.941199 −0.470600 0.882347i \(-0.655962\pi\)
−0.470600 + 0.882347i \(0.655962\pi\)
\(108\) −59375.3 −0.489832
\(109\) −85200.4 −0.686872 −0.343436 0.939176i \(-0.611591\pi\)
−0.343436 + 0.939176i \(0.611591\pi\)
\(110\) −9532.80 −0.0751171
\(111\) −164411. −1.26655
\(112\) 41526.9 0.312813
\(113\) −204137. −1.50392 −0.751961 0.659208i \(-0.770892\pi\)
−0.751961 + 0.659208i \(0.770892\pi\)
\(114\) −2203.46 −0.0158797
\(115\) 48378.4 0.341120
\(116\) −6724.92 −0.0464026
\(117\) 24147.0 0.163079
\(118\) −7215.34 −0.0477037
\(119\) 38412.7 0.248661
\(120\) −41087.4 −0.260468
\(121\) −80712.8 −0.501163
\(122\) −25117.7 −0.152785
\(123\) −23936.2 −0.142657
\(124\) 84214.9 0.491852
\(125\) −15625.0 −0.0894427
\(126\) 9352.03 0.0524783
\(127\) 272404. 1.49866 0.749331 0.662196i \(-0.230375\pi\)
0.749331 + 0.662196i \(0.230375\pi\)
\(128\) −152237. −0.821289
\(129\) −110770. −0.586066
\(130\) −5683.90 −0.0294977
\(131\) 42029.3 0.213980 0.106990 0.994260i \(-0.465879\pi\)
0.106990 + 0.994260i \(0.465879\pi\)
\(132\) 168095. 0.839689
\(133\) 4056.66 0.0198857
\(134\) 18814.1 0.0905152
\(135\) −49167.8 −0.232191
\(136\) −66055.0 −0.306237
\(137\) −56817.3 −0.258630 −0.129315 0.991604i \(-0.541278\pi\)
−0.129315 + 0.991604i \(0.541278\pi\)
\(138\) 51139.6 0.228591
\(139\) −136297. −0.598342 −0.299171 0.954200i \(-0.596710\pi\)
−0.299171 + 0.954200i \(0.596710\pi\)
\(140\) 36721.1 0.158342
\(141\) −349194. −1.47917
\(142\) 68569.3 0.285370
\(143\) 47901.3 0.195888
\(144\) 121954. 0.490106
\(145\) −5568.80 −0.0219959
\(146\) 57033.9 0.221437
\(147\) 283655. 1.08267
\(148\) −252678. −0.948230
\(149\) −398843. −1.47176 −0.735879 0.677113i \(-0.763231\pi\)
−0.735879 + 0.677113i \(0.763231\pi\)
\(150\) −16516.8 −0.0599375
\(151\) −16131.0 −0.0575730 −0.0287865 0.999586i \(-0.509164\pi\)
−0.0287865 + 0.999586i \(0.509164\pi\)
\(152\) −6975.90 −0.0244901
\(153\) 112808. 0.389594
\(154\) 18552.0 0.0630360
\(155\) 69737.0 0.233149
\(156\) 100226. 0.329737
\(157\) 9495.80 0.0307456 0.0153728 0.999882i \(-0.495107\pi\)
0.0153728 + 0.999882i \(0.495107\pi\)
\(158\) 142977. 0.455642
\(159\) −212829. −0.667634
\(160\) −95638.0 −0.295346
\(161\) −94150.2 −0.286257
\(162\) −98683.3 −0.295431
\(163\) 439257. 1.29494 0.647469 0.762091i \(-0.275827\pi\)
0.647469 + 0.762091i \(0.275827\pi\)
\(164\) −36787.0 −0.106803
\(165\) 139196. 0.398032
\(166\) 101588. 0.286137
\(167\) −233417. −0.647651 −0.323825 0.946117i \(-0.604969\pi\)
−0.323825 + 0.946117i \(0.604969\pi\)
\(168\) 79961.0 0.218577
\(169\) 28561.0 0.0769231
\(170\) −26553.6 −0.0704696
\(171\) 11913.4 0.0311563
\(172\) −170239. −0.438771
\(173\) 121696. 0.309144 0.154572 0.987982i \(-0.450600\pi\)
0.154572 + 0.987982i \(0.450600\pi\)
\(174\) −5886.65 −0.0147399
\(175\) 30408.1 0.0750576
\(176\) 241925. 0.588706
\(177\) 105357. 0.252773
\(178\) 103612. 0.245110
\(179\) −280901. −0.655271 −0.327636 0.944804i \(-0.606252\pi\)
−0.327636 + 0.944804i \(0.606252\pi\)
\(180\) 107841. 0.248085
\(181\) 324458. 0.736142 0.368071 0.929798i \(-0.380018\pi\)
0.368071 + 0.929798i \(0.380018\pi\)
\(182\) 11061.6 0.0247536
\(183\) 366765. 0.809580
\(184\) 161902. 0.352540
\(185\) −209239. −0.449483
\(186\) 73717.4 0.156238
\(187\) 223782. 0.467974
\(188\) −536668. −1.10742
\(189\) 95686.5 0.194848
\(190\) −2804.26 −0.00563553
\(191\) 803448. 1.59358 0.796791 0.604256i \(-0.206529\pi\)
0.796791 + 0.604256i \(0.206529\pi\)
\(192\) 435436. 0.852456
\(193\) −62706.7 −0.121177 −0.0605886 0.998163i \(-0.519298\pi\)
−0.0605886 + 0.998163i \(0.519298\pi\)
\(194\) 170453. 0.325162
\(195\) 82995.4 0.156303
\(196\) 435942. 0.810567
\(197\) −367605. −0.674864 −0.337432 0.941350i \(-0.609558\pi\)
−0.337432 + 0.941350i \(0.609558\pi\)
\(198\) 54482.5 0.0987629
\(199\) 860523. 1.54039 0.770193 0.637810i \(-0.220160\pi\)
0.770193 + 0.637810i \(0.220160\pi\)
\(200\) −52290.3 −0.0924371
\(201\) −274721. −0.479624
\(202\) −238808. −0.411785
\(203\) 10837.6 0.0184583
\(204\) 468228. 0.787738
\(205\) −30462.7 −0.0506272
\(206\) 201256. 0.330431
\(207\) −276495. −0.448499
\(208\) 144247. 0.231179
\(209\) 23633.1 0.0374244
\(210\) 32143.7 0.0502977
\(211\) −457688. −0.707723 −0.353861 0.935298i \(-0.615132\pi\)
−0.353861 + 0.935298i \(0.615132\pi\)
\(212\) −327092. −0.499839
\(213\) −1.00124e6 −1.51213
\(214\) −149955. −0.223834
\(215\) −140972. −0.207988
\(216\) −164544. −0.239965
\(217\) −135717. −0.195652
\(218\) −114620. −0.163350
\(219\) −832800. −1.17336
\(220\) 213927. 0.297996
\(221\) 133429. 0.183768
\(222\) −221182. −0.301208
\(223\) −925567. −1.24637 −0.623183 0.782076i \(-0.714161\pi\)
−0.623183 + 0.782076i \(0.714161\pi\)
\(224\) 186123. 0.247845
\(225\) 89301.0 0.117598
\(226\) −274625. −0.357659
\(227\) −1.54248e6 −1.98681 −0.993403 0.114679i \(-0.963416\pi\)
−0.993403 + 0.114679i \(0.963416\pi\)
\(228\) 49448.3 0.0629962
\(229\) 1.09184e6 1.37584 0.687922 0.725784i \(-0.258523\pi\)
0.687922 + 0.725784i \(0.258523\pi\)
\(230\) 65083.5 0.0811243
\(231\) −270893. −0.334017
\(232\) −18636.4 −0.0227323
\(233\) 141596. 0.170868 0.0854341 0.996344i \(-0.472772\pi\)
0.0854341 + 0.996344i \(0.472772\pi\)
\(234\) 32485.0 0.0387831
\(235\) −444406. −0.524941
\(236\) 161921. 0.189244
\(237\) −2.08773e6 −2.41437
\(238\) 51676.6 0.0591359
\(239\) −791678. −0.896507 −0.448253 0.893906i \(-0.647954\pi\)
−0.448253 + 0.893906i \(0.647954\pi\)
\(240\) 419167. 0.469741
\(241\) 1.39653e6 1.54884 0.774421 0.632671i \(-0.218041\pi\)
0.774421 + 0.632671i \(0.218041\pi\)
\(242\) −108583. −0.119186
\(243\) 963047. 1.04624
\(244\) 563671. 0.606110
\(245\) 360997. 0.384228
\(246\) −32201.4 −0.0339264
\(247\) 14091.1 0.0146961
\(248\) 233380. 0.240955
\(249\) −1.48338e6 −1.51619
\(250\) −21020.3 −0.0212711
\(251\) 927565. 0.929309 0.464654 0.885492i \(-0.346179\pi\)
0.464654 + 0.885492i \(0.346179\pi\)
\(252\) −209871. −0.208186
\(253\) −548494. −0.538730
\(254\) 366465. 0.356408
\(255\) 387732. 0.373406
\(256\) 504524. 0.481152
\(257\) 1.21697e6 1.14934 0.574670 0.818385i \(-0.305130\pi\)
0.574670 + 0.818385i \(0.305130\pi\)
\(258\) −149019. −0.139377
\(259\) 407205. 0.377193
\(260\) 127553. 0.117020
\(261\) 31827.2 0.0289199
\(262\) 56542.0 0.0508883
\(263\) −188972. −0.168464 −0.0842321 0.996446i \(-0.526844\pi\)
−0.0842321 + 0.996446i \(0.526844\pi\)
\(264\) 465832. 0.411357
\(265\) −270860. −0.236935
\(266\) 5457.43 0.00472916
\(267\) −1.51293e6 −1.29879
\(268\) −422211. −0.359081
\(269\) −1.68629e6 −1.42086 −0.710432 0.703766i \(-0.751500\pi\)
−0.710432 + 0.703766i \(0.751500\pi\)
\(270\) −66145.5 −0.0552193
\(271\) 1.71354e6 1.41733 0.708664 0.705546i \(-0.249298\pi\)
0.708664 + 0.705546i \(0.249298\pi\)
\(272\) 673882. 0.552283
\(273\) −161519. −0.131165
\(274\) −76436.4 −0.0615069
\(275\) 177150. 0.141257
\(276\) −1.14764e6 −0.906841
\(277\) 1.51635e6 1.18741 0.593706 0.804682i \(-0.297664\pi\)
0.593706 + 0.804682i \(0.297664\pi\)
\(278\) −183360. −0.142296
\(279\) −398566. −0.306542
\(280\) 101763. 0.0775704
\(281\) 2.01362e6 1.52129 0.760644 0.649169i \(-0.224883\pi\)
0.760644 + 0.649169i \(0.224883\pi\)
\(282\) −469771. −0.351774
\(283\) 451062. 0.334788 0.167394 0.985890i \(-0.446465\pi\)
0.167394 + 0.985890i \(0.446465\pi\)
\(284\) −1.53878e6 −1.13209
\(285\) 40947.4 0.0298617
\(286\) 64441.7 0.0465856
\(287\) 59284.1 0.0424848
\(288\) 546597. 0.388316
\(289\) −796511. −0.560980
\(290\) −7491.71 −0.00523102
\(291\) −2.48893e6 −1.72298
\(292\) −1.27991e6 −0.878460
\(293\) −1.60140e6 −1.08976 −0.544879 0.838514i \(-0.683425\pi\)
−0.544879 + 0.838514i \(0.683425\pi\)
\(294\) 381602. 0.257479
\(295\) 134084. 0.0897062
\(296\) −700235. −0.464531
\(297\) 557444. 0.366700
\(298\) −536564. −0.350010
\(299\) −327038. −0.211553
\(300\) 370657. 0.237777
\(301\) 274349. 0.174537
\(302\) −21701.0 −0.0136919
\(303\) 3.48704e6 2.18198
\(304\) 71167.0 0.0441667
\(305\) 466767. 0.287310
\(306\) 151761. 0.0926524
\(307\) 3.03553e6 1.83818 0.919091 0.394046i \(-0.128925\pi\)
0.919091 + 0.394046i \(0.128925\pi\)
\(308\) −416329. −0.250069
\(309\) −2.93871e6 −1.75089
\(310\) 93817.2 0.0554470
\(311\) 1.48427e6 0.870184 0.435092 0.900386i \(-0.356716\pi\)
0.435092 + 0.900386i \(0.356716\pi\)
\(312\) 277751. 0.161536
\(313\) 1.57466e6 0.908504 0.454252 0.890873i \(-0.349906\pi\)
0.454252 + 0.890873i \(0.349906\pi\)
\(314\) 12774.7 0.00731184
\(315\) −173791. −0.0986848
\(316\) −3.20858e6 −1.80757
\(317\) 2.88960e6 1.61507 0.807533 0.589822i \(-0.200802\pi\)
0.807533 + 0.589822i \(0.200802\pi\)
\(318\) −286319. −0.158775
\(319\) 63136.8 0.0347381
\(320\) 554163. 0.302526
\(321\) 2.18962e6 1.18606
\(322\) −126660. −0.0680771
\(323\) 65830.0 0.0351089
\(324\) 2.21457e6 1.17200
\(325\) 105625. 0.0554700
\(326\) 590932. 0.307960
\(327\) 1.67367e6 0.865565
\(328\) −101946. −0.0523221
\(329\) 864868. 0.440514
\(330\) 187261. 0.0946591
\(331\) 2.93760e6 1.47374 0.736872 0.676032i \(-0.236302\pi\)
0.736872 + 0.676032i \(0.236302\pi\)
\(332\) −2.27977e6 −1.13513
\(333\) 1.19586e6 0.590974
\(334\) −314016. −0.154023
\(335\) −349626. −0.170213
\(336\) −815749. −0.394192
\(337\) −842611. −0.404159 −0.202079 0.979369i \(-0.564770\pi\)
−0.202079 + 0.979369i \(0.564770\pi\)
\(338\) 38423.1 0.0182937
\(339\) 4.01004e6 1.89517
\(340\) 595895. 0.279558
\(341\) −790650. −0.368212
\(342\) 16027.1 0.00740951
\(343\) −1.52026e6 −0.697720
\(344\) −471775. −0.214951
\(345\) −950339. −0.429864
\(346\) 163718. 0.0735200
\(347\) −719797. −0.320912 −0.160456 0.987043i \(-0.551297\pi\)
−0.160456 + 0.987043i \(0.551297\pi\)
\(348\) 132103. 0.0584744
\(349\) −2.28139e6 −1.00262 −0.501309 0.865269i \(-0.667148\pi\)
−0.501309 + 0.865269i \(0.667148\pi\)
\(350\) 40908.1 0.0178500
\(351\) 332374. 0.143999
\(352\) 1.08430e6 0.466439
\(353\) 7769.01 0.00331840 0.00165920 0.999999i \(-0.499472\pi\)
0.00165920 + 0.999999i \(0.499472\pi\)
\(354\) 141737. 0.0601140
\(355\) −1.27424e6 −0.536635
\(356\) −2.32518e6 −0.972371
\(357\) −754573. −0.313351
\(358\) −377897. −0.155835
\(359\) 309145. 0.126598 0.0632989 0.997995i \(-0.479838\pi\)
0.0632989 + 0.997995i \(0.479838\pi\)
\(360\) 298853. 0.121535
\(361\) −2.46915e6 −0.997192
\(362\) 436493. 0.175068
\(363\) 1.58551e6 0.631543
\(364\) −248234. −0.0981994
\(365\) −1.05987e6 −0.416410
\(366\) 493409. 0.192533
\(367\) −2.32781e6 −0.902156 −0.451078 0.892484i \(-0.648960\pi\)
−0.451078 + 0.892484i \(0.648960\pi\)
\(368\) −1.65170e6 −0.635786
\(369\) 174103. 0.0665640
\(370\) −281489. −0.106895
\(371\) 527126. 0.198829
\(372\) −1.65431e6 −0.619810
\(373\) −1.60840e6 −0.598579 −0.299289 0.954162i \(-0.596750\pi\)
−0.299289 + 0.954162i \(0.596750\pi\)
\(374\) 301054. 0.111292
\(375\) 306935. 0.112712
\(376\) −1.48724e6 −0.542515
\(377\) 37645.1 0.0136413
\(378\) 128727. 0.0463383
\(379\) −473484. −0.169320 −0.0846599 0.996410i \(-0.526980\pi\)
−0.0846599 + 0.996410i \(0.526980\pi\)
\(380\) 62931.0 0.0223566
\(381\) −5.35106e6 −1.88855
\(382\) 1.08088e6 0.378982
\(383\) 363362. 0.126574 0.0632868 0.997995i \(-0.479842\pi\)
0.0632868 + 0.997995i \(0.479842\pi\)
\(384\) 2.99053e6 1.03495
\(385\) −344755. −0.118538
\(386\) −84359.4 −0.0288181
\(387\) 805695. 0.273460
\(388\) −3.82517e6 −1.28994
\(389\) −901091. −0.301922 −0.150961 0.988540i \(-0.548237\pi\)
−0.150961 + 0.988540i \(0.548237\pi\)
\(390\) 111654. 0.0371716
\(391\) −1.52783e6 −0.505398
\(392\) 1.20811e6 0.397091
\(393\) −825618. −0.269648
\(394\) −494539. −0.160495
\(395\) −2.65697e6 −0.856829
\(396\) −1.22265e6 −0.391801
\(397\) −3.36685e6 −1.07213 −0.536064 0.844177i \(-0.680090\pi\)
−0.536064 + 0.844177i \(0.680090\pi\)
\(398\) 1.15766e6 0.366331
\(399\) −79688.6 −0.0250590
\(400\) 533457. 0.166705
\(401\) 1.49612e6 0.464629 0.232315 0.972641i \(-0.425370\pi\)
0.232315 + 0.972641i \(0.425370\pi\)
\(402\) −369582. −0.114063
\(403\) −471422. −0.144593
\(404\) 5.35914e6 1.63358
\(405\) 1.83385e6 0.555555
\(406\) 14579.8 0.00438971
\(407\) 2.37227e6 0.709868
\(408\) 1.29758e6 0.385907
\(409\) 1.78884e6 0.528765 0.264382 0.964418i \(-0.414832\pi\)
0.264382 + 0.964418i \(0.414832\pi\)
\(410\) −40981.5 −0.0120401
\(411\) 1.11611e6 0.325914
\(412\) −4.51642e6 −1.31085
\(413\) −260944. −0.0752787
\(414\) −371969. −0.106661
\(415\) −1.88784e6 −0.538077
\(416\) 646513. 0.183166
\(417\) 2.67740e6 0.754003
\(418\) 31793.6 0.00890018
\(419\) 3.06163e6 0.851956 0.425978 0.904733i \(-0.359930\pi\)
0.425978 + 0.904733i \(0.359930\pi\)
\(420\) −721344. −0.199535
\(421\) −6.32711e6 −1.73980 −0.869901 0.493226i \(-0.835817\pi\)
−0.869901 + 0.493226i \(0.835817\pi\)
\(422\) −615728. −0.168309
\(423\) 2.53990e6 0.690185
\(424\) −906453. −0.244867
\(425\) 493452. 0.132517
\(426\) −1.34697e6 −0.359611
\(427\) −908386. −0.241102
\(428\) 3.36517e6 0.887967
\(429\) −940968. −0.246849
\(430\) −189650. −0.0494632
\(431\) −2.68796e6 −0.696995 −0.348498 0.937310i \(-0.613308\pi\)
−0.348498 + 0.937310i \(0.613308\pi\)
\(432\) 1.67865e6 0.432764
\(433\) 1.62239e6 0.415850 0.207925 0.978145i \(-0.433329\pi\)
0.207925 + 0.978145i \(0.433329\pi\)
\(434\) −182580. −0.0465295
\(435\) 109393. 0.0277182
\(436\) 2.57222e6 0.648024
\(437\) −161351. −0.0404172
\(438\) −1.12037e6 −0.279045
\(439\) 6.21478e6 1.53909 0.769546 0.638592i \(-0.220483\pi\)
0.769546 + 0.638592i \(0.220483\pi\)
\(440\) 592846. 0.145986
\(441\) −2.06319e6 −0.505177
\(442\) 179503. 0.0437034
\(443\) −517107. −0.125191 −0.0625953 0.998039i \(-0.519938\pi\)
−0.0625953 + 0.998039i \(0.519938\pi\)
\(444\) 4.96358e6 1.19492
\(445\) −1.92545e6 −0.460926
\(446\) −1.24517e6 −0.296408
\(447\) 7.83482e6 1.85464
\(448\) −1.07847e6 −0.253871
\(449\) −7.08559e6 −1.65867 −0.829336 0.558750i \(-0.811281\pi\)
−0.829336 + 0.558750i \(0.811281\pi\)
\(450\) 120137. 0.0279669
\(451\) 345374. 0.0799555
\(452\) 6.16292e6 1.41886
\(453\) 316875. 0.0725509
\(454\) −2.07510e6 −0.472498
\(455\) −205559. −0.0465488
\(456\) 137034. 0.0308614
\(457\) −929335. −0.208153 −0.104076 0.994569i \(-0.533189\pi\)
−0.104076 + 0.994569i \(0.533189\pi\)
\(458\) 1.46885e6 0.327200
\(459\) 1.55276e6 0.344012
\(460\) −1.46055e6 −0.321827
\(461\) 7.91310e6 1.73418 0.867091 0.498150i \(-0.165987\pi\)
0.867091 + 0.498150i \(0.165987\pi\)
\(462\) −364433. −0.0794351
\(463\) −1.60654e6 −0.348289 −0.174144 0.984720i \(-0.555716\pi\)
−0.174144 + 0.984720i \(0.555716\pi\)
\(464\) 190126. 0.0409964
\(465\) −1.36990e6 −0.293804
\(466\) 190489. 0.0406355
\(467\) 2.57909e6 0.547236 0.273618 0.961838i \(-0.411780\pi\)
0.273618 + 0.961838i \(0.411780\pi\)
\(468\) −729002. −0.153856
\(469\) 680415. 0.142837
\(470\) −597860. −0.124840
\(471\) −186534. −0.0387442
\(472\) 448723. 0.0927093
\(473\) 1.59829e6 0.328475
\(474\) −2.80862e6 −0.574179
\(475\) 52112.2 0.0105975
\(476\) −1.15968e6 −0.234597
\(477\) 1.54803e6 0.311519
\(478\) −1.06504e6 −0.213205
\(479\) 1.57546e6 0.313739 0.156869 0.987619i \(-0.449860\pi\)
0.156869 + 0.987619i \(0.449860\pi\)
\(480\) 1.87870e6 0.372181
\(481\) 1.41446e6 0.278758
\(482\) 1.87875e6 0.368342
\(483\) 1.84947e6 0.360728
\(484\) 2.43673e6 0.472819
\(485\) −3.16756e6 −0.611464
\(486\) 1.29559e6 0.248815
\(487\) −3.52518e6 −0.673534 −0.336767 0.941588i \(-0.609333\pi\)
−0.336767 + 0.941588i \(0.609333\pi\)
\(488\) 1.56207e6 0.296929
\(489\) −8.62870e6 −1.63182
\(490\) 485650. 0.0913761
\(491\) −3.53510e6 −0.661756 −0.330878 0.943674i \(-0.607345\pi\)
−0.330878 + 0.943674i \(0.607345\pi\)
\(492\) 722639. 0.134589
\(493\) 175868. 0.0325888
\(494\) 18956.8 0.00349501
\(495\) −1.01246e6 −0.185722
\(496\) −2.38091e6 −0.434549
\(497\) 2.47982e6 0.450328
\(498\) −1.99559e6 −0.360577
\(499\) 311968. 0.0560866 0.0280433 0.999607i \(-0.491072\pi\)
0.0280433 + 0.999607i \(0.491072\pi\)
\(500\) 471721. 0.0843841
\(501\) 4.58521e6 0.816140
\(502\) 1.24785e6 0.221006
\(503\) 6.52751e6 1.15034 0.575172 0.818032i \(-0.304935\pi\)
0.575172 + 0.818032i \(0.304935\pi\)
\(504\) −581604. −0.101989
\(505\) 4.43782e6 0.774357
\(506\) −737890. −0.128120
\(507\) −561049. −0.0969350
\(508\) −8.22391e6 −1.41390
\(509\) −6.28149e6 −1.07465 −0.537327 0.843374i \(-0.680566\pi\)
−0.537327 + 0.843374i \(0.680566\pi\)
\(510\) 521616. 0.0888026
\(511\) 2.06264e6 0.349439
\(512\) 5.55033e6 0.935716
\(513\) 163983. 0.0275110
\(514\) 1.63720e6 0.273334
\(515\) −3.73998e6 −0.621371
\(516\) 3.34416e6 0.552920
\(517\) 5.03850e6 0.829038
\(518\) 547813. 0.0897031
\(519\) −2.39058e6 −0.389569
\(520\) 353482. 0.0573270
\(521\) −7.39635e6 −1.19378 −0.596888 0.802324i \(-0.703596\pi\)
−0.596888 + 0.802324i \(0.703596\pi\)
\(522\) 42817.1 0.00687767
\(523\) 6.26869e6 1.00213 0.501063 0.865411i \(-0.332943\pi\)
0.501063 + 0.865411i \(0.332943\pi\)
\(524\) −1.26887e6 −0.201878
\(525\) −597334. −0.0945842
\(526\) −254224. −0.0400638
\(527\) −2.20236e6 −0.345431
\(528\) −4.75234e6 −0.741861
\(529\) −2.69160e6 −0.418187
\(530\) −364388. −0.0563474
\(531\) −766327. −0.117944
\(532\) −122471. −0.0187610
\(533\) 205928. 0.0313977
\(534\) −2.03534e6 −0.308876
\(535\) 2.78664e6 0.420917
\(536\) −1.17005e6 −0.175911
\(537\) 5.51799e6 0.825743
\(538\) −2.26857e6 −0.337907
\(539\) −4.09284e6 −0.606810
\(540\) 1.48438e6 0.219059
\(541\) −2.81963e6 −0.414189 −0.207095 0.978321i \(-0.566401\pi\)
−0.207095 + 0.978321i \(0.566401\pi\)
\(542\) 2.30522e6 0.337066
\(543\) −6.37360e6 −0.927653
\(544\) 3.02033e6 0.437580
\(545\) 2.13001e6 0.307178
\(546\) −217292. −0.0311933
\(547\) −9.17262e6 −1.31077 −0.655383 0.755297i \(-0.727493\pi\)
−0.655383 + 0.755297i \(0.727493\pi\)
\(548\) 1.71532e6 0.244003
\(549\) −2.66770e6 −0.377751
\(550\) 238320. 0.0335934
\(551\) 18572.9 0.00260616
\(552\) −3.18038e6 −0.444254
\(553\) 5.17079e6 0.719025
\(554\) 2.03995e6 0.282388
\(555\) 4.11026e6 0.566418
\(556\) 4.11483e6 0.564501
\(557\) −4.27403e6 −0.583713 −0.291856 0.956462i \(-0.594273\pi\)
−0.291856 + 0.956462i \(0.594273\pi\)
\(558\) −536191. −0.0729010
\(559\) 952973. 0.128989
\(560\) −1.03817e6 −0.139894
\(561\) −4.39595e6 −0.589719
\(562\) 2.70892e6 0.361789
\(563\) 9.29935e6 1.23646 0.618232 0.785995i \(-0.287849\pi\)
0.618232 + 0.785995i \(0.287849\pi\)
\(564\) 1.05422e7 1.39552
\(565\) 5.10342e6 0.672574
\(566\) 606813. 0.0796185
\(567\) −3.56890e6 −0.466205
\(568\) −4.26433e6 −0.554601
\(569\) −4.10069e6 −0.530977 −0.265489 0.964114i \(-0.585533\pi\)
−0.265489 + 0.964114i \(0.585533\pi\)
\(570\) 55086.5 0.00710164
\(571\) −1.03048e7 −1.32267 −0.661334 0.750092i \(-0.730009\pi\)
−0.661334 + 0.750092i \(0.730009\pi\)
\(572\) −1.44615e6 −0.184809
\(573\) −1.57828e7 −2.00816
\(574\) 79755.0 0.0101036
\(575\) −1.20946e6 −0.152553
\(576\) −3.16719e6 −0.397757
\(577\) 2.17391e6 0.271833 0.135916 0.990720i \(-0.456602\pi\)
0.135916 + 0.990720i \(0.456602\pi\)
\(578\) −1.07155e6 −0.133411
\(579\) 1.23180e6 0.152702
\(580\) 168123. 0.0207519
\(581\) 3.67396e6 0.451538
\(582\) −3.34835e6 −0.409755
\(583\) 3.07090e6 0.374191
\(584\) −3.54695e6 −0.430351
\(585\) −603675. −0.0729312
\(586\) −2.15436e6 −0.259164
\(587\) −1.56597e7 −1.87581 −0.937905 0.346892i \(-0.887237\pi\)
−0.937905 + 0.346892i \(0.887237\pi\)
\(588\) −8.56360e6 −1.02144
\(589\) −232585. −0.0276245
\(590\) 180383. 0.0213337
\(591\) 7.22119e6 0.850433
\(592\) 7.14368e6 0.837757
\(593\) −5.51737e6 −0.644310 −0.322155 0.946687i \(-0.604407\pi\)
−0.322155 + 0.946687i \(0.604407\pi\)
\(594\) 749930. 0.0872077
\(595\) −960317. −0.111204
\(596\) 1.20411e7 1.38852
\(597\) −1.69040e7 −1.94113
\(598\) −439964. −0.0503112
\(599\) −8.76025e6 −0.997584 −0.498792 0.866722i \(-0.666223\pi\)
−0.498792 + 0.866722i \(0.666223\pi\)
\(600\) 1.02718e6 0.116485
\(601\) 1.21014e7 1.36662 0.683310 0.730128i \(-0.260540\pi\)
0.683310 + 0.730128i \(0.260540\pi\)
\(602\) 369082. 0.0415080
\(603\) 1.99821e6 0.223794
\(604\) 486997. 0.0543168
\(605\) 2.01782e6 0.224127
\(606\) 4.69111e6 0.518913
\(607\) −1.29407e7 −1.42556 −0.712779 0.701388i \(-0.752564\pi\)
−0.712779 + 0.701388i \(0.752564\pi\)
\(608\) 318970. 0.0349938
\(609\) −212892. −0.0232603
\(610\) 627942. 0.0683274
\(611\) 3.00418e6 0.325554
\(612\) −3.40570e6 −0.367560
\(613\) 2.31350e6 0.248667 0.124333 0.992240i \(-0.460321\pi\)
0.124333 + 0.992240i \(0.460321\pi\)
\(614\) 4.08370e6 0.437152
\(615\) 598406. 0.0637981
\(616\) −1.15375e6 −0.122507
\(617\) 8.53024e6 0.902086 0.451043 0.892502i \(-0.351052\pi\)
0.451043 + 0.892502i \(0.351052\pi\)
\(618\) −3.95344e6 −0.416394
\(619\) 8.89321e6 0.932893 0.466447 0.884549i \(-0.345534\pi\)
0.466447 + 0.884549i \(0.345534\pi\)
\(620\) −2.10537e6 −0.219963
\(621\) −3.80585e6 −0.396025
\(622\) 1.99679e6 0.206945
\(623\) 3.74715e6 0.386795
\(624\) −2.83357e6 −0.291321
\(625\) 390625. 0.0400000
\(626\) 2.11840e6 0.216059
\(627\) −464245. −0.0471605
\(628\) −286680. −0.0290067
\(629\) 6.60796e6 0.665948
\(630\) −233801. −0.0234690
\(631\) 1.01842e7 1.01824 0.509122 0.860695i \(-0.329970\pi\)
0.509122 + 0.860695i \(0.329970\pi\)
\(632\) −8.89177e6 −0.885514
\(633\) 8.99076e6 0.891840
\(634\) 3.88739e6 0.384091
\(635\) −6.81009e6 −0.670222
\(636\) 6.42535e6 0.629874
\(637\) −2.44034e6 −0.238288
\(638\) 84938.0 0.00826133
\(639\) 7.28260e6 0.705561
\(640\) 3.80593e6 0.367292
\(641\) −1.30240e7 −1.25198 −0.625991 0.779830i \(-0.715306\pi\)
−0.625991 + 0.779830i \(0.715306\pi\)
\(642\) 2.94569e6 0.282065
\(643\) −4.52103e6 −0.431231 −0.215616 0.976478i \(-0.569176\pi\)
−0.215616 + 0.976478i \(0.569176\pi\)
\(644\) 2.84241e6 0.270067
\(645\) 2.76924e6 0.262097
\(646\) 88561.1 0.00834952
\(647\) 2.72009e6 0.255459 0.127730 0.991809i \(-0.459231\pi\)
0.127730 + 0.991809i \(0.459231\pi\)
\(648\) 6.13713e6 0.574153
\(649\) −1.52019e6 −0.141673
\(650\) 142097. 0.0131918
\(651\) 2.66600e6 0.246552
\(652\) −1.32612e7 −1.22170
\(653\) 1.83786e7 1.68667 0.843334 0.537389i \(-0.180589\pi\)
0.843334 + 0.537389i \(0.180589\pi\)
\(654\) 2.25158e6 0.205847
\(655\) −1.05073e6 −0.0956949
\(656\) 1.04004e6 0.0943601
\(657\) 6.05745e6 0.547491
\(658\) 1.16351e6 0.104762
\(659\) −1.39753e7 −1.25357 −0.626786 0.779192i \(-0.715630\pi\)
−0.626786 + 0.779192i \(0.715630\pi\)
\(660\) −4.20236e6 −0.375521
\(661\) 9.05787e6 0.806348 0.403174 0.915123i \(-0.367907\pi\)
0.403174 + 0.915123i \(0.367907\pi\)
\(662\) 3.95195e6 0.350483
\(663\) −2.62107e6 −0.231576
\(664\) −6.31780e6 −0.556091
\(665\) −101417. −0.00889314
\(666\) 1.60879e6 0.140544
\(667\) −431055. −0.0375161
\(668\) 7.04689e6 0.611021
\(669\) 1.81817e7 1.57061
\(670\) −470353. −0.0404796
\(671\) −5.29202e6 −0.453748
\(672\) −3.65618e6 −0.312323
\(673\) 1.68758e7 1.43624 0.718121 0.695919i \(-0.245003\pi\)
0.718121 + 0.695919i \(0.245003\pi\)
\(674\) −1.13356e6 −0.0961162
\(675\) 1.22919e6 0.103839
\(676\) −862261. −0.0725725
\(677\) 7.96769e6 0.668129 0.334065 0.942550i \(-0.391580\pi\)
0.334065 + 0.942550i \(0.391580\pi\)
\(678\) 5.39470e6 0.450706
\(679\) 6.16446e6 0.513122
\(680\) 1.65137e6 0.136954
\(681\) 3.03003e7 2.50368
\(682\) −1.06366e6 −0.0875674
\(683\) −1.29108e7 −1.05901 −0.529507 0.848306i \(-0.677623\pi\)
−0.529507 + 0.848306i \(0.677623\pi\)
\(684\) −359667. −0.0293941
\(685\) 1.42043e6 0.115663
\(686\) −2.04520e6 −0.165930
\(687\) −2.14479e7 −1.73378
\(688\) 4.81297e6 0.387652
\(689\) 1.83101e6 0.146941
\(690\) −1.27849e6 −0.102229
\(691\) −1.37987e7 −1.09936 −0.549682 0.835374i \(-0.685251\pi\)
−0.549682 + 0.835374i \(0.685251\pi\)
\(692\) −3.67402e6 −0.291660
\(693\) 1.97037e6 0.155853
\(694\) −968344. −0.0763187
\(695\) 3.40743e6 0.267587
\(696\) 366092. 0.0286462
\(697\) 962040. 0.0750086
\(698\) −3.06915e6 −0.238440
\(699\) −2.78149e6 −0.215320
\(700\) −918027. −0.0708126
\(701\) −1.54955e6 −0.119099 −0.0595497 0.998225i \(-0.518966\pi\)
−0.0595497 + 0.998225i \(0.518966\pi\)
\(702\) 447143. 0.0342455
\(703\) 697849. 0.0532566
\(704\) −6.28288e6 −0.477779
\(705\) 8.72985e6 0.661507
\(706\) 10451.7 0.000789175 0
\(707\) −8.63653e6 −0.649817
\(708\) −3.18075e6 −0.238477
\(709\) −1.43383e7 −1.07123 −0.535614 0.844463i \(-0.679920\pi\)
−0.535614 + 0.844463i \(0.679920\pi\)
\(710\) −1.71423e6 −0.127621
\(711\) 1.51853e7 1.12655
\(712\) −6.44366e6 −0.476357
\(713\) 5.39802e6 0.397659
\(714\) −1.01513e6 −0.0745204
\(715\) −1.19753e6 −0.0876037
\(716\) 8.48046e6 0.618211
\(717\) 1.55516e7 1.12974
\(718\) 415893. 0.0301072
\(719\) −1.37368e7 −0.990980 −0.495490 0.868614i \(-0.665011\pi\)
−0.495490 + 0.868614i \(0.665011\pi\)
\(720\) −3.04885e6 −0.219182
\(721\) 7.27845e6 0.521436
\(722\) −3.32175e6 −0.237150
\(723\) −2.74332e7 −1.95178
\(724\) −9.79543e6 −0.694508
\(725\) 139220. 0.00983686
\(726\) 2.13299e6 0.150192
\(727\) −1.61824e6 −0.113555 −0.0567776 0.998387i \(-0.518083\pi\)
−0.0567776 + 0.998387i \(0.518083\pi\)
\(728\) −687920. −0.0481071
\(729\) −1.09293e6 −0.0761684
\(730\) −1.42585e6 −0.0990298
\(731\) 4.45203e6 0.308152
\(732\) −1.10727e7 −0.763792
\(733\) −1.57329e7 −1.08156 −0.540779 0.841165i \(-0.681870\pi\)
−0.540779 + 0.841165i \(0.681870\pi\)
\(734\) −3.13160e6 −0.214549
\(735\) −7.09138e6 −0.484186
\(736\) −7.40290e6 −0.503741
\(737\) 3.96392e6 0.268817
\(738\) 234220. 0.0158301
\(739\) −1.62586e6 −0.109515 −0.0547574 0.998500i \(-0.517439\pi\)
−0.0547574 + 0.998500i \(0.517439\pi\)
\(740\) 6.31696e6 0.424062
\(741\) −276804. −0.0185194
\(742\) 709142. 0.0472850
\(743\) 1.87162e7 1.24379 0.621894 0.783101i \(-0.286363\pi\)
0.621894 + 0.783101i \(0.286363\pi\)
\(744\) −4.58449e6 −0.303640
\(745\) 9.97108e6 0.658190
\(746\) −2.16378e6 −0.142353
\(747\) 1.07895e7 0.707457
\(748\) −6.75602e6 −0.441506
\(749\) −5.42314e6 −0.353221
\(750\) 412921. 0.0268048
\(751\) 7.16867e6 0.463809 0.231904 0.972739i \(-0.425504\pi\)
0.231904 + 0.972739i \(0.425504\pi\)
\(752\) 1.51726e7 0.978396
\(753\) −1.82210e7 −1.17107
\(754\) 50644.0 0.00324414
\(755\) 403275. 0.0257474
\(756\) −2.88879e6 −0.183828
\(757\) 2.67712e7 1.69796 0.848982 0.528422i \(-0.177216\pi\)
0.848982 + 0.528422i \(0.177216\pi\)
\(758\) −636979. −0.0402673
\(759\) 1.07746e7 0.678883
\(760\) 174397. 0.0109523
\(761\) −708017. −0.0443182 −0.0221591 0.999754i \(-0.507054\pi\)
−0.0221591 + 0.999754i \(0.507054\pi\)
\(762\) −7.19879e6 −0.449130
\(763\) −4.14526e6 −0.257775
\(764\) −2.42562e7 −1.50345
\(765\) −2.82021e6 −0.174232
\(766\) 488832. 0.0301014
\(767\) −906409. −0.0556334
\(768\) −9.91081e6 −0.606326
\(769\) 1.72011e7 1.04891 0.524456 0.851437i \(-0.324269\pi\)
0.524456 + 0.851437i \(0.324269\pi\)
\(770\) −463799. −0.0281905
\(771\) −2.39061e7 −1.44835
\(772\) 1.89313e6 0.114324
\(773\) 7.85325e6 0.472716 0.236358 0.971666i \(-0.424046\pi\)
0.236358 + 0.971666i \(0.424046\pi\)
\(774\) 1.08390e6 0.0650336
\(775\) −1.74343e6 −0.104268
\(776\) −1.06005e7 −0.631934
\(777\) −7.99907e6 −0.475321
\(778\) −1.21224e6 −0.0718024
\(779\) 101599. 0.00599852
\(780\) −2.50564e6 −0.147463
\(781\) 1.44468e7 0.847507
\(782\) −2.05539e6 −0.120193
\(783\) 438089. 0.0255363
\(784\) −1.23249e7 −0.716132
\(785\) −237395. −0.0137498
\(786\) −1.11070e6 −0.0641272
\(787\) 2.05200e7 1.18097 0.590487 0.807047i \(-0.298936\pi\)
0.590487 + 0.807047i \(0.298936\pi\)
\(788\) 1.10981e7 0.636695
\(789\) 3.71214e6 0.212291
\(790\) −3.57443e6 −0.203769
\(791\) −9.93187e6 −0.564404
\(792\) −3.38827e6 −0.191940
\(793\) −3.15535e6 −0.178182
\(794\) −4.52942e6 −0.254971
\(795\) 5.32073e6 0.298575
\(796\) −2.59793e7 −1.45327
\(797\) −2.57349e7 −1.43508 −0.717540 0.696517i \(-0.754732\pi\)
−0.717540 + 0.696517i \(0.754732\pi\)
\(798\) −107205. −0.00595948
\(799\) 1.40347e7 0.777745
\(800\) 2.39095e6 0.132083
\(801\) 1.10044e7 0.606019
\(802\) 2.01274e6 0.110497
\(803\) 1.20164e7 0.657636
\(804\) 8.29386e6 0.452498
\(805\) 2.35375e6 0.128018
\(806\) −634205. −0.0343868
\(807\) 3.31253e7 1.79051
\(808\) 1.48515e7 0.800280
\(809\) −1.45330e7 −0.780699 −0.390350 0.920667i \(-0.627646\pi\)
−0.390350 + 0.920667i \(0.627646\pi\)
\(810\) 2.46708e6 0.132121
\(811\) 1.60281e6 0.0855717 0.0427858 0.999084i \(-0.486377\pi\)
0.0427858 + 0.999084i \(0.486377\pi\)
\(812\) −327188. −0.0174143
\(813\) −3.36605e7 −1.78605
\(814\) 3.19141e6 0.168819
\(815\) −1.09814e7 −0.579114
\(816\) −1.32377e7 −0.695962
\(817\) 470168. 0.0246432
\(818\) 2.40652e6 0.125750
\(819\) 1.17482e6 0.0612017
\(820\) 919674. 0.0477639
\(821\) 1.22945e6 0.0636579 0.0318289 0.999493i \(-0.489867\pi\)
0.0318289 + 0.999493i \(0.489867\pi\)
\(822\) 1.50151e6 0.0775082
\(823\) −260323. −0.0133972 −0.00669859 0.999978i \(-0.502132\pi\)
−0.00669859 + 0.999978i \(0.502132\pi\)
\(824\) −1.25161e7 −0.642173
\(825\) −3.47991e6 −0.178005
\(826\) −351048. −0.0179026
\(827\) 1.33246e7 0.677471 0.338736 0.940882i \(-0.390001\pi\)
0.338736 + 0.940882i \(0.390001\pi\)
\(828\) 8.34744e6 0.423134
\(829\) 3.52026e7 1.77905 0.889526 0.456885i \(-0.151035\pi\)
0.889526 + 0.456885i \(0.151035\pi\)
\(830\) −2.53971e6 −0.127964
\(831\) −2.97871e7 −1.49632
\(832\) −3.74614e6 −0.187619
\(833\) −1.14006e7 −0.569267
\(834\) 3.60191e6 0.179315
\(835\) 5.83542e6 0.289638
\(836\) −713486. −0.0353077
\(837\) −5.48610e6 −0.270676
\(838\) 4.11881e6 0.202610
\(839\) −3.45100e7 −1.69255 −0.846273 0.532750i \(-0.821159\pi\)
−0.846273 + 0.532750i \(0.821159\pi\)
\(840\) −1.99902e6 −0.0977507
\(841\) −2.04615e7 −0.997581
\(842\) −8.51186e6 −0.413756
\(843\) −3.95553e7 −1.91706
\(844\) 1.38177e7 0.667696
\(845\) −714025. −0.0344010
\(846\) 3.41693e6 0.164138
\(847\) −3.92692e6 −0.188081
\(848\) 9.24749e6 0.441605
\(849\) −8.86059e6 −0.421885
\(850\) 663841. 0.0315149
\(851\) −1.61962e7 −0.766637
\(852\) 3.02275e7 1.42660
\(853\) −1.67507e7 −0.788245 −0.394122 0.919058i \(-0.628951\pi\)
−0.394122 + 0.919058i \(0.628951\pi\)
\(854\) −1.22205e6 −0.0573383
\(855\) −297835. −0.0139335
\(856\) 9.32571e6 0.435008
\(857\) −2.15120e6 −0.100053 −0.0500264 0.998748i \(-0.515931\pi\)
−0.0500264 + 0.998748i \(0.515931\pi\)
\(858\) −1.26588e6 −0.0587051
\(859\) 1.66088e7 0.767991 0.383996 0.923335i \(-0.374548\pi\)
0.383996 + 0.923335i \(0.374548\pi\)
\(860\) 4.25598e6 0.196225
\(861\) −1.16457e6 −0.0535374
\(862\) −3.61612e6 −0.165758
\(863\) −2.71816e7 −1.24236 −0.621181 0.783667i \(-0.713347\pi\)
−0.621181 + 0.783667i \(0.713347\pi\)
\(864\) 7.52369e6 0.342884
\(865\) −3.04240e6 −0.138253
\(866\) 2.18261e6 0.0988965
\(867\) 1.56466e7 0.706922
\(868\) 4.09731e6 0.184586
\(869\) 3.01237e7 1.35319
\(870\) 147166. 0.00659189
\(871\) 2.36347e6 0.105562
\(872\) 7.12825e6 0.317462
\(873\) 1.81035e7 0.803944
\(874\) −217065. −0.00961194
\(875\) −760204. −0.0335668
\(876\) 2.51424e7 1.10700
\(877\) 1.52455e6 0.0669333 0.0334667 0.999440i \(-0.489345\pi\)
0.0334667 + 0.999440i \(0.489345\pi\)
\(878\) 8.36075e6 0.366023
\(879\) 3.14577e7 1.37326
\(880\) −6.04812e6 −0.263278
\(881\) 2.77728e7 1.20554 0.602769 0.797916i \(-0.294064\pi\)
0.602769 + 0.797916i \(0.294064\pi\)
\(882\) −2.77562e6 −0.120140
\(883\) 3.15964e7 1.36376 0.681878 0.731466i \(-0.261164\pi\)
0.681878 + 0.731466i \(0.261164\pi\)
\(884\) −4.02825e6 −0.173375
\(885\) −2.63393e6 −0.113044
\(886\) −695665. −0.0297725
\(887\) 9.17500e6 0.391559 0.195780 0.980648i \(-0.437276\pi\)
0.195780 + 0.980648i \(0.437276\pi\)
\(888\) 1.37553e7 0.585381
\(889\) 1.32533e7 0.562430
\(890\) −2.59030e6 −0.109616
\(891\) −2.07915e7 −0.877386
\(892\) 2.79430e7 1.17588
\(893\) 1.48217e6 0.0621971
\(894\) 1.05402e7 0.441067
\(895\) 7.02253e6 0.293046
\(896\) −7.40681e6 −0.308220
\(897\) 6.42429e6 0.266590
\(898\) −9.53226e6 −0.394462
\(899\) −621362. −0.0256416
\(900\) −2.69601e6 −0.110947
\(901\) 8.55399e6 0.351040
\(902\) 464632. 0.0190148
\(903\) −5.38928e6 −0.219944
\(904\) 1.70790e7 0.695090
\(905\) −8.11144e6 −0.329213
\(906\) 426292. 0.0172539
\(907\) −1.42674e7 −0.575874 −0.287937 0.957649i \(-0.592969\pi\)
−0.287937 + 0.957649i \(0.592969\pi\)
\(908\) 4.65678e7 1.87444
\(909\) −2.53633e7 −1.01811
\(910\) −276539. −0.0110701
\(911\) 3.34037e7 1.33352 0.666759 0.745273i \(-0.267681\pi\)
0.666759 + 0.745273i \(0.267681\pi\)
\(912\) −1.39800e6 −0.0556568
\(913\) 2.14036e7 0.849785
\(914\) −1.25024e6 −0.0495024
\(915\) −9.16912e6 −0.362055
\(916\) −3.29628e7 −1.29803
\(917\) 2.04485e6 0.0803042
\(918\) 2.08893e6 0.0818121
\(919\) 4.52117e7 1.76588 0.882942 0.469482i \(-0.155559\pi\)
0.882942 + 0.469482i \(0.155559\pi\)
\(920\) −4.04755e6 −0.157660
\(921\) −5.96295e7 −2.31639
\(922\) 1.06455e7 0.412419
\(923\) 8.61384e6 0.332807
\(924\) 8.17831e6 0.315125
\(925\) 5.23098e6 0.201015
\(926\) −2.16128e6 −0.0828292
\(927\) 2.13750e7 0.816970
\(928\) 852142. 0.0324819
\(929\) −517735. −0.0196820 −0.00984098 0.999952i \(-0.503133\pi\)
−0.00984098 + 0.999952i \(0.503133\pi\)
\(930\) −1.84293e6 −0.0698719
\(931\) −1.20399e6 −0.0455249
\(932\) −4.27481e6 −0.161204
\(933\) −2.91567e7 −1.09657
\(934\) 3.46965e6 0.130142
\(935\) −5.59455e6 −0.209284
\(936\) −2.02025e6 −0.0753728
\(937\) −2.58406e7 −0.961508 −0.480754 0.876856i \(-0.659637\pi\)
−0.480754 + 0.876856i \(0.659637\pi\)
\(938\) 915363. 0.0339693
\(939\) −3.09325e7 −1.14486
\(940\) 1.34167e7 0.495251
\(941\) 4.58537e7 1.68811 0.844053 0.536259i \(-0.180163\pi\)
0.844053 + 0.536259i \(0.180163\pi\)
\(942\) −250945. −0.00921405
\(943\) −2.35798e6 −0.0863496
\(944\) −4.57780e6 −0.167196
\(945\) −2.39216e6 −0.0871387
\(946\) 2.15018e6 0.0781172
\(947\) 604846. 0.0219164 0.0109582 0.999940i \(-0.496512\pi\)
0.0109582 + 0.999940i \(0.496512\pi\)
\(948\) 6.30289e7 2.27782
\(949\) 7.16474e6 0.258247
\(950\) 70106.5 0.00252028
\(951\) −5.67630e7 −2.03523
\(952\) −3.21378e6 −0.114927
\(953\) 3.20607e7 1.14351 0.571755 0.820424i \(-0.306263\pi\)
0.571755 + 0.820424i \(0.306263\pi\)
\(954\) 2.08257e6 0.0740848
\(955\) −2.00862e7 −0.712671
\(956\) 2.39009e7 0.845803
\(957\) −1.24025e6 −0.0437754
\(958\) 2.11947e6 0.0746127
\(959\) −2.76434e6 −0.0970609
\(960\) −1.08859e7 −0.381230
\(961\) −2.08480e7 −0.728207
\(962\) 1.90287e6 0.0662935
\(963\) −1.59264e7 −0.553416
\(964\) −4.21614e7 −1.46124
\(965\) 1.56767e6 0.0541920
\(966\) 2.48810e6 0.0857877
\(967\) −3.19660e7 −1.09931 −0.549657 0.835391i \(-0.685242\pi\)
−0.549657 + 0.835391i \(0.685242\pi\)
\(968\) 6.75280e6 0.231630
\(969\) −1.29316e6 −0.0442427
\(970\) −4.26132e6 −0.145417
\(971\) −5.47040e7 −1.86196 −0.930982 0.365066i \(-0.881046\pi\)
−0.930982 + 0.365066i \(0.881046\pi\)
\(972\) −2.90746e7 −0.987069
\(973\) −6.63126e6 −0.224551
\(974\) −4.74243e6 −0.160178
\(975\) −2.07488e6 −0.0699008
\(976\) −1.59360e7 −0.535495
\(977\) −3.12938e7 −1.04887 −0.524436 0.851450i \(-0.675724\pi\)
−0.524436 + 0.851450i \(0.675724\pi\)
\(978\) −1.16082e7 −0.388077
\(979\) 2.18299e7 0.727940
\(980\) −1.08986e7 −0.362497
\(981\) −1.21736e7 −0.403874
\(982\) −4.75577e6 −0.157377
\(983\) 1.21142e7 0.399863 0.199932 0.979810i \(-0.435928\pi\)
0.199932 + 0.979810i \(0.435928\pi\)
\(984\) 2.00261e6 0.0659339
\(985\) 9.19013e6 0.301808
\(986\) 236595. 0.00775020
\(987\) −1.69894e7 −0.555116
\(988\) −425414. −0.0138650
\(989\) −1.09120e7 −0.354744
\(990\) −1.36206e6 −0.0441681
\(991\) −2.58041e7 −0.834650 −0.417325 0.908757i \(-0.637032\pi\)
−0.417325 + 0.908757i \(0.637032\pi\)
\(992\) −1.06712e7 −0.344298
\(993\) −5.77058e7 −1.85715
\(994\) 3.33610e6 0.107096
\(995\) −2.15131e7 −0.688882
\(996\) 4.47835e7 1.43044
\(997\) 4.21820e7 1.34397 0.671984 0.740566i \(-0.265442\pi\)
0.671984 + 0.740566i \(0.265442\pi\)
\(998\) 419691. 0.0133384
\(999\) 1.64605e7 0.521831
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 65.6.a.d.1.4 6
3.2 odd 2 585.6.a.m.1.3 6
4.3 odd 2 1040.6.a.q.1.6 6
5.2 odd 4 325.6.b.g.274.7 12
5.3 odd 4 325.6.b.g.274.6 12
5.4 even 2 325.6.a.g.1.3 6
13.12 even 2 845.6.a.h.1.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.6.a.d.1.4 6 1.1 even 1 trivial
325.6.a.g.1.3 6 5.4 even 2
325.6.b.g.274.6 12 5.3 odd 4
325.6.b.g.274.7 12 5.2 odd 4
585.6.a.m.1.3 6 3.2 odd 2
845.6.a.h.1.3 6 13.12 even 2
1040.6.a.q.1.6 6 4.3 odd 2