Properties

Label 65.6.a.d.1.3
Level $65$
Weight $6$
Character 65.1
Self dual yes
Analytic conductor $10.425$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [65,6,Mod(1,65)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(65, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("65.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 65 = 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 65.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.4249482878\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 163x^{4} - 8x^{3} + 6120x^{2} + 6624x - 19440 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{4}\cdot 3 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-2.75663\) of defining polynomial
Character \(\chi\) \(=\) 65.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.75663 q^{2} +23.9621 q^{3} -24.4010 q^{4} -25.0000 q^{5} -66.0547 q^{6} +85.7300 q^{7} +155.477 q^{8} +331.182 q^{9} +68.9158 q^{10} +431.046 q^{11} -584.699 q^{12} +169.000 q^{13} -236.326 q^{14} -599.052 q^{15} +352.239 q^{16} -438.894 q^{17} -912.946 q^{18} +1617.28 q^{19} +610.025 q^{20} +2054.27 q^{21} -1188.23 q^{22} +2173.44 q^{23} +3725.55 q^{24} +625.000 q^{25} -465.871 q^{26} +2113.02 q^{27} -2091.90 q^{28} +8289.72 q^{29} +1651.37 q^{30} -2745.88 q^{31} -5946.25 q^{32} +10328.8 q^{33} +1209.87 q^{34} -2143.25 q^{35} -8081.16 q^{36} -2137.03 q^{37} -4458.24 q^{38} +4049.59 q^{39} -3886.92 q^{40} -19520.9 q^{41} -5662.87 q^{42} +8153.29 q^{43} -10517.9 q^{44} -8279.55 q^{45} -5991.39 q^{46} -13235.5 q^{47} +8440.39 q^{48} -9457.36 q^{49} -1722.89 q^{50} -10516.8 q^{51} -4123.77 q^{52} +1753.17 q^{53} -5824.83 q^{54} -10776.1 q^{55} +13329.0 q^{56} +38753.4 q^{57} -22851.7 q^{58} -1976.46 q^{59} +14617.5 q^{60} +45578.3 q^{61} +7569.39 q^{62} +28392.2 q^{63} +5119.96 q^{64} -4225.00 q^{65} -28472.6 q^{66} -19457.7 q^{67} +10709.5 q^{68} +52080.3 q^{69} +5908.15 q^{70} -64224.9 q^{71} +51491.1 q^{72} +1029.22 q^{73} +5891.00 q^{74} +14976.3 q^{75} -39463.2 q^{76} +36953.6 q^{77} -11163.2 q^{78} -107661. q^{79} -8805.99 q^{80} -29844.7 q^{81} +53812.1 q^{82} -46473.4 q^{83} -50126.2 q^{84} +10972.4 q^{85} -22475.6 q^{86} +198639. q^{87} +67017.6 q^{88} -3410.51 q^{89} +22823.7 q^{90} +14488.4 q^{91} -53034.2 q^{92} -65797.1 q^{93} +36485.3 q^{94} -40431.9 q^{95} -142485. q^{96} +133264. q^{97} +26070.5 q^{98} +142755. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 38 q^{3} + 134 q^{4} - 150 q^{5} + 318 q^{6} + 220 q^{7} + 24 q^{8} + 518 q^{9} - 170 q^{11} + 2238 q^{12} + 1014 q^{13} - 1440 q^{14} - 950 q^{15} + 3506 q^{16} + 728 q^{17} + 7788 q^{18} + 1218 q^{19}+ \cdots - 32270 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.75663 −0.487308 −0.243654 0.969862i \(-0.578346\pi\)
−0.243654 + 0.969862i \(0.578346\pi\)
\(3\) 23.9621 1.53717 0.768584 0.639748i \(-0.220961\pi\)
0.768584 + 0.639748i \(0.220961\pi\)
\(4\) −24.4010 −0.762531
\(5\) −25.0000 −0.447214
\(6\) −66.0547 −0.749075
\(7\) 85.7300 0.661284 0.330642 0.943756i \(-0.392735\pi\)
0.330642 + 0.943756i \(0.392735\pi\)
\(8\) 155.477 0.858896
\(9\) 331.182 1.36289
\(10\) 68.9158 0.217931
\(11\) 431.046 1.07409 0.537046 0.843553i \(-0.319540\pi\)
0.537046 + 0.843553i \(0.319540\pi\)
\(12\) −584.699 −1.17214
\(13\) 169.000 0.277350
\(14\) −236.326 −0.322249
\(15\) −599.052 −0.687443
\(16\) 352.239 0.343984
\(17\) −438.894 −0.368331 −0.184165 0.982895i \(-0.558958\pi\)
−0.184165 + 0.982895i \(0.558958\pi\)
\(18\) −912.946 −0.664147
\(19\) 1617.28 1.02778 0.513891 0.857856i \(-0.328204\pi\)
0.513891 + 0.857856i \(0.328204\pi\)
\(20\) 610.025 0.341014
\(21\) 2054.27 1.01650
\(22\) −1188.23 −0.523414
\(23\) 2173.44 0.856700 0.428350 0.903613i \(-0.359095\pi\)
0.428350 + 0.903613i \(0.359095\pi\)
\(24\) 3725.55 1.32027
\(25\) 625.000 0.200000
\(26\) −465.871 −0.135155
\(27\) 2113.02 0.557821
\(28\) −2091.90 −0.504249
\(29\) 8289.72 1.83040 0.915198 0.403005i \(-0.132034\pi\)
0.915198 + 0.403005i \(0.132034\pi\)
\(30\) 1651.37 0.334997
\(31\) −2745.88 −0.513190 −0.256595 0.966519i \(-0.582601\pi\)
−0.256595 + 0.966519i \(0.582601\pi\)
\(32\) −5946.25 −1.02652
\(33\) 10328.8 1.65106
\(34\) 1209.87 0.179491
\(35\) −2143.25 −0.295735
\(36\) −8081.16 −1.03924
\(37\) −2137.03 −0.256629 −0.128315 0.991734i \(-0.540957\pi\)
−0.128315 + 0.991734i \(0.540957\pi\)
\(38\) −4458.24 −0.500846
\(39\) 4049.59 0.426334
\(40\) −3886.92 −0.384110
\(41\) −19520.9 −1.81360 −0.906799 0.421562i \(-0.861482\pi\)
−0.906799 + 0.421562i \(0.861482\pi\)
\(42\) −5662.87 −0.495351
\(43\) 8153.29 0.672452 0.336226 0.941781i \(-0.390849\pi\)
0.336226 + 0.941781i \(0.390849\pi\)
\(44\) −10517.9 −0.819029
\(45\) −8279.55 −0.609502
\(46\) −5991.39 −0.417477
\(47\) −13235.5 −0.873966 −0.436983 0.899470i \(-0.643953\pi\)
−0.436983 + 0.899470i \(0.643953\pi\)
\(48\) 8440.39 0.528761
\(49\) −9457.36 −0.562704
\(50\) −1722.89 −0.0974616
\(51\) −10516.8 −0.566186
\(52\) −4123.77 −0.211488
\(53\) 1753.17 0.0857303 0.0428651 0.999081i \(-0.486351\pi\)
0.0428651 + 0.999081i \(0.486351\pi\)
\(54\) −5824.83 −0.271831
\(55\) −10776.1 −0.480349
\(56\) 13329.0 0.567974
\(57\) 38753.4 1.57987
\(58\) −22851.7 −0.891967
\(59\) −1976.46 −0.0739192 −0.0369596 0.999317i \(-0.511767\pi\)
−0.0369596 + 0.999317i \(0.511767\pi\)
\(60\) 14617.5 0.524196
\(61\) 45578.3 1.56832 0.784158 0.620561i \(-0.213095\pi\)
0.784158 + 0.620561i \(0.213095\pi\)
\(62\) 7569.39 0.250082
\(63\) 28392.2 0.901256
\(64\) 5119.96 0.156249
\(65\) −4225.00 −0.124035
\(66\) −28472.6 −0.804576
\(67\) −19457.7 −0.529546 −0.264773 0.964311i \(-0.585297\pi\)
−0.264773 + 0.964311i \(0.585297\pi\)
\(68\) 10709.5 0.280863
\(69\) 52080.3 1.31689
\(70\) 5908.15 0.144114
\(71\) −64224.9 −1.51202 −0.756010 0.654561i \(-0.772854\pi\)
−0.756010 + 0.654561i \(0.772854\pi\)
\(72\) 51491.1 1.17058
\(73\) 1029.22 0.0226048 0.0113024 0.999936i \(-0.496402\pi\)
0.0113024 + 0.999936i \(0.496402\pi\)
\(74\) 5891.00 0.125058
\(75\) 14976.3 0.307434
\(76\) −39463.2 −0.783715
\(77\) 36953.6 0.710280
\(78\) −11163.2 −0.207756
\(79\) −107661. −1.94085 −0.970424 0.241407i \(-0.922391\pi\)
−0.970424 + 0.241407i \(0.922391\pi\)
\(80\) −8805.99 −0.153834
\(81\) −29844.7 −0.505423
\(82\) 53812.1 0.883782
\(83\) −46473.4 −0.740473 −0.370237 0.928938i \(-0.620723\pi\)
−0.370237 + 0.928938i \(0.620723\pi\)
\(84\) −50126.2 −0.775116
\(85\) 10972.4 0.164722
\(86\) −22475.6 −0.327692
\(87\) 198639. 2.81363
\(88\) 67017.6 0.922534
\(89\) −3410.51 −0.0456398 −0.0228199 0.999740i \(-0.507264\pi\)
−0.0228199 + 0.999740i \(0.507264\pi\)
\(90\) 22823.7 0.297015
\(91\) 14488.4 0.183407
\(92\) −53034.2 −0.653260
\(93\) −65797.1 −0.788859
\(94\) 36485.3 0.425891
\(95\) −40431.9 −0.459638
\(96\) −142485. −1.57794
\(97\) 133264. 1.43808 0.719041 0.694967i \(-0.244581\pi\)
0.719041 + 0.694967i \(0.244581\pi\)
\(98\) 26070.5 0.274210
\(99\) 142755. 1.46387
\(100\) −15250.6 −0.152506
\(101\) 112628. 1.09860 0.549302 0.835624i \(-0.314894\pi\)
0.549302 + 0.835624i \(0.314894\pi\)
\(102\) 28991.0 0.275907
\(103\) 102456. 0.951581 0.475791 0.879559i \(-0.342162\pi\)
0.475791 + 0.879559i \(0.342162\pi\)
\(104\) 26275.6 0.238215
\(105\) −51356.8 −0.454595
\(106\) −4832.84 −0.0417771
\(107\) −90417.9 −0.763475 −0.381738 0.924271i \(-0.624674\pi\)
−0.381738 + 0.924271i \(0.624674\pi\)
\(108\) −51559.8 −0.425356
\(109\) 164916. 1.32953 0.664764 0.747053i \(-0.268532\pi\)
0.664764 + 0.747053i \(0.268532\pi\)
\(110\) 29705.9 0.234078
\(111\) −51207.7 −0.394483
\(112\) 30197.5 0.227471
\(113\) −36453.6 −0.268562 −0.134281 0.990943i \(-0.542872\pi\)
−0.134281 + 0.990943i \(0.542872\pi\)
\(114\) −106829. −0.769885
\(115\) −54336.1 −0.383128
\(116\) −202277. −1.39573
\(117\) 55969.7 0.377997
\(118\) 5448.36 0.0360214
\(119\) −37626.4 −0.243571
\(120\) −93138.7 −0.590442
\(121\) 24749.6 0.153676
\(122\) −125643. −0.764253
\(123\) −467763. −2.78781
\(124\) 67002.3 0.391323
\(125\) −15625.0 −0.0894427
\(126\) −78266.9 −0.439189
\(127\) 178579. 0.982476 0.491238 0.871025i \(-0.336544\pi\)
0.491238 + 0.871025i \(0.336544\pi\)
\(128\) 176166. 0.950381
\(129\) 195370. 1.03367
\(130\) 11646.8 0.0604431
\(131\) 43555.7 0.221752 0.110876 0.993834i \(-0.464634\pi\)
0.110876 + 0.993834i \(0.464634\pi\)
\(132\) −252032. −1.25899
\(133\) 138649. 0.679655
\(134\) 53637.6 0.258052
\(135\) −52825.6 −0.249465
\(136\) −68237.9 −0.316358
\(137\) −347518. −1.58189 −0.790944 0.611888i \(-0.790410\pi\)
−0.790944 + 0.611888i \(0.790410\pi\)
\(138\) −143566. −0.641733
\(139\) 54594.1 0.239667 0.119834 0.992794i \(-0.461764\pi\)
0.119834 + 0.992794i \(0.461764\pi\)
\(140\) 52297.4 0.225507
\(141\) −317150. −1.34343
\(142\) 177044. 0.736819
\(143\) 72846.8 0.297900
\(144\) 116655. 0.468812
\(145\) −207243. −0.818578
\(146\) −2837.18 −0.0110155
\(147\) −226618. −0.864971
\(148\) 52145.6 0.195688
\(149\) −249528. −0.920777 −0.460388 0.887718i \(-0.652290\pi\)
−0.460388 + 0.887718i \(0.652290\pi\)
\(150\) −41284.2 −0.149815
\(151\) 398788. 1.42331 0.711655 0.702529i \(-0.247946\pi\)
0.711655 + 0.702529i \(0.247946\pi\)
\(152\) 251449. 0.882757
\(153\) −145354. −0.501994
\(154\) −101867. −0.346125
\(155\) 68647.1 0.229505
\(156\) −98814.1 −0.325093
\(157\) 432099. 1.39905 0.699527 0.714606i \(-0.253394\pi\)
0.699527 + 0.714606i \(0.253394\pi\)
\(158\) 296782. 0.945791
\(159\) 42009.6 0.131782
\(160\) 148656. 0.459075
\(161\) 186329. 0.566522
\(162\) 82271.0 0.246297
\(163\) 56309.9 0.166003 0.0830014 0.996549i \(-0.473549\pi\)
0.0830014 + 0.996549i \(0.473549\pi\)
\(164\) 476330. 1.38292
\(165\) −258219. −0.738378
\(166\) 128110. 0.360839
\(167\) −512611. −1.42232 −0.711160 0.703031i \(-0.751830\pi\)
−0.711160 + 0.703031i \(0.751830\pi\)
\(168\) 319391. 0.873072
\(169\) 28561.0 0.0769231
\(170\) −30246.8 −0.0802706
\(171\) 535613. 1.40075
\(172\) −198948. −0.512766
\(173\) −363030. −0.922204 −0.461102 0.887347i \(-0.652546\pi\)
−0.461102 + 0.887347i \(0.652546\pi\)
\(174\) −547575. −1.37110
\(175\) 53581.3 0.132257
\(176\) 151831. 0.369471
\(177\) −47360.0 −0.113626
\(178\) 9401.51 0.0222406
\(179\) −812489. −1.89533 −0.947665 0.319265i \(-0.896564\pi\)
−0.947665 + 0.319265i \(0.896564\pi\)
\(180\) 202029. 0.464764
\(181\) −464974. −1.05495 −0.527475 0.849570i \(-0.676861\pi\)
−0.527475 + 0.849570i \(0.676861\pi\)
\(182\) −39939.1 −0.0893758
\(183\) 1.09215e6 2.41077
\(184\) 337920. 0.735816
\(185\) 53425.7 0.114768
\(186\) 181378. 0.384418
\(187\) −189184. −0.395621
\(188\) 322959. 0.666426
\(189\) 181150. 0.368878
\(190\) 111456. 0.223985
\(191\) −15537.6 −0.0308177 −0.0154088 0.999881i \(-0.504905\pi\)
−0.0154088 + 0.999881i \(0.504905\pi\)
\(192\) 122685. 0.240181
\(193\) −319408. −0.617238 −0.308619 0.951186i \(-0.599867\pi\)
−0.308619 + 0.951186i \(0.599867\pi\)
\(194\) −367360. −0.700789
\(195\) −101240. −0.190662
\(196\) 230769. 0.429079
\(197\) 635878. 1.16737 0.583685 0.811980i \(-0.301610\pi\)
0.583685 + 0.811980i \(0.301610\pi\)
\(198\) −393522. −0.713355
\(199\) 57426.3 0.102797 0.0513983 0.998678i \(-0.483632\pi\)
0.0513983 + 0.998678i \(0.483632\pi\)
\(200\) 97173.0 0.171779
\(201\) −466246. −0.814002
\(202\) −310473. −0.535359
\(203\) 710678. 1.21041
\(204\) 256621. 0.431734
\(205\) 488024. 0.811066
\(206\) −282434. −0.463713
\(207\) 719806. 1.16759
\(208\) 59528.5 0.0954039
\(209\) 697121. 1.10393
\(210\) 141572. 0.221528
\(211\) −407094. −0.629489 −0.314745 0.949176i \(-0.601919\pi\)
−0.314745 + 0.949176i \(0.601919\pi\)
\(212\) −42779.1 −0.0653720
\(213\) −1.53896e6 −2.32423
\(214\) 249249. 0.372048
\(215\) −203832. −0.300730
\(216\) 328526. 0.479110
\(217\) −235405. −0.339364
\(218\) −454614. −0.647890
\(219\) 24662.3 0.0347474
\(220\) 262949. 0.366281
\(221\) −74173.2 −0.102157
\(222\) 141161. 0.192235
\(223\) 94338.9 0.127037 0.0635183 0.997981i \(-0.479768\pi\)
0.0635183 + 0.997981i \(0.479768\pi\)
\(224\) −509772. −0.678822
\(225\) 206989. 0.272578
\(226\) 100489. 0.130872
\(227\) 251896. 0.324456 0.162228 0.986753i \(-0.448132\pi\)
0.162228 + 0.986753i \(0.448132\pi\)
\(228\) −945620. −1.20470
\(229\) −428033. −0.539372 −0.269686 0.962948i \(-0.586920\pi\)
−0.269686 + 0.962948i \(0.586920\pi\)
\(230\) 149785. 0.186701
\(231\) 885485. 1.09182
\(232\) 1.28886e6 1.57212
\(233\) 47973.8 0.0578914 0.0289457 0.999581i \(-0.490785\pi\)
0.0289457 + 0.999581i \(0.490785\pi\)
\(234\) −154288. −0.184201
\(235\) 330887. 0.390850
\(236\) 48227.5 0.0563657
\(237\) −2.57979e6 −2.98341
\(238\) 103722. 0.118694
\(239\) −1.39917e6 −1.58444 −0.792220 0.610236i \(-0.791075\pi\)
−0.792220 + 0.610236i \(0.791075\pi\)
\(240\) −211010. −0.236469
\(241\) −576792. −0.639700 −0.319850 0.947468i \(-0.603633\pi\)
−0.319850 + 0.947468i \(0.603633\pi\)
\(242\) −68225.6 −0.0748875
\(243\) −1.22861e6 −1.33474
\(244\) −1.11216e6 −1.19589
\(245\) 236434. 0.251649
\(246\) 1.28945e6 1.35852
\(247\) 273320. 0.285055
\(248\) −426921. −0.440776
\(249\) −1.11360e6 −1.13823
\(250\) 43072.4 0.0435862
\(251\) 676974. 0.678247 0.339124 0.940742i \(-0.389870\pi\)
0.339124 + 0.940742i \(0.389870\pi\)
\(252\) −692798. −0.687235
\(253\) 936855. 0.920176
\(254\) −492278. −0.478769
\(255\) 262921. 0.253206
\(256\) −649464. −0.619377
\(257\) −2.05124e6 −1.93724 −0.968620 0.248545i \(-0.920047\pi\)
−0.968620 + 0.248545i \(0.920047\pi\)
\(258\) −538562. −0.503717
\(259\) −183208. −0.169705
\(260\) 103094. 0.0945803
\(261\) 2.74541e6 2.49462
\(262\) −120067. −0.108061
\(263\) 1.51723e6 1.35258 0.676289 0.736636i \(-0.263587\pi\)
0.676289 + 0.736636i \(0.263587\pi\)
\(264\) 1.60588e6 1.41809
\(265\) −43829.2 −0.0383397
\(266\) −382205. −0.331201
\(267\) −81722.8 −0.0701561
\(268\) 474786. 0.403795
\(269\) 180817. 0.152355 0.0761777 0.997094i \(-0.475728\pi\)
0.0761777 + 0.997094i \(0.475728\pi\)
\(270\) 145621. 0.121566
\(271\) −1.58203e6 −1.30856 −0.654278 0.756254i \(-0.727028\pi\)
−0.654278 + 0.756254i \(0.727028\pi\)
\(272\) −154596. −0.126700
\(273\) 347172. 0.281928
\(274\) 957979. 0.770867
\(275\) 269404. 0.214819
\(276\) −1.27081e6 −1.00417
\(277\) −1.53514e6 −1.20212 −0.601062 0.799202i \(-0.705256\pi\)
−0.601062 + 0.799202i \(0.705256\pi\)
\(278\) −150496. −0.116792
\(279\) −909387. −0.699420
\(280\) −333226. −0.254006
\(281\) 959201. 0.724676 0.362338 0.932047i \(-0.381979\pi\)
0.362338 + 0.932047i \(0.381979\pi\)
\(282\) 874265. 0.654666
\(283\) 2.63997e6 1.95945 0.979724 0.200353i \(-0.0642089\pi\)
0.979724 + 0.200353i \(0.0642089\pi\)
\(284\) 1.56715e6 1.15296
\(285\) −968834. −0.706541
\(286\) −200812. −0.145169
\(287\) −1.67353e6 −1.19930
\(288\) −1.96929e6 −1.39903
\(289\) −1.22723e6 −0.864333
\(290\) 571293. 0.398900
\(291\) 3.19329e6 2.21058
\(292\) −25114.0 −0.0172369
\(293\) 286709. 0.195106 0.0975532 0.995230i \(-0.468898\pi\)
0.0975532 + 0.995230i \(0.468898\pi\)
\(294\) 624703. 0.421507
\(295\) 49411.4 0.0330577
\(296\) −332258. −0.220418
\(297\) 910810. 0.599152
\(298\) 687858. 0.448702
\(299\) 367312. 0.237606
\(300\) −365437. −0.234428
\(301\) 698981. 0.444682
\(302\) −1.09931e6 −0.693591
\(303\) 2.69879e6 1.68874
\(304\) 569669. 0.353540
\(305\) −1.13946e6 −0.701372
\(306\) 400687. 0.244626
\(307\) 1.89896e6 1.14993 0.574963 0.818179i \(-0.305016\pi\)
0.574963 + 0.818179i \(0.305016\pi\)
\(308\) −901704. −0.541610
\(309\) 2.45507e6 1.46274
\(310\) −189235. −0.111840
\(311\) 1.74416e6 1.02255 0.511277 0.859416i \(-0.329173\pi\)
0.511277 + 0.859416i \(0.329173\pi\)
\(312\) 629618. 0.366176
\(313\) 605507. 0.349348 0.174674 0.984626i \(-0.444113\pi\)
0.174674 + 0.984626i \(0.444113\pi\)
\(314\) −1.19114e6 −0.681770
\(315\) −709806. −0.403054
\(316\) 2.62704e6 1.47996
\(317\) −2.19697e6 −1.22793 −0.613967 0.789332i \(-0.710427\pi\)
−0.613967 + 0.789332i \(0.710427\pi\)
\(318\) −115805. −0.0642184
\(319\) 3.57325e6 1.96601
\(320\) −127999. −0.0698765
\(321\) −2.16660e6 −1.17359
\(322\) −513642. −0.276071
\(323\) −709814. −0.378563
\(324\) 728241. 0.385401
\(325\) 105625. 0.0554700
\(326\) −155226. −0.0808945
\(327\) 3.95174e6 2.04371
\(328\) −3.03505e6 −1.55769
\(329\) −1.13468e6 −0.577940
\(330\) 711815. 0.359817
\(331\) −3.68205e6 −1.84722 −0.923612 0.383329i \(-0.874777\pi\)
−0.923612 + 0.383329i \(0.874777\pi\)
\(332\) 1.13400e6 0.564633
\(333\) −707745. −0.349757
\(334\) 1.41308e6 0.693108
\(335\) 486442. 0.236820
\(336\) 723595. 0.349661
\(337\) −3.46729e6 −1.66309 −0.831543 0.555460i \(-0.812542\pi\)
−0.831543 + 0.555460i \(0.812542\pi\)
\(338\) −78732.2 −0.0374852
\(339\) −873504. −0.412825
\(340\) −267736. −0.125606
\(341\) −1.18360e6 −0.551214
\(342\) −1.47649e6 −0.682597
\(343\) −2.25164e6 −1.03339
\(344\) 1.26765e6 0.577566
\(345\) −1.30201e6 −0.588933
\(346\) 1.00074e6 0.449398
\(347\) 3.91532e6 1.74559 0.872797 0.488083i \(-0.162304\pi\)
0.872797 + 0.488083i \(0.162304\pi\)
\(348\) −4.84699e6 −2.14548
\(349\) −3.32051e6 −1.45929 −0.729644 0.683827i \(-0.760314\pi\)
−0.729644 + 0.683827i \(0.760314\pi\)
\(350\) −147704. −0.0644498
\(351\) 357101. 0.154712
\(352\) −2.56311e6 −1.10258
\(353\) 3.09575e6 1.32230 0.661148 0.750255i \(-0.270069\pi\)
0.661148 + 0.750255i \(0.270069\pi\)
\(354\) 130554. 0.0553710
\(355\) 1.60562e6 0.676196
\(356\) 83219.7 0.0348017
\(357\) −901608. −0.374410
\(358\) 2.23973e6 0.923610
\(359\) −2.71429e6 −1.11153 −0.555764 0.831340i \(-0.687574\pi\)
−0.555764 + 0.831340i \(0.687574\pi\)
\(360\) −1.28728e6 −0.523499
\(361\) 139488. 0.0563340
\(362\) 1.28176e6 0.514086
\(363\) 593053. 0.236226
\(364\) −353531. −0.139854
\(365\) −25730.5 −0.0101092
\(366\) −3.01066e6 −1.17479
\(367\) 2.54964e6 0.988130 0.494065 0.869425i \(-0.335511\pi\)
0.494065 + 0.869425i \(0.335511\pi\)
\(368\) 765573. 0.294691
\(369\) −6.46498e6 −2.47173
\(370\) −147275. −0.0559274
\(371\) 150299. 0.0566920
\(372\) 1.60551e6 0.601530
\(373\) 3.67946e6 1.36934 0.684671 0.728852i \(-0.259946\pi\)
0.684671 + 0.728852i \(0.259946\pi\)
\(374\) 521510. 0.192790
\(375\) −374408. −0.137489
\(376\) −2.05781e6 −0.750646
\(377\) 1.40096e6 0.507660
\(378\) −499362. −0.179757
\(379\) −1.06822e6 −0.382000 −0.191000 0.981590i \(-0.561173\pi\)
−0.191000 + 0.981590i \(0.561173\pi\)
\(380\) 986579. 0.350488
\(381\) 4.27914e6 1.51023
\(382\) 42831.4 0.0150177
\(383\) −601784. −0.209625 −0.104813 0.994492i \(-0.533424\pi\)
−0.104813 + 0.994492i \(0.533424\pi\)
\(384\) 4.22131e6 1.46090
\(385\) −923839. −0.317647
\(386\) 880490. 0.300785
\(387\) 2.70022e6 0.916478
\(388\) −3.25178e6 −1.09658
\(389\) 5.00396e6 1.67664 0.838319 0.545180i \(-0.183539\pi\)
0.838319 + 0.545180i \(0.183539\pi\)
\(390\) 279081. 0.0929113
\(391\) −953913. −0.315549
\(392\) −1.47040e6 −0.483304
\(393\) 1.04369e6 0.340870
\(394\) −1.75288e6 −0.568869
\(395\) 2.69153e6 0.867973
\(396\) −3.48335e6 −1.11625
\(397\) 3.47583e6 1.10683 0.553417 0.832904i \(-0.313323\pi\)
0.553417 + 0.832904i \(0.313323\pi\)
\(398\) −158303. −0.0500936
\(399\) 3.32233e6 1.04474
\(400\) 220150. 0.0687968
\(401\) −5.15091e6 −1.59964 −0.799822 0.600238i \(-0.795073\pi\)
−0.799822 + 0.600238i \(0.795073\pi\)
\(402\) 1.28527e6 0.396670
\(403\) −464054. −0.142333
\(404\) −2.74822e6 −0.837719
\(405\) 746119. 0.226032
\(406\) −1.95908e6 −0.589843
\(407\) −921158. −0.275644
\(408\) −1.63512e6 −0.486295
\(409\) −1.11646e6 −0.330015 −0.165008 0.986292i \(-0.552765\pi\)
−0.165008 + 0.986292i \(0.552765\pi\)
\(410\) −1.34530e6 −0.395239
\(411\) −8.32726e6 −2.43163
\(412\) −2.50004e6 −0.725610
\(413\) −169442. −0.0488816
\(414\) −1.98424e6 −0.568975
\(415\) 1.16184e6 0.331150
\(416\) −1.00492e6 −0.284706
\(417\) 1.30819e6 0.368409
\(418\) −1.92171e6 −0.537955
\(419\) 1.79740e6 0.500160 0.250080 0.968225i \(-0.419543\pi\)
0.250080 + 0.968225i \(0.419543\pi\)
\(420\) 1.25316e6 0.346642
\(421\) 5.31302e6 1.46095 0.730477 0.682937i \(-0.239298\pi\)
0.730477 + 0.682937i \(0.239298\pi\)
\(422\) 1.12221e6 0.306755
\(423\) −4.38335e6 −1.19112
\(424\) 272577. 0.0736334
\(425\) −274309. −0.0736661
\(426\) 4.24235e6 1.13262
\(427\) 3.90743e6 1.03710
\(428\) 2.20629e6 0.582173
\(429\) 1.74556e6 0.457922
\(430\) 561890. 0.146548
\(431\) −4.63630e6 −1.20221 −0.601103 0.799172i \(-0.705272\pi\)
−0.601103 + 0.799172i \(0.705272\pi\)
\(432\) 744290. 0.191881
\(433\) −3.68664e6 −0.944955 −0.472478 0.881343i \(-0.656640\pi\)
−0.472478 + 0.881343i \(0.656640\pi\)
\(434\) 648924. 0.165375
\(435\) −4.96598e6 −1.25829
\(436\) −4.02412e6 −1.01381
\(437\) 3.51506e6 0.880501
\(438\) −67984.8 −0.0169327
\(439\) −1.67032e6 −0.413656 −0.206828 0.978377i \(-0.566314\pi\)
−0.206828 + 0.978377i \(0.566314\pi\)
\(440\) −1.67544e6 −0.412570
\(441\) −3.13211e6 −0.766903
\(442\) 204468. 0.0497817
\(443\) 3.59209e6 0.869637 0.434819 0.900518i \(-0.356813\pi\)
0.434819 + 0.900518i \(0.356813\pi\)
\(444\) 1.24952e6 0.300805
\(445\) 85262.6 0.0204107
\(446\) −260058. −0.0619060
\(447\) −5.97922e6 −1.41539
\(448\) 438934. 0.103325
\(449\) 80455.2 0.0188338 0.00941690 0.999956i \(-0.497002\pi\)
0.00941690 + 0.999956i \(0.497002\pi\)
\(450\) −570592. −0.132829
\(451\) −8.41443e6 −1.94797
\(452\) 889503. 0.204786
\(453\) 9.55579e6 2.18787
\(454\) −694384. −0.158110
\(455\) −362209. −0.0820221
\(456\) 6.02525e6 1.35695
\(457\) 2.87687e6 0.644362 0.322181 0.946678i \(-0.395584\pi\)
0.322181 + 0.946678i \(0.395584\pi\)
\(458\) 1.17993e6 0.262840
\(459\) −927394. −0.205463
\(460\) 1.32585e6 0.292147
\(461\) 81644.7 0.0178927 0.00894635 0.999960i \(-0.497152\pi\)
0.00894635 + 0.999960i \(0.497152\pi\)
\(462\) −2.44096e6 −0.532053
\(463\) −2.50214e6 −0.542450 −0.271225 0.962516i \(-0.587429\pi\)
−0.271225 + 0.962516i \(0.587429\pi\)
\(464\) 2.91997e6 0.629626
\(465\) 1.64493e6 0.352789
\(466\) −132246. −0.0282109
\(467\) 1.38773e6 0.294452 0.147226 0.989103i \(-0.452966\pi\)
0.147226 + 0.989103i \(0.452966\pi\)
\(468\) −1.36572e6 −0.288235
\(469\) −1.66811e6 −0.350180
\(470\) −912133. −0.190464
\(471\) 1.03540e7 2.15058
\(472\) −307293. −0.0634889
\(473\) 3.51444e6 0.722276
\(474\) 7.11152e6 1.45384
\(475\) 1.01080e6 0.205556
\(476\) 918122. 0.185730
\(477\) 580618. 0.116841
\(478\) 3.85700e6 0.772111
\(479\) −4.96374e6 −0.988485 −0.494243 0.869324i \(-0.664555\pi\)
−0.494243 + 0.869324i \(0.664555\pi\)
\(480\) 3.56211e6 0.705675
\(481\) −361158. −0.0711761
\(482\) 1.59000e6 0.311731
\(483\) 4.46484e6 0.870840
\(484\) −603915. −0.117182
\(485\) −3.33160e6 −0.643130
\(486\) 3.38682e6 0.650431
\(487\) 8.57371e6 1.63812 0.819061 0.573706i \(-0.194495\pi\)
0.819061 + 0.573706i \(0.194495\pi\)
\(488\) 7.08637e6 1.34702
\(489\) 1.34930e6 0.255174
\(490\) −651762. −0.122631
\(491\) 2.55302e6 0.477915 0.238958 0.971030i \(-0.423194\pi\)
0.238958 + 0.971030i \(0.423194\pi\)
\(492\) 1.14139e7 2.12579
\(493\) −3.63831e6 −0.674191
\(494\) −753442. −0.138910
\(495\) −3.56887e6 −0.654662
\(496\) −967209. −0.176529
\(497\) −5.50600e6 −0.999874
\(498\) 3.06979e6 0.554670
\(499\) 161861. 0.0290999 0.0145500 0.999894i \(-0.495368\pi\)
0.0145500 + 0.999894i \(0.495368\pi\)
\(500\) 381265. 0.0682028
\(501\) −1.22832e7 −2.18634
\(502\) −1.86617e6 −0.330515
\(503\) 5.40474e6 0.952477 0.476239 0.879316i \(-0.342000\pi\)
0.476239 + 0.879316i \(0.342000\pi\)
\(504\) 4.41433e6 0.774085
\(505\) −2.81569e6 −0.491311
\(506\) −2.58256e6 −0.448409
\(507\) 684381. 0.118244
\(508\) −4.35751e6 −0.749169
\(509\) 1.72999e6 0.295971 0.147985 0.988990i \(-0.452721\pi\)
0.147985 + 0.988990i \(0.452721\pi\)
\(510\) −724776. −0.123389
\(511\) 88235.1 0.0149482
\(512\) −3.84698e6 −0.648553
\(513\) 3.41735e6 0.573318
\(514\) 5.65451e6 0.944033
\(515\) −2.56141e6 −0.425560
\(516\) −4.76721e6 −0.788207
\(517\) −5.70510e6 −0.938721
\(518\) 505036. 0.0826985
\(519\) −8.69896e6 −1.41758
\(520\) −656889. −0.106533
\(521\) 8.15642e6 1.31645 0.658226 0.752820i \(-0.271307\pi\)
0.658226 + 0.752820i \(0.271307\pi\)
\(522\) −7.56807e6 −1.21565
\(523\) −7.57602e6 −1.21112 −0.605559 0.795800i \(-0.707051\pi\)
−0.605559 + 0.795800i \(0.707051\pi\)
\(524\) −1.06280e6 −0.169093
\(525\) 1.28392e6 0.203301
\(526\) −4.18245e6 −0.659123
\(527\) 1.20515e6 0.189023
\(528\) 3.63820e6 0.567939
\(529\) −1.71248e6 −0.266064
\(530\) 120821. 0.0186833
\(531\) −654567. −0.100744
\(532\) −3.38318e6 −0.518258
\(533\) −3.29904e6 −0.503002
\(534\) 225280. 0.0341876
\(535\) 2.26045e6 0.341436
\(536\) −3.02521e6 −0.454825
\(537\) −1.94689e7 −2.91344
\(538\) −498445. −0.0742440
\(539\) −4.07656e6 −0.604396
\(540\) 1.28900e6 0.190225
\(541\) 1.29055e7 1.89575 0.947876 0.318640i \(-0.103226\pi\)
0.947876 + 0.318640i \(0.103226\pi\)
\(542\) 4.36108e6 0.637670
\(543\) −1.11417e7 −1.62164
\(544\) 2.60978e6 0.378099
\(545\) −4.12291e6 −0.594583
\(546\) −957025. −0.137386
\(547\) −7.61965e6 −1.08885 −0.544423 0.838811i \(-0.683252\pi\)
−0.544423 + 0.838811i \(0.683252\pi\)
\(548\) 8.47978e6 1.20624
\(549\) 1.50947e7 2.13744
\(550\) −742647. −0.104683
\(551\) 1.34068e7 1.88125
\(552\) 8.09727e6 1.13107
\(553\) −9.22980e6 −1.28345
\(554\) 4.23182e6 0.585805
\(555\) 1.28019e6 0.176418
\(556\) −1.33215e6 −0.182754
\(557\) −7.35984e6 −1.00515 −0.502574 0.864534i \(-0.667614\pi\)
−0.502574 + 0.864534i \(0.667614\pi\)
\(558\) 2.50685e6 0.340833
\(559\) 1.37791e6 0.186505
\(560\) −754937. −0.101728
\(561\) −4.53324e6 −0.608137
\(562\) −2.64416e6 −0.353140
\(563\) −5.68526e6 −0.755927 −0.377963 0.925821i \(-0.623375\pi\)
−0.377963 + 0.925821i \(0.623375\pi\)
\(564\) 7.73876e6 1.02441
\(565\) 911339. 0.120104
\(566\) −7.27744e6 −0.954855
\(567\) −2.55859e6 −0.334228
\(568\) −9.98547e6 −1.29867
\(569\) −1.43108e7 −1.85304 −0.926519 0.376249i \(-0.877214\pi\)
−0.926519 + 0.376249i \(0.877214\pi\)
\(570\) 2.67072e6 0.344303
\(571\) −1.95049e6 −0.250354 −0.125177 0.992134i \(-0.539950\pi\)
−0.125177 + 0.992134i \(0.539950\pi\)
\(572\) −1.77753e6 −0.227158
\(573\) −372313. −0.0473720
\(574\) 4.61331e6 0.584430
\(575\) 1.35840e6 0.171340
\(576\) 1.69564e6 0.212950
\(577\) −987263. −0.123451 −0.0617253 0.998093i \(-0.519660\pi\)
−0.0617253 + 0.998093i \(0.519660\pi\)
\(578\) 3.38302e6 0.421196
\(579\) −7.65368e6 −0.948798
\(580\) 5.05693e6 0.624191
\(581\) −3.98417e6 −0.489663
\(582\) −8.80272e6 −1.07723
\(583\) 755697. 0.0920823
\(584\) 160020. 0.0194152
\(585\) −1.39924e6 −0.169046
\(586\) −790350. −0.0950770
\(587\) 1.11813e6 0.133936 0.0669679 0.997755i \(-0.478668\pi\)
0.0669679 + 0.997755i \(0.478668\pi\)
\(588\) 5.52971e6 0.659567
\(589\) −4.44086e6 −0.527447
\(590\) −136209. −0.0161093
\(591\) 1.52370e7 1.79445
\(592\) −752746. −0.0882763
\(593\) −905001. −0.105685 −0.0528424 0.998603i \(-0.516828\pi\)
−0.0528424 + 0.998603i \(0.516828\pi\)
\(594\) −2.51077e6 −0.291971
\(595\) 940661. 0.108928
\(596\) 6.08874e6 0.702121
\(597\) 1.37606e6 0.158016
\(598\) −1.01254e6 −0.115787
\(599\) −5.11859e6 −0.582885 −0.291443 0.956588i \(-0.594135\pi\)
−0.291443 + 0.956588i \(0.594135\pi\)
\(600\) 2.32847e6 0.264054
\(601\) 8.84991e6 0.999431 0.499716 0.866190i \(-0.333438\pi\)
0.499716 + 0.866190i \(0.333438\pi\)
\(602\) −1.92683e6 −0.216697
\(603\) −6.44403e6 −0.721712
\(604\) −9.73082e6 −1.08532
\(605\) −618741. −0.0687259
\(606\) −7.43957e6 −0.822937
\(607\) 1.37995e7 1.52017 0.760085 0.649824i \(-0.225157\pi\)
0.760085 + 0.649824i \(0.225157\pi\)
\(608\) −9.61674e6 −1.05504
\(609\) 1.70293e7 1.86061
\(610\) 3.14107e6 0.341785
\(611\) −2.23679e6 −0.242395
\(612\) 3.54678e6 0.382785
\(613\) 1.55631e7 1.67280 0.836401 0.548118i \(-0.184655\pi\)
0.836401 + 0.548118i \(0.184655\pi\)
\(614\) −5.23473e6 −0.560368
\(615\) 1.16941e7 1.24675
\(616\) 5.74542e6 0.610057
\(617\) 1.57277e7 1.66323 0.831615 0.555353i \(-0.187417\pi\)
0.831615 + 0.555353i \(0.187417\pi\)
\(618\) −6.76772e6 −0.712806
\(619\) −5.68261e6 −0.596103 −0.298051 0.954550i \(-0.596337\pi\)
−0.298051 + 0.954550i \(0.596337\pi\)
\(620\) −1.67506e6 −0.175005
\(621\) 4.59254e6 0.477885
\(622\) −4.80802e6 −0.498299
\(623\) −292383. −0.0301809
\(624\) 1.42643e6 0.146652
\(625\) 390625. 0.0400000
\(626\) −1.66916e6 −0.170240
\(627\) 1.67045e7 1.69693
\(628\) −1.05436e7 −1.06682
\(629\) 937930. 0.0945244
\(630\) 1.95667e6 0.196411
\(631\) 7.92146e6 0.792012 0.396006 0.918248i \(-0.370396\pi\)
0.396006 + 0.918248i \(0.370396\pi\)
\(632\) −1.67388e7 −1.66699
\(633\) −9.75482e6 −0.967631
\(634\) 6.05622e6 0.598382
\(635\) −4.46449e6 −0.439377
\(636\) −1.02508e6 −0.100488
\(637\) −1.59829e6 −0.156066
\(638\) −9.85014e6 −0.958055
\(639\) −2.12701e7 −2.06071
\(640\) −4.40415e6 −0.425023
\(641\) 8.63330e6 0.829911 0.414956 0.909842i \(-0.363797\pi\)
0.414956 + 0.909842i \(0.363797\pi\)
\(642\) 5.97252e6 0.571900
\(643\) 5.41901e6 0.516884 0.258442 0.966027i \(-0.416791\pi\)
0.258442 + 0.966027i \(0.416791\pi\)
\(644\) −4.54662e6 −0.431990
\(645\) −4.88424e6 −0.462273
\(646\) 1.95670e6 0.184477
\(647\) 2.85189e6 0.267838 0.133919 0.990992i \(-0.457244\pi\)
0.133919 + 0.990992i \(0.457244\pi\)
\(648\) −4.64016e6 −0.434106
\(649\) −851944. −0.0793961
\(650\) −291169. −0.0270310
\(651\) −5.64079e6 −0.521660
\(652\) −1.37402e6 −0.126582
\(653\) 1.31018e7 1.20239 0.601197 0.799101i \(-0.294691\pi\)
0.601197 + 0.799101i \(0.294691\pi\)
\(654\) −1.08935e7 −0.995916
\(655\) −1.08889e6 −0.0991704
\(656\) −6.87605e6 −0.623849
\(657\) 340859. 0.0308079
\(658\) 3.12789e6 0.281635
\(659\) −987681. −0.0885937 −0.0442969 0.999018i \(-0.514105\pi\)
−0.0442969 + 0.999018i \(0.514105\pi\)
\(660\) 6.30080e6 0.563036
\(661\) 2.30367e6 0.205077 0.102538 0.994729i \(-0.467304\pi\)
0.102538 + 0.994729i \(0.467304\pi\)
\(662\) 1.01500e7 0.900167
\(663\) −1.77734e6 −0.157032
\(664\) −7.22553e6 −0.635989
\(665\) −3.46623e6 −0.303951
\(666\) 1.95099e6 0.170439
\(667\) 1.80172e7 1.56810
\(668\) 1.25082e7 1.08456
\(669\) 2.26056e6 0.195277
\(670\) −1.34094e6 −0.115404
\(671\) 1.96464e7 1.68452
\(672\) −1.22152e7 −1.04346
\(673\) −3.89370e6 −0.331379 −0.165689 0.986178i \(-0.552985\pi\)
−0.165689 + 0.986178i \(0.552985\pi\)
\(674\) 9.55803e6 0.810436
\(675\) 1.32064e6 0.111564
\(676\) −696916. −0.0586562
\(677\) 2.83801e6 0.237981 0.118991 0.992895i \(-0.462034\pi\)
0.118991 + 0.992895i \(0.462034\pi\)
\(678\) 2.40793e6 0.201173
\(679\) 1.14247e7 0.950981
\(680\) 1.70595e6 0.141479
\(681\) 6.03595e6 0.498744
\(682\) 3.26276e6 0.268611
\(683\) −6.98711e6 −0.573121 −0.286560 0.958062i \(-0.592512\pi\)
−0.286560 + 0.958062i \(0.592512\pi\)
\(684\) −1.30695e7 −1.06812
\(685\) 8.68795e6 0.707442
\(686\) 6.20695e6 0.503580
\(687\) −1.02566e7 −0.829105
\(688\) 2.87191e6 0.231313
\(689\) 296286. 0.0237773
\(690\) 3.58915e6 0.286992
\(691\) 3.58854e6 0.285905 0.142953 0.989730i \(-0.454340\pi\)
0.142953 + 0.989730i \(0.454340\pi\)
\(692\) 8.85829e6 0.703209
\(693\) 1.22384e7 0.968033
\(694\) −1.07931e7 −0.850643
\(695\) −1.36485e6 −0.107182
\(696\) 3.08838e7 2.41661
\(697\) 8.56764e6 0.668004
\(698\) 9.15342e6 0.711123
\(699\) 1.14955e6 0.0889888
\(700\) −1.30744e6 −0.100850
\(701\) −1.07723e7 −0.827971 −0.413986 0.910283i \(-0.635864\pi\)
−0.413986 + 0.910283i \(0.635864\pi\)
\(702\) −984396. −0.0753923
\(703\) −3.45617e6 −0.263759
\(704\) 2.20694e6 0.167826
\(705\) 7.92874e6 0.600802
\(706\) −8.53384e6 −0.644366
\(707\) 9.65556e6 0.726489
\(708\) 1.15563e6 0.0866436
\(709\) 1.68465e7 1.25862 0.629309 0.777155i \(-0.283338\pi\)
0.629309 + 0.777155i \(0.283338\pi\)
\(710\) −4.42611e6 −0.329516
\(711\) −3.56554e7 −2.64516
\(712\) −530254. −0.0391998
\(713\) −5.96803e6 −0.439650
\(714\) 2.48540e6 0.182453
\(715\) −1.82117e6 −0.133225
\(716\) 1.98255e7 1.44525
\(717\) −3.35270e7 −2.43555
\(718\) 7.48230e6 0.541656
\(719\) 7.10379e6 0.512470 0.256235 0.966615i \(-0.417518\pi\)
0.256235 + 0.966615i \(0.417518\pi\)
\(720\) −2.91638e6 −0.209659
\(721\) 8.78359e6 0.629265
\(722\) −384518. −0.0274520
\(723\) −1.38211e7 −0.983327
\(724\) 1.13458e7 0.804432
\(725\) 5.18108e6 0.366079
\(726\) −1.63483e6 −0.115115
\(727\) −2.50048e7 −1.75464 −0.877319 0.479908i \(-0.840670\pi\)
−0.877319 + 0.479908i \(0.840670\pi\)
\(728\) 2.25260e6 0.157528
\(729\) −2.21877e7 −1.54630
\(730\) 70929.5 0.00492629
\(731\) −3.57843e6 −0.247685
\(732\) −2.66496e7 −1.83828
\(733\) −7.77802e6 −0.534699 −0.267349 0.963600i \(-0.586148\pi\)
−0.267349 + 0.963600i \(0.586148\pi\)
\(734\) −7.02842e6 −0.481524
\(735\) 5.66546e6 0.386827
\(736\) −1.29238e7 −0.879422
\(737\) −8.38715e6 −0.568782
\(738\) 1.78216e7 1.20450
\(739\) 1.00573e7 0.677439 0.338720 0.940887i \(-0.390006\pi\)
0.338720 + 0.940887i \(0.390006\pi\)
\(740\) −1.30364e6 −0.0875142
\(741\) 6.54932e6 0.438178
\(742\) −414320. −0.0276265
\(743\) −3.40838e6 −0.226504 −0.113252 0.993566i \(-0.536127\pi\)
−0.113252 + 0.993566i \(0.536127\pi\)
\(744\) −1.02299e7 −0.677548
\(745\) 6.23821e6 0.411784
\(746\) −1.01429e7 −0.667292
\(747\) −1.53912e7 −1.00918
\(748\) 4.61627e6 0.301673
\(749\) −7.75153e6 −0.504874
\(750\) 1.03210e6 0.0669993
\(751\) 1.57084e7 1.01633 0.508163 0.861261i \(-0.330325\pi\)
0.508163 + 0.861261i \(0.330325\pi\)
\(752\) −4.66205e6 −0.300630
\(753\) 1.62217e7 1.04258
\(754\) −3.86194e6 −0.247387
\(755\) −9.96970e6 −0.636524
\(756\) −4.42023e6 −0.281281
\(757\) −2.52846e7 −1.60367 −0.801836 0.597544i \(-0.796143\pi\)
−0.801836 + 0.597544i \(0.796143\pi\)
\(758\) 2.94469e6 0.186152
\(759\) 2.24490e7 1.41447
\(760\) −6.28623e6 −0.394781
\(761\) 1.34808e7 0.843825 0.421913 0.906636i \(-0.361359\pi\)
0.421913 + 0.906636i \(0.361359\pi\)
\(762\) −1.17960e7 −0.735949
\(763\) 1.41383e7 0.879195
\(764\) 379132. 0.0234994
\(765\) 3.63385e6 0.224498
\(766\) 1.65890e6 0.102152
\(767\) −334021. −0.0205015
\(768\) −1.55625e7 −0.952087
\(769\) 8.09020e6 0.493337 0.246668 0.969100i \(-0.420664\pi\)
0.246668 + 0.969100i \(0.420664\pi\)
\(770\) 2.54668e6 0.154792
\(771\) −4.91520e7 −2.97787
\(772\) 7.79387e6 0.470663
\(773\) 2.75295e6 0.165710 0.0828551 0.996562i \(-0.473596\pi\)
0.0828551 + 0.996562i \(0.473596\pi\)
\(774\) −7.44351e6 −0.446607
\(775\) −1.71618e6 −0.102638
\(776\) 2.07195e7 1.23516
\(777\) −4.39004e6 −0.260865
\(778\) −1.37941e7 −0.817040
\(779\) −3.15708e7 −1.86398
\(780\) 2.47035e6 0.145386
\(781\) −2.76839e7 −1.62405
\(782\) 2.62959e6 0.153770
\(783\) 1.75164e7 1.02103
\(784\) −3.33126e6 −0.193561
\(785\) −1.08025e7 −0.625676
\(786\) −2.87706e6 −0.166109
\(787\) 2.06536e7 1.18867 0.594333 0.804219i \(-0.297416\pi\)
0.594333 + 0.804219i \(0.297416\pi\)
\(788\) −1.55161e7 −0.890156
\(789\) 3.63560e7 2.07914
\(790\) −7.41956e6 −0.422971
\(791\) −3.12516e6 −0.177595
\(792\) 2.21950e7 1.25731
\(793\) 7.70274e6 0.434973
\(794\) −9.58160e6 −0.539370
\(795\) −1.05024e6 −0.0589347
\(796\) −1.40126e6 −0.0783855
\(797\) 5.27093e6 0.293928 0.146964 0.989142i \(-0.453050\pi\)
0.146964 + 0.989142i \(0.453050\pi\)
\(798\) −9.15843e6 −0.509113
\(799\) 5.80897e6 0.321909
\(800\) −3.71641e6 −0.205304
\(801\) −1.12950e6 −0.0622020
\(802\) 1.41992e7 0.779519
\(803\) 443641. 0.0242797
\(804\) 1.13769e7 0.620701
\(805\) −4.65824e6 −0.253356
\(806\) 1.27923e6 0.0693602
\(807\) 4.33275e6 0.234196
\(808\) 1.75110e7 0.943586
\(809\) −2.62432e7 −1.40976 −0.704882 0.709325i \(-0.749000\pi\)
−0.704882 + 0.709325i \(0.749000\pi\)
\(810\) −2.05677e6 −0.110147
\(811\) 1.50454e7 0.803251 0.401626 0.915804i \(-0.368445\pi\)
0.401626 + 0.915804i \(0.368445\pi\)
\(812\) −1.73412e7 −0.922975
\(813\) −3.79088e7 −2.01147
\(814\) 2.53929e6 0.134323
\(815\) −1.40775e6 −0.0742387
\(816\) −3.70444e6 −0.194759
\(817\) 1.31861e7 0.691134
\(818\) 3.07766e6 0.160819
\(819\) 4.79829e6 0.249963
\(820\) −1.19083e7 −0.618463
\(821\) 1.82770e6 0.0946338 0.0473169 0.998880i \(-0.484933\pi\)
0.0473169 + 0.998880i \(0.484933\pi\)
\(822\) 2.29552e7 1.18495
\(823\) 2.45074e7 1.26124 0.630619 0.776093i \(-0.282801\pi\)
0.630619 + 0.776093i \(0.282801\pi\)
\(824\) 1.59296e7 0.817309
\(825\) 6.45548e6 0.330212
\(826\) 467088. 0.0238204
\(827\) −7.03772e6 −0.357823 −0.178911 0.983865i \(-0.557258\pi\)
−0.178911 + 0.983865i \(0.557258\pi\)
\(828\) −1.75640e7 −0.890321
\(829\) 3.44967e7 1.74338 0.871689 0.490059i \(-0.163025\pi\)
0.871689 + 0.490059i \(0.163025\pi\)
\(830\) −3.20275e6 −0.161372
\(831\) −3.67852e7 −1.84787
\(832\) 865273. 0.0433356
\(833\) 4.15078e6 0.207261
\(834\) −3.60619e6 −0.179529
\(835\) 1.28153e7 0.636080
\(836\) −1.70104e7 −0.841782
\(837\) −5.80212e6 −0.286268
\(838\) −4.95476e6 −0.243732
\(839\) 2.79128e6 0.136899 0.0684493 0.997655i \(-0.478195\pi\)
0.0684493 + 0.997655i \(0.478195\pi\)
\(840\) −7.98478e6 −0.390449
\(841\) 4.82083e7 2.35035
\(842\) −1.46460e7 −0.711935
\(843\) 2.29845e7 1.11395
\(844\) 9.93349e6 0.480005
\(845\) −714025. −0.0344010
\(846\) 1.20833e7 0.580442
\(847\) 2.12179e6 0.101623
\(848\) 617535. 0.0294898
\(849\) 6.32593e7 3.01200
\(850\) 756169. 0.0358981
\(851\) −4.64471e6 −0.219854
\(852\) 3.75522e7 1.77230
\(853\) −2.48047e7 −1.16724 −0.583621 0.812026i \(-0.698365\pi\)
−0.583621 + 0.812026i \(0.698365\pi\)
\(854\) −1.07713e7 −0.505388
\(855\) −1.33903e7 −0.626435
\(856\) −1.40579e7 −0.655746
\(857\) −1.83304e7 −0.852550 −0.426275 0.904594i \(-0.640174\pi\)
−0.426275 + 0.904594i \(0.640174\pi\)
\(858\) −4.81187e6 −0.223149
\(859\) 1.67092e7 0.772632 0.386316 0.922366i \(-0.373747\pi\)
0.386316 + 0.922366i \(0.373747\pi\)
\(860\) 4.97370e6 0.229316
\(861\) −4.01013e7 −1.84353
\(862\) 1.27806e7 0.585844
\(863\) 8.29285e6 0.379033 0.189516 0.981878i \(-0.439308\pi\)
0.189516 + 0.981878i \(0.439308\pi\)
\(864\) −1.25646e7 −0.572615
\(865\) 9.07575e6 0.412422
\(866\) 1.01627e7 0.460484
\(867\) −2.94070e7 −1.32863
\(868\) 5.74411e6 0.258775
\(869\) −4.64069e7 −2.08465
\(870\) 1.36894e7 0.613176
\(871\) −3.28834e6 −0.146870
\(872\) 2.56407e7 1.14193
\(873\) 4.41347e7 1.95995
\(874\) −9.68974e6 −0.429075
\(875\) −1.33953e6 −0.0591470
\(876\) −601784. −0.0264960
\(877\) −1.44569e7 −0.634711 −0.317356 0.948307i \(-0.602795\pi\)
−0.317356 + 0.948307i \(0.602795\pi\)
\(878\) 4.60447e6 0.201578
\(879\) 6.87014e6 0.299912
\(880\) −3.79578e6 −0.165232
\(881\) −3.42081e7 −1.48487 −0.742437 0.669916i \(-0.766330\pi\)
−0.742437 + 0.669916i \(0.766330\pi\)
\(882\) 8.63407e6 0.373718
\(883\) −1.41341e7 −0.610051 −0.305026 0.952344i \(-0.598665\pi\)
−0.305026 + 0.952344i \(0.598665\pi\)
\(884\) 1.80990e6 0.0778975
\(885\) 1.18400e6 0.0508152
\(886\) −9.90207e6 −0.423781
\(887\) 2.15650e7 0.920325 0.460163 0.887835i \(-0.347791\pi\)
0.460163 + 0.887835i \(0.347791\pi\)
\(888\) −7.96160e6 −0.338819
\(889\) 1.53096e7 0.649696
\(890\) −235038. −0.00994632
\(891\) −1.28645e7 −0.542872
\(892\) −2.30196e6 −0.0968693
\(893\) −2.14054e7 −0.898246
\(894\) 1.64825e7 0.689731
\(895\) 2.03122e7 0.847618
\(896\) 1.51027e7 0.628471
\(897\) 8.80157e6 0.365241
\(898\) −221785. −0.00917787
\(899\) −2.27626e7 −0.939340
\(900\) −5.05073e6 −0.207849
\(901\) −769456. −0.0315771
\(902\) 2.31955e7 0.949264
\(903\) 1.67491e7 0.683551
\(904\) −5.66768e6 −0.230666
\(905\) 1.16243e7 0.471788
\(906\) −2.63418e7 −1.06617
\(907\) 1.53494e7 0.619547 0.309773 0.950810i \(-0.399747\pi\)
0.309773 + 0.950810i \(0.399747\pi\)
\(908\) −6.14650e6 −0.247408
\(909\) 3.73002e7 1.49727
\(910\) 998478. 0.0399701
\(911\) −8.00925e6 −0.319739 −0.159870 0.987138i \(-0.551107\pi\)
−0.159870 + 0.987138i \(0.551107\pi\)
\(912\) 1.36505e7 0.543451
\(913\) −2.00322e7 −0.795337
\(914\) −7.93047e6 −0.314003
\(915\) −2.73038e7 −1.07813
\(916\) 1.04444e7 0.411287
\(917\) 3.73403e6 0.146641
\(918\) 2.55648e6 0.100124
\(919\) −1.00787e7 −0.393655 −0.196828 0.980438i \(-0.563064\pi\)
−0.196828 + 0.980438i \(0.563064\pi\)
\(920\) −8.44800e6 −0.329067
\(921\) 4.55031e7 1.76763
\(922\) −225064. −0.00871926
\(923\) −1.08540e7 −0.419359
\(924\) −2.16067e7 −0.832547
\(925\) −1.33564e6 −0.0513258
\(926\) 6.89748e6 0.264340
\(927\) 3.39317e7 1.29690
\(928\) −4.92927e7 −1.87894
\(929\) −1.20808e7 −0.459257 −0.229629 0.973278i \(-0.573751\pi\)
−0.229629 + 0.973278i \(0.573751\pi\)
\(930\) −4.53446e6 −0.171917
\(931\) −1.52952e7 −0.578336
\(932\) −1.17061e6 −0.0441440
\(933\) 4.17938e7 1.57184
\(934\) −3.82547e6 −0.143489
\(935\) 4.72959e6 0.176927
\(936\) 8.70199e6 0.324660
\(937\) 1.85069e7 0.688628 0.344314 0.938854i \(-0.388111\pi\)
0.344314 + 0.938854i \(0.388111\pi\)
\(938\) 4.59835e6 0.170646
\(939\) 1.45092e7 0.537007
\(940\) −8.07396e6 −0.298035
\(941\) −1.31161e7 −0.482871 −0.241436 0.970417i \(-0.577618\pi\)
−0.241436 + 0.970417i \(0.577618\pi\)
\(942\) −2.85422e7 −1.04800
\(943\) −4.24277e7 −1.55371
\(944\) −696186. −0.0254270
\(945\) −4.52874e6 −0.164967
\(946\) −9.68802e6 −0.351971
\(947\) −2.46835e7 −0.894399 −0.447199 0.894434i \(-0.647579\pi\)
−0.447199 + 0.894434i \(0.647579\pi\)
\(948\) 6.29494e7 2.27494
\(949\) 173938. 0.00626945
\(950\) −2.78640e6 −0.100169
\(951\) −5.26439e7 −1.88754
\(952\) −5.85003e6 −0.209202
\(953\) 3.21978e7 1.14840 0.574201 0.818715i \(-0.305313\pi\)
0.574201 + 0.818715i \(0.305313\pi\)
\(954\) −1.60055e6 −0.0569375
\(955\) 388439. 0.0137821
\(956\) 3.41411e7 1.20818
\(957\) 8.56226e7 3.02210
\(958\) 1.36832e7 0.481697
\(959\) −2.97927e7 −1.04608
\(960\) −3.06712e6 −0.107412
\(961\) −2.10893e7 −0.736636
\(962\) 995579. 0.0346847
\(963\) −2.99448e7 −1.04053
\(964\) 1.40743e7 0.487791
\(965\) 7.98520e6 0.276037
\(966\) −1.23079e7 −0.424368
\(967\) 2.28108e7 0.784465 0.392232 0.919866i \(-0.371703\pi\)
0.392232 + 0.919866i \(0.371703\pi\)
\(968\) 3.84799e6 0.131991
\(969\) −1.70086e7 −0.581916
\(970\) 9.18400e6 0.313403
\(971\) 4.02182e7 1.36891 0.684455 0.729055i \(-0.260040\pi\)
0.684455 + 0.729055i \(0.260040\pi\)
\(972\) 2.99792e7 1.01778
\(973\) 4.68035e6 0.158488
\(974\) −2.36346e7 −0.798271
\(975\) 2.53100e6 0.0852668
\(976\) 1.60545e7 0.539475
\(977\) 3.17409e7 1.06386 0.531928 0.846790i \(-0.321468\pi\)
0.531928 + 0.846790i \(0.321468\pi\)
\(978\) −3.71953e6 −0.124349
\(979\) −1.47008e6 −0.0490214
\(980\) −5.76922e6 −0.191890
\(981\) 5.46173e7 1.81200
\(982\) −7.03774e6 −0.232892
\(983\) 4.52276e6 0.149286 0.0746431 0.997210i \(-0.476218\pi\)
0.0746431 + 0.997210i \(0.476218\pi\)
\(984\) −7.27262e7 −2.39444
\(985\) −1.58970e7 −0.522064
\(986\) 1.00295e7 0.328539
\(987\) −2.71892e7 −0.888391
\(988\) −6.66928e6 −0.217363
\(989\) 1.77207e7 0.576090
\(990\) 9.83805e6 0.319022
\(991\) −2.04730e7 −0.662213 −0.331107 0.943593i \(-0.607422\pi\)
−0.331107 + 0.943593i \(0.607422\pi\)
\(992\) 1.63277e7 0.526801
\(993\) −8.82296e7 −2.83949
\(994\) 1.51780e7 0.487247
\(995\) −1.43566e6 −0.0459720
\(996\) 2.71729e7 0.867937
\(997\) −3.49736e7 −1.11430 −0.557150 0.830412i \(-0.688105\pi\)
−0.557150 + 0.830412i \(0.688105\pi\)
\(998\) −446192. −0.0141806
\(999\) −4.51559e6 −0.143153
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 65.6.a.d.1.3 6
3.2 odd 2 585.6.a.m.1.4 6
4.3 odd 2 1040.6.a.q.1.2 6
5.2 odd 4 325.6.b.g.274.5 12
5.3 odd 4 325.6.b.g.274.8 12
5.4 even 2 325.6.a.g.1.4 6
13.12 even 2 845.6.a.h.1.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.6.a.d.1.3 6 1.1 even 1 trivial
325.6.a.g.1.4 6 5.4 even 2
325.6.b.g.274.5 12 5.2 odd 4
325.6.b.g.274.8 12 5.3 odd 4
585.6.a.m.1.4 6 3.2 odd 2
845.6.a.h.1.4 6 13.12 even 2
1040.6.a.q.1.2 6 4.3 odd 2