Properties

Label 65.6.a.a
Level $65$
Weight $6$
Character orbit 65.a
Self dual yes
Analytic conductor $10.425$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [65,6,Mod(1,65)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(65, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("65.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 65 = 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 65.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.4249482878\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 5 q^{2} + 6 q^{3} - 7 q^{4} - 25 q^{5} + 30 q^{6} - 244 q^{7} - 195 q^{8} - 207 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 5 q^{2} + 6 q^{3} - 7 q^{4} - 25 q^{5} + 30 q^{6} - 244 q^{7} - 195 q^{8} - 207 q^{9} - 125 q^{10} + 794 q^{11} - 42 q^{12} - 169 q^{13} - 1220 q^{14} - 150 q^{15} - 751 q^{16} - 1534 q^{17} - 1035 q^{18} + 2706 q^{19} + 175 q^{20} - 1464 q^{21} + 3970 q^{22} - 702 q^{23} - 1170 q^{24} + 625 q^{25} - 845 q^{26} - 2700 q^{27} + 1708 q^{28} - 5038 q^{29} - 750 q^{30} - 3634 q^{31} + 2485 q^{32} + 4764 q^{33} - 7670 q^{34} + 6100 q^{35} + 1449 q^{36} - 7058 q^{37} + 13530 q^{38} - 1014 q^{39} + 4875 q^{40} - 294 q^{41} - 7320 q^{42} + 7618 q^{43} - 5558 q^{44} + 5175 q^{45} - 3510 q^{46} - 3020 q^{47} - 4506 q^{48} + 42729 q^{49} + 3125 q^{50} - 9204 q^{51} + 1183 q^{52} + 626 q^{53} - 13500 q^{54} - 19850 q^{55} + 47580 q^{56} + 16236 q^{57} - 25190 q^{58} - 30066 q^{59} + 1050 q^{60} - 5806 q^{61} - 18170 q^{62} + 50508 q^{63} + 36457 q^{64} + 4225 q^{65} + 23820 q^{66} - 12436 q^{67} + 10738 q^{68} - 4212 q^{69} + 30500 q^{70} + 4734 q^{71} + 40365 q^{72} - 14694 q^{73} - 35290 q^{74} + 3750 q^{75} - 18942 q^{76} - 193736 q^{77} - 5070 q^{78} - 39804 q^{79} + 18775 q^{80} + 34101 q^{81} - 1470 q^{82} - 41776 q^{83} + 10248 q^{84} + 38350 q^{85} + 38090 q^{86} - 30228 q^{87} - 154830 q^{88} + 7970 q^{89} + 25875 q^{90} + 41236 q^{91} + 4914 q^{92} - 21804 q^{93} - 15100 q^{94} - 67650 q^{95} + 14910 q^{96} - 78050 q^{97} + 213645 q^{98} - 164358 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
5.00000 6.00000 −7.00000 −25.0000 30.0000 −244.000 −195.000 −207.000 −125.000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 65.6.a.a 1
3.b odd 2 1 585.6.a.a 1
4.b odd 2 1 1040.6.a.a 1
5.b even 2 1 325.6.a.a 1
5.c odd 4 2 325.6.b.a 2
13.b even 2 1 845.6.a.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
65.6.a.a 1 1.a even 1 1 trivial
325.6.a.a 1 5.b even 2 1
325.6.b.a 2 5.c odd 4 2
585.6.a.a 1 3.b odd 2 1
845.6.a.a 1 13.b even 2 1
1040.6.a.a 1 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2} - 5 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(65))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 5 \) Copy content Toggle raw display
$3$ \( T - 6 \) Copy content Toggle raw display
$5$ \( T + 25 \) Copy content Toggle raw display
$7$ \( T + 244 \) Copy content Toggle raw display
$11$ \( T - 794 \) Copy content Toggle raw display
$13$ \( T + 169 \) Copy content Toggle raw display
$17$ \( T + 1534 \) Copy content Toggle raw display
$19$ \( T - 2706 \) Copy content Toggle raw display
$23$ \( T + 702 \) Copy content Toggle raw display
$29$ \( T + 5038 \) Copy content Toggle raw display
$31$ \( T + 3634 \) Copy content Toggle raw display
$37$ \( T + 7058 \) Copy content Toggle raw display
$41$ \( T + 294 \) Copy content Toggle raw display
$43$ \( T - 7618 \) Copy content Toggle raw display
$47$ \( T + 3020 \) Copy content Toggle raw display
$53$ \( T - 626 \) Copy content Toggle raw display
$59$ \( T + 30066 \) Copy content Toggle raw display
$61$ \( T + 5806 \) Copy content Toggle raw display
$67$ \( T + 12436 \) Copy content Toggle raw display
$71$ \( T - 4734 \) Copy content Toggle raw display
$73$ \( T + 14694 \) Copy content Toggle raw display
$79$ \( T + 39804 \) Copy content Toggle raw display
$83$ \( T + 41776 \) Copy content Toggle raw display
$89$ \( T - 7970 \) Copy content Toggle raw display
$97$ \( T + 78050 \) Copy content Toggle raw display
show more
show less