Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [65,5,Mod(34,65)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(65, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([2, 1]))
N = Newforms(chi, 5, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("65.34");
S:= CuspForms(chi, 5);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 65 = 5 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 5 \) |
Character orbit: | \([\chi]\) | \(=\) | 65.g (of order \(4\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(6.71904760045\) |
Analytic rank: | \(0\) |
Dimension: | \(52\) |
Relative dimension: | \(26\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
34.1 | −5.15266 | + | 5.15266i | − | 15.6320i | − | 37.0999i | 22.4978 | + | 10.9017i | 80.5463 | + | 80.5463i | −43.9050 | − | 43.9050i | 108.720 | + | 108.720i | −163.359 | −172.097 | + | 59.7510i | ||||
34.2 | −4.99838 | + | 4.99838i | 5.28046i | − | 33.9676i | 24.9466 | − | 1.63388i | −26.3937 | − | 26.3937i | 65.3572 | + | 65.3572i | 89.8089 | + | 89.8089i | 53.1168 | −116.526 | + | 132.859i | |||||
34.3 | −4.94726 | + | 4.94726i | − | 3.40815i | − | 32.9507i | −22.9591 | − | 9.89351i | 16.8610 | + | 16.8610i | 9.32308 | + | 9.32308i | 83.8595 | + | 83.8595i | 69.3845 | 162.530 | − | 64.6387i | ||||
34.4 | −4.82935 | + | 4.82935i | 11.4208i | − | 30.6453i | −1.40781 | + | 24.9603i | −55.1549 | − | 55.1549i | −48.2799 | − | 48.2799i | 70.7273 | + | 70.7273i | −49.4340 | −113.743 | − | 127.341i | |||||
34.5 | −3.80385 | + | 3.80385i | 13.5404i | − | 12.9386i | −6.62279 | − | 24.1068i | −51.5057 | − | 51.5057i | −14.0955 | − | 14.0955i | −11.6451 | − | 11.6451i | −102.342 | 116.891 | + | 66.5067i | |||||
34.6 | −3.49855 | + | 3.49855i | − | 7.86015i | − | 8.47972i | −17.4903 | + | 17.8631i | 27.4991 | + | 27.4991i | −0.666849 | − | 0.666849i | −26.3101 | − | 26.3101i | 19.2180 | −1.30419 | − | 123.686i | ||||
34.7 | −2.95432 | + | 2.95432i | − | 14.1332i | − | 1.45602i | −0.166336 | − | 24.9994i | 41.7539 | + | 41.7539i | 27.9563 | + | 27.9563i | −42.9676 | − | 42.9676i | −118.747 | 74.3478 | + | 73.3650i | ||||
34.8 | −2.80141 | + | 2.80141i | − | 1.58015i | 0.304183i | 20.5382 | − | 14.2543i | 4.42666 | + | 4.42666i | −31.3088 | − | 31.3088i | −45.6747 | − | 45.6747i | 78.5031 | −17.6038 | + | 97.4679i | |||||
34.9 | −2.29180 | + | 2.29180i | 1.09931i | 5.49535i | 14.5107 | + | 20.3578i | −2.51939 | − | 2.51939i | 7.15078 | + | 7.15078i | −49.2629 | − | 49.2629i | 79.7915 | −79.9114 | − | 13.4005i | ||||||
34.10 | −1.96266 | + | 1.96266i | 11.7087i | 8.29597i | −20.0793 | + | 14.8937i | −22.9802 | − | 22.9802i | 49.2380 | + | 49.2380i | −47.6846 | − | 47.6846i | −56.0939 | 10.1776 | − | 68.6399i | ||||||
34.11 | −0.479269 | + | 0.479269i | 2.62394i | 15.5406i | −22.0613 | − | 11.7601i | −1.25757 | − | 1.25757i | −51.9642 | − | 51.9642i | −15.1164 | − | 15.1164i | 74.1150 | 16.2095 | − | 4.93705i | ||||||
34.12 | −0.212553 | + | 0.212553i | − | 13.8459i | 15.9096i | 19.7160 | + | 15.3714i | 2.94299 | + | 2.94299i | 38.8793 | + | 38.8793i | −6.78250 | − | 6.78250i | −110.709 | −7.45794 | + | 0.923458i | |||||
34.13 | −0.0630863 | + | 0.0630863i | − | 12.3873i | 15.9920i | −17.7387 | + | 17.6164i | 0.781468 | + | 0.781468i | −27.4701 | − | 27.4701i | −2.01826 | − | 2.01826i | −72.4449 | 0.00771715 | − | 2.23042i | |||||
34.14 | 0.0630863 | − | 0.0630863i | 12.3873i | 15.9920i | 17.6164 | − | 17.7387i | 0.781468 | + | 0.781468i | 27.4701 | + | 27.4701i | 2.01826 | + | 2.01826i | −72.4449 | −0.00771715 | − | 2.23042i | ||||||
34.15 | 0.212553 | − | 0.212553i | 13.8459i | 15.9096i | 15.3714 | + | 19.7160i | 2.94299 | + | 2.94299i | −38.8793 | − | 38.8793i | 6.78250 | + | 6.78250i | −110.709 | 7.45794 | + | 0.923458i | ||||||
34.16 | 0.479269 | − | 0.479269i | − | 2.62394i | 15.5406i | −11.7601 | − | 22.0613i | −1.25757 | − | 1.25757i | 51.9642 | + | 51.9642i | 15.1164 | + | 15.1164i | 74.1150 | −16.2095 | − | 4.93705i | |||||
34.17 | 1.96266 | − | 1.96266i | − | 11.7087i | 8.29597i | 14.8937 | − | 20.0793i | −22.9802 | − | 22.9802i | −49.2380 | − | 49.2380i | 47.6846 | + | 47.6846i | −56.0939 | −10.1776 | − | 68.6399i | |||||
34.18 | 2.29180 | − | 2.29180i | − | 1.09931i | 5.49535i | 20.3578 | + | 14.5107i | −2.51939 | − | 2.51939i | −7.15078 | − | 7.15078i | 49.2629 | + | 49.2629i | 79.7915 | 79.9114 | − | 13.4005i | |||||
34.19 | 2.80141 | − | 2.80141i | 1.58015i | 0.304183i | −14.2543 | + | 20.5382i | 4.42666 | + | 4.42666i | 31.3088 | + | 31.3088i | 45.6747 | + | 45.6747i | 78.5031 | 17.6038 | + | 97.4679i | ||||||
34.20 | 2.95432 | − | 2.95432i | 14.1332i | − | 1.45602i | −24.9994 | − | 0.166336i | 41.7539 | + | 41.7539i | −27.9563 | − | 27.9563i | 42.9676 | + | 42.9676i | −118.747 | −74.3478 | + | 73.3650i | |||||
See all 52 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
13.d | odd | 4 | 1 | inner |
65.g | odd | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 65.5.g.a | ✓ | 52 |
5.b | even | 2 | 1 | inner | 65.5.g.a | ✓ | 52 |
13.d | odd | 4 | 1 | inner | 65.5.g.a | ✓ | 52 |
65.g | odd | 4 | 1 | inner | 65.5.g.a | ✓ | 52 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
65.5.g.a | ✓ | 52 | 1.a | even | 1 | 1 | trivial |
65.5.g.a | ✓ | 52 | 5.b | even | 2 | 1 | inner |
65.5.g.a | ✓ | 52 | 13.d | odd | 4 | 1 | inner |
65.5.g.a | ✓ | 52 | 65.g | odd | 4 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{5}^{\mathrm{new}}(65, [\chi])\).