Properties

Label 65.4.a.d
Level $65$
Weight $4$
Character orbit 65.a
Self dual yes
Analytic conductor $3.835$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [65,4,Mod(1,65)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(65, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("65.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 65 = 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 65.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.83512415037\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{3}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta + 2) q^{2} + ( - 3 \beta - 5) q^{3} + (4 \beta - 1) q^{4} - 5 q^{5} + ( - 11 \beta - 19) q^{6} + ( - 4 \beta - 18) q^{7} + ( - \beta - 6) q^{8} + (30 \beta + 25) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + (\beta + 2) q^{2} + ( - 3 \beta - 5) q^{3} + (4 \beta - 1) q^{4} - 5 q^{5} + ( - 11 \beta - 19) q^{6} + ( - 4 \beta - 18) q^{7} + ( - \beta - 6) q^{8} + (30 \beta + 25) q^{9} + ( - 5 \beta - 10) q^{10} + (3 \beta - 5) q^{11} + ( - 17 \beta - 31) q^{12} + 13 q^{13} + ( - 26 \beta - 48) q^{14} + (15 \beta + 25) q^{15} + ( - 40 \beta - 7) q^{16} + ( - 2 \beta - 52) q^{17} + (85 \beta + 140) q^{18} + (17 \beta - 7) q^{19} + ( - 20 \beta + 5) q^{20} + (74 \beta + 126) q^{21} + (\beta - 1) q^{22} + (3 \beta + 17) q^{23} + (23 \beta + 39) q^{24} + 25 q^{25} + (13 \beta + 26) q^{26} + ( - 144 \beta - 260) q^{27} + ( - 68 \beta - 30) q^{28} + ( - 26 \beta + 58) q^{29} + (55 \beta + 95) q^{30} + ( - 121 \beta - 53) q^{31} + ( - 79 \beta - 86) q^{32} - 2 q^{33} + ( - 56 \beta - 110) q^{34} + (20 \beta + 90) q^{35} + (70 \beta + 335) q^{36} + (180 \beta + 48) q^{37} + (27 \beta + 37) q^{38} + ( - 39 \beta - 65) q^{39} + (5 \beta + 30) q^{40} + ( - 142 \beta - 60) q^{41} + (274 \beta + 474) q^{42} + (33 \beta - 361) q^{43} + ( - 23 \beta + 41) q^{44} + ( - 150 \beta - 125) q^{45} + (23 \beta + 43) q^{46} + (84 \beta - 230) q^{47} + (221 \beta + 395) q^{48} + (144 \beta + 29) q^{49} + (25 \beta + 50) q^{50} + (166 \beta + 278) q^{51} + (52 \beta - 13) q^{52} + ( - 50 \beta - 276) q^{53} + ( - 548 \beta - 952) q^{54} + ( - 15 \beta + 25) q^{55} + (42 \beta + 120) q^{56} + ( - 64 \beta - 118) q^{57} + (6 \beta + 38) q^{58} + (211 \beta + 171) q^{59} + (85 \beta + 155) q^{60} + ( - 90 \beta - 134) q^{61} + ( - 295 \beta - 469) q^{62} + ( - 640 \beta - 810) q^{63} + (76 \beta - 353) q^{64} - 65 q^{65} + ( - 2 \beta - 4) q^{66} + (378 \beta - 4) q^{67} + ( - 206 \beta + 28) q^{68} + ( - 66 \beta - 112) q^{69} + (130 \beta + 240) q^{70} + ( - 139 \beta + 117) q^{71} + ( - 205 \beta - 240) q^{72} + (100 \beta - 168) q^{73} + (408 \beta + 636) q^{74} + ( - 75 \beta - 125) q^{75} + ( - 45 \beta + 211) q^{76} + ( - 34 \beta + 54) q^{77} + ( - 143 \beta - 247) q^{78} + (330 \beta - 434) q^{79} + (200 \beta + 35) q^{80} + (690 \beta + 1921) q^{81} + ( - 344 \beta - 546) q^{82} + ( - 92 \beta + 566) q^{83} + (430 \beta + 762) q^{84} + (10 \beta + 260) q^{85} + ( - 295 \beta - 623) q^{86} + ( - 44 \beta - 56) q^{87} + ( - 13 \beta + 21) q^{88} + ( - 292 \beta + 1090) q^{89} + ( - 425 \beta - 700) q^{90} + ( - 52 \beta - 234) q^{91} + (65 \beta + 19) q^{92} + (764 \beta + 1354) q^{93} + ( - 62 \beta - 208) q^{94} + ( - 85 \beta + 35) q^{95} + (653 \beta + 1141) q^{96} + ( - 672 \beta - 126) q^{97} + (317 \beta + 490) q^{98} + ( - 75 \beta + 145) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{2} - 10 q^{3} - 2 q^{4} - 10 q^{5} - 38 q^{6} - 36 q^{7} - 12 q^{8} + 50 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 4 q^{2} - 10 q^{3} - 2 q^{4} - 10 q^{5} - 38 q^{6} - 36 q^{7} - 12 q^{8} + 50 q^{9} - 20 q^{10} - 10 q^{11} - 62 q^{12} + 26 q^{13} - 96 q^{14} + 50 q^{15} - 14 q^{16} - 104 q^{17} + 280 q^{18} - 14 q^{19} + 10 q^{20} + 252 q^{21} - 2 q^{22} + 34 q^{23} + 78 q^{24} + 50 q^{25} + 52 q^{26} - 520 q^{27} - 60 q^{28} + 116 q^{29} + 190 q^{30} - 106 q^{31} - 172 q^{32} - 4 q^{33} - 220 q^{34} + 180 q^{35} + 670 q^{36} + 96 q^{37} + 74 q^{38} - 130 q^{39} + 60 q^{40} - 120 q^{41} + 948 q^{42} - 722 q^{43} + 82 q^{44} - 250 q^{45} + 86 q^{46} - 460 q^{47} + 790 q^{48} + 58 q^{49} + 100 q^{50} + 556 q^{51} - 26 q^{52} - 552 q^{53} - 1904 q^{54} + 50 q^{55} + 240 q^{56} - 236 q^{57} + 76 q^{58} + 342 q^{59} + 310 q^{60} - 268 q^{61} - 938 q^{62} - 1620 q^{63} - 706 q^{64} - 130 q^{65} - 8 q^{66} - 8 q^{67} + 56 q^{68} - 224 q^{69} + 480 q^{70} + 234 q^{71} - 480 q^{72} - 336 q^{73} + 1272 q^{74} - 250 q^{75} + 422 q^{76} + 108 q^{77} - 494 q^{78} - 868 q^{79} + 70 q^{80} + 3842 q^{81} - 1092 q^{82} + 1132 q^{83} + 1524 q^{84} + 520 q^{85} - 1246 q^{86} - 112 q^{87} + 42 q^{88} + 2180 q^{89} - 1400 q^{90} - 468 q^{91} + 38 q^{92} + 2708 q^{93} - 416 q^{94} + 70 q^{95} + 2282 q^{96} - 252 q^{97} + 980 q^{98} + 290 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.73205
1.73205
0.267949 0.196152 −7.92820 −5.00000 0.0525589 −11.0718 −4.26795 −26.9615 −1.33975
1.2 3.73205 −10.1962 5.92820 −5.00000 −38.0526 −24.9282 −7.73205 76.9615 −18.6603
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \(1\)
\(13\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 65.4.a.d 2
3.b odd 2 1 585.4.a.f 2
4.b odd 2 1 1040.4.a.o 2
5.b even 2 1 325.4.a.e 2
5.c odd 4 2 325.4.b.c 4
13.b even 2 1 845.4.a.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
65.4.a.d 2 1.a even 1 1 trivial
325.4.a.e 2 5.b even 2 1
325.4.b.c 4 5.c odd 4 2
585.4.a.f 2 3.b odd 2 1
845.4.a.c 2 13.b even 2 1
1040.4.a.o 2 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} - 4T_{2} + 1 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(65))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 4T + 1 \) Copy content Toggle raw display
$3$ \( T^{2} + 10T - 2 \) Copy content Toggle raw display
$5$ \( (T + 5)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 36T + 276 \) Copy content Toggle raw display
$11$ \( T^{2} + 10T - 2 \) Copy content Toggle raw display
$13$ \( (T - 13)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 104T + 2692 \) Copy content Toggle raw display
$19$ \( T^{2} + 14T - 818 \) Copy content Toggle raw display
$23$ \( T^{2} - 34T + 262 \) Copy content Toggle raw display
$29$ \( T^{2} - 116T + 1336 \) Copy content Toggle raw display
$31$ \( T^{2} + 106T - 41114 \) Copy content Toggle raw display
$37$ \( T^{2} - 96T - 94896 \) Copy content Toggle raw display
$41$ \( T^{2} + 120T - 56892 \) Copy content Toggle raw display
$43$ \( T^{2} + 722T + 127054 \) Copy content Toggle raw display
$47$ \( T^{2} + 460T + 31732 \) Copy content Toggle raw display
$53$ \( T^{2} + 552T + 68676 \) Copy content Toggle raw display
$59$ \( T^{2} - 342T - 104322 \) Copy content Toggle raw display
$61$ \( T^{2} + 268T - 6344 \) Copy content Toggle raw display
$67$ \( T^{2} + 8T - 428636 \) Copy content Toggle raw display
$71$ \( T^{2} - 234T - 44274 \) Copy content Toggle raw display
$73$ \( T^{2} + 336T - 1776 \) Copy content Toggle raw display
$79$ \( T^{2} + 868T - 138344 \) Copy content Toggle raw display
$83$ \( T^{2} - 1132 T + 294964 \) Copy content Toggle raw display
$89$ \( T^{2} - 2180 T + 932308 \) Copy content Toggle raw display
$97$ \( T^{2} + 252 T - 1338876 \) Copy content Toggle raw display
show more
show less