Newspace parameters
Level: | \( N \) | \(=\) | \( 65 = 5 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 65.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(3.83512415037\) |
Analytic rank: | \(1\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\sqrt{3}) \) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{2} - 3 \)
|
Coefficient ring: | \(\Z[a_1, a_2]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{3}\). We also show the integral \(q\)-expansion of the trace form.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
0.267949 | 0.196152 | −7.92820 | −5.00000 | 0.0525589 | −11.0718 | −4.26795 | −26.9615 | −1.33975 | ||||||||||||||||||||||||
1.2 | 3.73205 | −10.1962 | 5.92820 | −5.00000 | −38.0526 | −24.9282 | −7.73205 | 76.9615 | −18.6603 | |||||||||||||||||||||||||
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(5\) | \(1\) |
\(13\) | \(-1\) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 65.4.a.d | ✓ | 2 |
3.b | odd | 2 | 1 | 585.4.a.f | 2 | ||
4.b | odd | 2 | 1 | 1040.4.a.o | 2 | ||
5.b | even | 2 | 1 | 325.4.a.e | 2 | ||
5.c | odd | 4 | 2 | 325.4.b.c | 4 | ||
13.b | even | 2 | 1 | 845.4.a.c | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
65.4.a.d | ✓ | 2 | 1.a | even | 1 | 1 | trivial |
325.4.a.e | 2 | 5.b | even | 2 | 1 | ||
325.4.b.c | 4 | 5.c | odd | 4 | 2 | ||
585.4.a.f | 2 | 3.b | odd | 2 | 1 | ||
845.4.a.c | 2 | 13.b | even | 2 | 1 | ||
1040.4.a.o | 2 | 4.b | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{2} - 4T_{2} + 1 \)
acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(65))\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{2} - 4T + 1 \)
$3$
\( T^{2} + 10T - 2 \)
$5$
\( (T + 5)^{2} \)
$7$
\( T^{2} + 36T + 276 \)
$11$
\( T^{2} + 10T - 2 \)
$13$
\( (T - 13)^{2} \)
$17$
\( T^{2} + 104T + 2692 \)
$19$
\( T^{2} + 14T - 818 \)
$23$
\( T^{2} - 34T + 262 \)
$29$
\( T^{2} - 116T + 1336 \)
$31$
\( T^{2} + 106T - 41114 \)
$37$
\( T^{2} - 96T - 94896 \)
$41$
\( T^{2} + 120T - 56892 \)
$43$
\( T^{2} + 722T + 127054 \)
$47$
\( T^{2} + 460T + 31732 \)
$53$
\( T^{2} + 552T + 68676 \)
$59$
\( T^{2} - 342T - 104322 \)
$61$
\( T^{2} + 268T - 6344 \)
$67$
\( T^{2} + 8T - 428636 \)
$71$
\( T^{2} - 234T - 44274 \)
$73$
\( T^{2} + 336T - 1776 \)
$79$
\( T^{2} + 868T - 138344 \)
$83$
\( T^{2} - 1132 T + 294964 \)
$89$
\( T^{2} - 2180 T + 932308 \)
$97$
\( T^{2} + 252 T - 1338876 \)
show more
show less