Newspace parameters
Level: | \( N \) | \(=\) | \( 65 = 5 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 65.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(3.83512415037\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\sqrt{17}) \) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{2} - x - 4 \)
|
Coefficient ring: | \(\Z[a_1, a_2]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Fricke sign: | \(1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{17})\). We also show the integral \(q\)-expansion of the trace form.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
−1.56155 | −8.24621 | −5.56155 | −5.00000 | 12.8769 | 33.1231 | 21.1771 | 41.0000 | 7.80776 | ||||||||||||||||||||||||
1.2 | 2.56155 | 8.24621 | −1.43845 | −5.00000 | 21.1231 | 24.8769 | −24.1771 | 41.0000 | −12.8078 | |||||||||||||||||||||||||
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(5\) | \(1\) |
\(13\) | \(1\) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 65.4.a.c | ✓ | 2 |
3.b | odd | 2 | 1 | 585.4.a.h | 2 | ||
4.b | odd | 2 | 1 | 1040.4.a.k | 2 | ||
5.b | even | 2 | 1 | 325.4.a.g | 2 | ||
5.c | odd | 4 | 2 | 325.4.b.f | 4 | ||
13.b | even | 2 | 1 | 845.4.a.d | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
65.4.a.c | ✓ | 2 | 1.a | even | 1 | 1 | trivial |
325.4.a.g | 2 | 5.b | even | 2 | 1 | ||
325.4.b.f | 4 | 5.c | odd | 4 | 2 | ||
585.4.a.h | 2 | 3.b | odd | 2 | 1 | ||
845.4.a.d | 2 | 13.b | even | 2 | 1 | ||
1040.4.a.k | 2 | 4.b | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{2} - T_{2} - 4 \)
acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(65))\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{2} - T - 4 \)
$3$
\( T^{2} - 68 \)
$5$
\( (T + 5)^{2} \)
$7$
\( T^{2} - 58T + 824 \)
$11$
\( T^{2} + 86T + 1832 \)
$13$
\( (T + 13)^{2} \)
$17$
\( T^{2} + 28T - 4156 \)
$19$
\( T^{2} - 166T + 4832 \)
$23$
\( T^{2} - 60T - 16508 \)
$29$
\( T^{2} - 120T + 268 \)
$31$
\( T^{2} + 78T - 65952 \)
$37$
\( T^{2} - 360T + 26892 \)
$41$
\( T^{2} + 72T - 64052 \)
$43$
\( T^{2} + 44T - 6316 \)
$47$
\( T^{2} - 362T + 16424 \)
$53$
\( T^{2} + 396T + 36 \)
$59$
\( T^{2} - 18T - 128592 \)
$61$
\( (T - 442)^{2} \)
$67$
\( T^{2} - 1322 T + 249496 \)
$71$
\( T^{2} - 634T - 318544 \)
$73$
\( T^{2} + 60T - 478908 \)
$79$
\( T^{2} + 180T + 7488 \)
$83$
\( T^{2} - 714T - 74528 \)
$89$
\( T^{2} + 852T + 120276 \)
$97$
\( T^{2} - 32T - 2970052 \)
show more
show less