Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [65,3,Mod(6,65)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(65, base_ring=CyclotomicField(12))
chi = DirichletCharacter(H, H._module([0, 5]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("65.6");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 65 = 5 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 65.p (of order \(12\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(1.77112171834\) |
Analytic rank: | \(0\) |
Dimension: | \(40\) |
Relative dimension: | \(10\) over \(\Q(\zeta_{12})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
6.1 | −1.00018 | − | 3.73273i | 1.63472 | − | 2.83142i | −9.46878 | + | 5.46680i | −1.58114 | + | 1.58114i | −12.2039 | − | 3.27004i | 2.30767 | − | 8.61234i | 18.9464 | + | 18.9464i | −0.844632 | − | 1.46295i | 7.48338 | + | 4.32053i |
6.2 | −0.947644 | − | 3.53665i | −2.34119 | + | 4.05506i | −8.14580 | + | 4.70298i | 1.58114 | − | 1.58114i | 16.5600 | + | 4.43723i | −2.82701 | + | 10.5506i | 13.9961 | + | 13.9961i | −6.46235 | − | 11.1931i | −7.09030 | − | 4.09359i |
6.3 | −0.590063 | − | 2.20214i | 1.05817 | − | 1.83281i | −1.03716 | + | 0.598805i | 1.58114 | − | 1.58114i | −4.66050 | − | 1.24878i | −0.314408 | + | 1.17338i | −4.51768 | − | 4.51768i | 2.26053 | + | 3.91536i | −4.41487 | − | 2.54892i |
6.4 | −0.305985 | − | 1.14195i | 2.30106 | − | 3.98555i | 2.25367 | − | 1.30116i | −1.58114 | + | 1.58114i | −5.25539 | − | 1.40818i | −3.05692 | + | 11.4086i | −5.51932 | − | 5.51932i | −6.08971 | − | 10.5477i | 2.28939 | + | 1.32178i |
6.5 | 0.0928988 | + | 0.346703i | −0.295143 | + | 0.511202i | 3.35253 | − | 1.93558i | 1.58114 | − | 1.58114i | −0.204654 | − | 0.0548368i | −0.0877254 | + | 0.327396i | 1.99774 | + | 1.99774i | 4.32578 | + | 7.49247i | 0.695072 | + | 0.401300i |
6.6 | 0.107580 | + | 0.401493i | −2.08519 | + | 3.61165i | 3.31448 | − | 1.91361i | −1.58114 | + | 1.58114i | −1.67438 | − | 0.448649i | −2.68917 | + | 10.0361i | 2.30053 | + | 2.30053i | −4.19603 | − | 7.26773i | −0.804916 | − | 0.464718i |
6.7 | 0.312366 | + | 1.16577i | 1.19180 | − | 2.06426i | 2.20266 | − | 1.27171i | −1.58114 | + | 1.58114i | 2.77872 | + | 0.744556i | 2.00836 | − | 7.49531i | 5.58415 | + | 5.58415i | 1.65922 | + | 2.87385i | −2.33713 | − | 1.34934i |
6.8 | 0.715386 | + | 2.66986i | −2.11281 | + | 3.65949i | −3.15226 | + | 1.81996i | 1.58114 | − | 1.58114i | −11.2818 | − | 3.02294i | 0.943772 | − | 3.52221i | 0.703773 | + | 0.703773i | −4.42790 | − | 7.66935i | 5.35254 | + | 3.09029i |
6.9 | 0.729421 | + | 2.72224i | 2.39711 | − | 4.15192i | −3.41442 | + | 1.97132i | 1.58114 | − | 1.58114i | 13.0510 | + | 3.49701i | −1.27402 | + | 4.75472i | 0.114321 | + | 0.114321i | −6.99232 | − | 12.1111i | 5.45755 | + | 3.15092i |
6.10 | 0.886220 | + | 3.30742i | −0.0164891 | + | 0.0285599i | −6.68953 | + | 3.86220i | −1.58114 | + | 1.58114i | −0.109072 | − | 0.0292259i | 0.185607 | − | 0.692695i | −9.01754 | − | 9.01754i | 4.49946 | + | 7.79329i | −6.63073 | − | 3.82825i |
11.1 | −1.00018 | + | 3.73273i | 1.63472 | + | 2.83142i | −9.46878 | − | 5.46680i | −1.58114 | − | 1.58114i | −12.2039 | + | 3.27004i | 2.30767 | + | 8.61234i | 18.9464 | − | 18.9464i | −0.844632 | + | 1.46295i | 7.48338 | − | 4.32053i |
11.2 | −0.947644 | + | 3.53665i | −2.34119 | − | 4.05506i | −8.14580 | − | 4.70298i | 1.58114 | + | 1.58114i | 16.5600 | − | 4.43723i | −2.82701 | − | 10.5506i | 13.9961 | − | 13.9961i | −6.46235 | + | 11.1931i | −7.09030 | + | 4.09359i |
11.3 | −0.590063 | + | 2.20214i | 1.05817 | + | 1.83281i | −1.03716 | − | 0.598805i | 1.58114 | + | 1.58114i | −4.66050 | + | 1.24878i | −0.314408 | − | 1.17338i | −4.51768 | + | 4.51768i | 2.26053 | − | 3.91536i | −4.41487 | + | 2.54892i |
11.4 | −0.305985 | + | 1.14195i | 2.30106 | + | 3.98555i | 2.25367 | + | 1.30116i | −1.58114 | − | 1.58114i | −5.25539 | + | 1.40818i | −3.05692 | − | 11.4086i | −5.51932 | + | 5.51932i | −6.08971 | + | 10.5477i | 2.28939 | − | 1.32178i |
11.5 | 0.0928988 | − | 0.346703i | −0.295143 | − | 0.511202i | 3.35253 | + | 1.93558i | 1.58114 | + | 1.58114i | −0.204654 | + | 0.0548368i | −0.0877254 | − | 0.327396i | 1.99774 | − | 1.99774i | 4.32578 | − | 7.49247i | 0.695072 | − | 0.401300i |
11.6 | 0.107580 | − | 0.401493i | −2.08519 | − | 3.61165i | 3.31448 | + | 1.91361i | −1.58114 | − | 1.58114i | −1.67438 | + | 0.448649i | −2.68917 | − | 10.0361i | 2.30053 | − | 2.30053i | −4.19603 | + | 7.26773i | −0.804916 | + | 0.464718i |
11.7 | 0.312366 | − | 1.16577i | 1.19180 | + | 2.06426i | 2.20266 | + | 1.27171i | −1.58114 | − | 1.58114i | 2.77872 | − | 0.744556i | 2.00836 | + | 7.49531i | 5.58415 | − | 5.58415i | 1.65922 | − | 2.87385i | −2.33713 | + | 1.34934i |
11.8 | 0.715386 | − | 2.66986i | −2.11281 | − | 3.65949i | −3.15226 | − | 1.81996i | 1.58114 | + | 1.58114i | −11.2818 | + | 3.02294i | 0.943772 | + | 3.52221i | 0.703773 | − | 0.703773i | −4.42790 | + | 7.66935i | 5.35254 | − | 3.09029i |
11.9 | 0.729421 | − | 2.72224i | 2.39711 | + | 4.15192i | −3.41442 | − | 1.97132i | 1.58114 | + | 1.58114i | 13.0510 | − | 3.49701i | −1.27402 | − | 4.75472i | 0.114321 | − | 0.114321i | −6.99232 | + | 12.1111i | 5.45755 | − | 3.15092i |
11.10 | 0.886220 | − | 3.30742i | −0.0164891 | − | 0.0285599i | −6.68953 | − | 3.86220i | −1.58114 | − | 1.58114i | −0.109072 | + | 0.0292259i | 0.185607 | + | 0.692695i | −9.01754 | + | 9.01754i | 4.49946 | − | 7.79329i | −6.63073 | + | 3.82825i |
See all 40 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
13.f | odd | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 65.3.p.a | ✓ | 40 |
5.b | even | 2 | 1 | 325.3.t.d | 40 | ||
5.c | odd | 4 | 1 | 325.3.w.e | 40 | ||
5.c | odd | 4 | 1 | 325.3.w.f | 40 | ||
13.f | odd | 12 | 1 | inner | 65.3.p.a | ✓ | 40 |
65.o | even | 12 | 1 | 325.3.w.e | 40 | ||
65.s | odd | 12 | 1 | 325.3.t.d | 40 | ||
65.t | even | 12 | 1 | 325.3.w.f | 40 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
65.3.p.a | ✓ | 40 | 1.a | even | 1 | 1 | trivial |
65.3.p.a | ✓ | 40 | 13.f | odd | 12 | 1 | inner |
325.3.t.d | 40 | 5.b | even | 2 | 1 | ||
325.3.t.d | 40 | 65.s | odd | 12 | 1 | ||
325.3.w.e | 40 | 5.c | odd | 4 | 1 | ||
325.3.w.e | 40 | 65.o | even | 12 | 1 | ||
325.3.w.f | 40 | 5.c | odd | 4 | 1 | ||
325.3.w.f | 40 | 65.t | even | 12 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(65, [\chi])\).