# Properties

 Label 65.2.t Level $65$ Weight $2$ Character orbit 65.t Rep. character $\chi_{65}(7,\cdot)$ Character field $\Q(\zeta_{12})$ Dimension $20$ Newform subspaces $1$ Sturm bound $14$ Trace bound $0$

# Related objects

## Defining parameters

 Level: $$N$$ $$=$$ $$65 = 5 \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 65.t (of order $$12$$ and degree $$4$$) Character conductor: $$\operatorname{cond}(\chi)$$ $$=$$ $$65$$ Character field: $$\Q(\zeta_{12})$$ Newform subspaces: $$1$$ Sturm bound: $$14$$ Trace bound: $$0$$

## Dimensions

The following table gives the dimensions of various subspaces of $$M_{2}(65, [\chi])$$.

Total New Old
Modular forms 36 36 0
Cusp forms 20 20 0
Eisenstein series 16 16 0

## Trace form

 $$20 q - 6 q^{2} - 2 q^{3} + 6 q^{4} - 8 q^{6} - 2 q^{7} + 12 q^{9} + O(q^{10})$$ $$20 q - 6 q^{2} - 2 q^{3} + 6 q^{4} - 8 q^{6} - 2 q^{7} + 12 q^{9} - 2 q^{10} - 16 q^{11} - 24 q^{12} - 4 q^{13} - 20 q^{15} - 2 q^{16} + 4 q^{17} - 20 q^{19} + 4 q^{21} + 16 q^{22} - 10 q^{23} + 32 q^{24} + 18 q^{25} - 24 q^{26} + 4 q^{27} + 18 q^{28} - 26 q^{30} + 48 q^{32} + 18 q^{33} + 2 q^{34} + 40 q^{35} + 36 q^{36} - 4 q^{37} - 8 q^{38} + 4 q^{39} - 16 q^{40} + 10 q^{41} + 40 q^{42} + 10 q^{43} - 36 q^{44} + 4 q^{46} - 40 q^{47} - 56 q^{48} + 18 q^{49} + 36 q^{50} - 30 q^{52} - 10 q^{53} - 48 q^{54} - 10 q^{55} - 16 q^{59} + 28 q^{60} - 16 q^{61} - 44 q^{62} - 36 q^{63} + 20 q^{64} - 14 q^{65} - 32 q^{66} + 18 q^{67} + 22 q^{68} - 16 q^{69} - 12 q^{70} - 16 q^{71} + 4 q^{72} + 18 q^{74} - 38 q^{75} - 64 q^{76} - 28 q^{77} + 68 q^{78} - 2 q^{80} - 14 q^{81} + 56 q^{82} + 48 q^{83} - 40 q^{84} - 26 q^{85} + 60 q^{86} - 34 q^{87} + 82 q^{88} - 6 q^{89} + 46 q^{90} + 8 q^{91} - 8 q^{92} + 32 q^{93} - 48 q^{94} - 26 q^{95} + 56 q^{96} + 66 q^{97} - 30 q^{98} + 60 q^{99} + O(q^{100})$$

## Decomposition of $$S_{2}^{\mathrm{new}}(65, [\chi])$$ into newform subspaces

Label Dim $A$ Field CM Traces $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
65.2.t.a $20$ $0.519$ $$\mathbb{Q}[x]/(x^{20} + \cdots)$$ None $$-6$$ $$-2$$ $$0$$ $$-2$$ $$q+\beta _{1}q^{2}+(-\beta _{1}-\beta _{2}+\beta _{3}-\beta _{4}+\beta _{6}+\cdots)q^{3}+\cdots$$