Properties

Label 65.2.o.a.63.3
Level $65$
Weight $2$
Character 65.63
Analytic conductor $0.519$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 65 = 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 65.o (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.519027613138\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(5\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Defining polynomial: \(x^{20} + 26 x^{18} + 279 x^{16} + 1604 x^{14} + 5353 x^{12} + 10466 x^{10} + 11441 x^{8} + 6176 x^{6} + 1263 x^{4} + 78 x^{2} + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 63.3
Root \(0.131303i\) of defining polynomial
Character \(\chi\) \(=\) 65.63
Dual form 65.2.o.a.32.3

$q$-expansion

\(f(q)\) \(=\) \(q+(0.0656513 + 0.113711i) q^{2} +(-0.0890070 + 0.332179i) q^{3} +(0.991380 - 1.71712i) q^{4} +(0.813169 + 2.08297i) q^{5} +(-0.0436159 + 0.0116869i) q^{6} +(-2.40874 - 1.39069i) q^{7} +0.522947 q^{8} +(2.49566 + 1.44087i) q^{9} +O(q^{10})\) \(q+(0.0656513 + 0.113711i) q^{2} +(-0.0890070 + 0.332179i) q^{3} +(0.991380 - 1.71712i) q^{4} +(0.813169 + 2.08297i) q^{5} +(-0.0436159 + 0.0116869i) q^{6} +(-2.40874 - 1.39069i) q^{7} +0.522947 q^{8} +(2.49566 + 1.44087i) q^{9} +(-0.183472 + 0.229216i) q^{10} +(-3.91706 - 1.04957i) q^{11} +(0.482151 + 0.482151i) q^{12} +(-3.52539 + 0.756068i) q^{13} -0.365201i q^{14} +(-0.764295 + 0.0847187i) q^{15} +(-1.94843 - 3.37478i) q^{16} +(-2.34186 + 0.627499i) q^{17} +0.378379i q^{18} +(-0.491577 - 1.83459i) q^{19} +(4.38287 + 0.668703i) q^{20} +(0.676351 - 0.676351i) q^{21} +(-0.137812 - 0.514321i) q^{22} +(7.70544 + 2.06467i) q^{23} +(-0.0465459 + 0.173712i) q^{24} +(-3.67751 + 3.38761i) q^{25} +(-0.317420 - 0.351240i) q^{26} +(-1.43027 + 1.43027i) q^{27} +(-4.77595 + 2.75740i) q^{28} +(3.96565 - 2.28957i) q^{29} +(-0.0598105 - 0.0813472i) q^{30} +(3.87352 + 3.87352i) q^{31} +(0.778780 - 1.34889i) q^{32} +(0.697292 - 1.20775i) q^{33} +(-0.225100 - 0.225100i) q^{34} +(0.938043 - 6.14819i) q^{35} +(4.94829 - 2.85689i) q^{36} +(6.07101 - 3.50510i) q^{37} +(0.176341 - 0.176341i) q^{38} +(0.0626346 - 1.23835i) q^{39} +(0.425244 + 1.08928i) q^{40} +(-1.66178 + 6.20184i) q^{41} +(0.121312 + 0.0325055i) q^{42} +(-1.67299 - 6.24368i) q^{43} +(-5.68554 + 5.68554i) q^{44} +(-0.971891 + 6.37004i) q^{45} +(0.271096 + 1.01174i) q^{46} +0.512375i q^{47} +(1.29445 - 0.346847i) q^{48} +(0.368015 + 0.637420i) q^{49} +(-0.626643 - 0.195774i) q^{50} -0.833767i q^{51} +(-2.19674 + 6.80307i) q^{52} +(-1.32662 - 1.32662i) q^{53} +(-0.256537 - 0.0687390i) q^{54} +(-0.999006 - 9.01260i) q^{55} +(-1.25964 - 0.727255i) q^{56} +0.653165 q^{57} +(0.520700 + 0.300626i) q^{58} +(-2.53667 + 0.679700i) q^{59} +(-0.612235 + 1.39638i) q^{60} +(0.641767 - 1.11157i) q^{61} +(-0.186162 + 0.694764i) q^{62} +(-4.00759 - 6.94135i) q^{63} -7.58920 q^{64} +(-4.44160 - 6.72846i) q^{65} +0.183113 q^{66} +(-1.80814 - 3.13180i) q^{67} +(-1.24418 + 4.64334i) q^{68} +(-1.37168 + 2.37581i) q^{69} +(0.760703 - 0.296970i) q^{70} +(-6.20800 + 1.66343i) q^{71} +(1.30509 + 0.753497i) q^{72} +9.93250 q^{73} +(0.797139 + 0.460228i) q^{74} +(-0.797968 - 1.52311i) q^{75} +(-3.63755 - 0.974678i) q^{76} +(7.97556 + 7.97556i) q^{77} +(0.144927 - 0.0741773i) q^{78} +8.37577i q^{79} +(5.44515 - 6.80278i) q^{80} +(3.97480 + 6.88456i) q^{81} +(-0.814318 + 0.218196i) q^{82} +3.17194i q^{83} +(-0.490855 - 1.83190i) q^{84} +(-3.21139 - 4.36775i) q^{85} +(0.600143 - 0.600143i) q^{86} +(0.407576 + 1.52109i) q^{87} +(-2.04842 - 0.548871i) q^{88} +(-1.61226 + 6.01705i) q^{89} +(-0.788152 + 0.307686i) q^{90} +(9.54319 + 3.08154i) q^{91} +(11.1843 - 11.1843i) q^{92} +(-1.63147 + 0.941930i) q^{93} +(-0.0582629 + 0.0336381i) q^{94} +(3.42165 - 2.51577i) q^{95} +(0.378755 + 0.378755i) q^{96} +(5.88500 - 10.1931i) q^{97} +(-0.0483213 + 0.0836950i) q^{98} +(-8.26335 - 8.26335i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20q - 4q^{2} - 2q^{3} - 6q^{4} - 6q^{5} - 8q^{6} - 6q^{7} + 12q^{8} - 12q^{9} + O(q^{10}) \) \( 20q - 4q^{2} - 2q^{3} - 6q^{4} - 6q^{5} - 8q^{6} - 6q^{7} + 12q^{8} - 12q^{9} - 10q^{10} - 16q^{11} + 24q^{12} + 2q^{13} + 12q^{15} - 2q^{16} - 10q^{17} + 20q^{19} + 14q^{20} + 4q^{21} + 16q^{22} - 2q^{23} - 32q^{24} - 18q^{25} - 24q^{26} + 4q^{27} + 6q^{28} + 14q^{30} - 6q^{32} - 18q^{33} - 2q^{34} - 20q^{35} + 36q^{36} + 42q^{37} + 8q^{38} - 4q^{39} - 16q^{40} + 10q^{41} - 56q^{42} - 22q^{43} + 36q^{44} + 52q^{45} + 4q^{46} + 28q^{48} - 18q^{49} + 44q^{50} + 46q^{52} - 10q^{53} + 48q^{54} + 26q^{55} - 12q^{57} - 90q^{58} + 16q^{59} - 92q^{60} - 16q^{61} - 40q^{62} - 32q^{63} - 20q^{64} + 8q^{65} - 32q^{66} - 58q^{67} + 28q^{68} + 16q^{69} + 32q^{70} - 16q^{71} - 66q^{72} + 72q^{73} - 18q^{74} - 34q^{75} - 64q^{76} + 28q^{77} + 32q^{78} - 34q^{80} - 14q^{81} + 22q^{82} + 40q^{84} - 6q^{85} + 60q^{86} + 62q^{87} + 50q^{88} + 6q^{89} - 46q^{90} + 8q^{91} - 8q^{92} + 48q^{93} + 48q^{94} + 14q^{95} + 56q^{96} - 22q^{97} + 4q^{98} - 60q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/65\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(41\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{7}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0656513 + 0.113711i 0.0464225 + 0.0804061i 0.888303 0.459258i \(-0.151885\pi\)
−0.841881 + 0.539664i \(0.818551\pi\)
\(3\) −0.0890070 + 0.332179i −0.0513882 + 0.191783i −0.986848 0.161649i \(-0.948319\pi\)
0.935460 + 0.353432i \(0.114985\pi\)
\(4\) 0.991380 1.71712i 0.495690 0.858560i
\(5\) 0.813169 + 2.08297i 0.363660 + 0.931532i
\(6\) −0.0436159 + 0.0116869i −0.0178061 + 0.00477114i
\(7\) −2.40874 1.39069i −0.910418 0.525630i −0.0298522 0.999554i \(-0.509504\pi\)
−0.880566 + 0.473924i \(0.842837\pi\)
\(8\) 0.522947 0.184890
\(9\) 2.49566 + 1.44087i 0.831885 + 0.480289i
\(10\) −0.183472 + 0.229216i −0.0580188 + 0.0724845i
\(11\) −3.91706 1.04957i −1.18104 0.316459i −0.385701 0.922624i \(-0.626040\pi\)
−0.795339 + 0.606165i \(0.792707\pi\)
\(12\) 0.482151 + 0.482151i 0.139185 + 0.139185i
\(13\) −3.52539 + 0.756068i −0.977767 + 0.209695i
\(14\) 0.365201i 0.0976042i
\(15\) −0.764295 + 0.0847187i −0.197340 + 0.0218743i
\(16\) −1.94843 3.37478i −0.487107 0.843694i
\(17\) −2.34186 + 0.627499i −0.567984 + 0.152191i −0.531372 0.847139i \(-0.678323\pi\)
−0.0366120 + 0.999330i \(0.511657\pi\)
\(18\) 0.378379i 0.0891849i
\(19\) −0.491577 1.83459i −0.112775 0.420883i 0.886335 0.463044i \(-0.153243\pi\)
−0.999111 + 0.0421602i \(0.986576\pi\)
\(20\) 4.38287 + 0.668703i 0.980039 + 0.149527i
\(21\) 0.676351 0.676351i 0.147592 0.147592i
\(22\) −0.137812 0.514321i −0.0293816 0.109654i
\(23\) 7.70544 + 2.06467i 1.60670 + 0.430513i 0.947056 0.321069i \(-0.104042\pi\)
0.659640 + 0.751582i \(0.270709\pi\)
\(24\) −0.0465459 + 0.173712i −0.00950115 + 0.0354588i
\(25\) −3.67751 + 3.38761i −0.735502 + 0.677522i
\(26\) −0.317420 0.351240i −0.0622511 0.0688838i
\(27\) −1.43027 + 1.43027i −0.275256 + 0.275256i
\(28\) −4.77595 + 2.75740i −0.902570 + 0.521099i
\(29\) 3.96565 2.28957i 0.736403 0.425162i −0.0843571 0.996436i \(-0.526884\pi\)
0.820760 + 0.571273i \(0.193550\pi\)
\(30\) −0.0598105 0.0813472i −0.0109198 0.0148519i
\(31\) 3.87352 + 3.87352i 0.695704 + 0.695704i 0.963481 0.267777i \(-0.0862890\pi\)
−0.267777 + 0.963481i \(0.586289\pi\)
\(32\) 0.778780 1.34889i 0.137670 0.238452i
\(33\) 0.697292 1.20775i 0.121383 0.210242i
\(34\) −0.225100 0.225100i −0.0386043 0.0386043i
\(35\) 0.938043 6.14819i 0.158558 1.03923i
\(36\) 4.94829 2.85689i 0.824714 0.476149i
\(37\) 6.07101 3.50510i 0.998067 0.576234i 0.0903914 0.995906i \(-0.471188\pi\)
0.907676 + 0.419672i \(0.137855\pi\)
\(38\) 0.176341 0.176341i 0.0286063 0.0286063i
\(39\) 0.0626346 1.23835i 0.0100296 0.198295i
\(40\) 0.425244 + 1.08928i 0.0672370 + 0.172230i
\(41\) −1.66178 + 6.20184i −0.259526 + 0.968565i 0.705990 + 0.708222i \(0.250502\pi\)
−0.965516 + 0.260343i \(0.916164\pi\)
\(42\) 0.121312 + 0.0325055i 0.0187189 + 0.00501570i
\(43\) −1.67299 6.24368i −0.255128 0.952152i −0.968019 0.250877i \(-0.919281\pi\)
0.712891 0.701275i \(-0.247386\pi\)
\(44\) −5.68554 + 5.68554i −0.857128 + 0.857128i
\(45\) −0.971891 + 6.37004i −0.144881 + 0.949590i
\(46\) 0.271096 + 1.01174i 0.0399709 + 0.149174i
\(47\) 0.512375i 0.0747376i 0.999302 + 0.0373688i \(0.0118976\pi\)
−0.999302 + 0.0373688i \(0.988102\pi\)
\(48\) 1.29445 0.346847i 0.186838 0.0500631i
\(49\) 0.368015 + 0.637420i 0.0525736 + 0.0910601i
\(50\) −0.626643 0.195774i −0.0886207 0.0276866i
\(51\) 0.833767i 0.116751i
\(52\) −2.19674 + 6.80307i −0.304633 + 0.943415i
\(53\) −1.32662 1.32662i −0.182225 0.182225i 0.610100 0.792325i \(-0.291129\pi\)
−0.792325 + 0.610100i \(0.791129\pi\)
\(54\) −0.256537 0.0687390i −0.0349103 0.00935419i
\(55\) −0.999006 9.01260i −0.134706 1.21526i
\(56\) −1.25964 0.727255i −0.168327 0.0971835i
\(57\) 0.653165 0.0865138
\(58\) 0.520700 + 0.300626i 0.0683713 + 0.0394742i
\(59\) −2.53667 + 0.679700i −0.330247 + 0.0884894i −0.420133 0.907463i \(-0.638016\pi\)
0.0898858 + 0.995952i \(0.471350\pi\)
\(60\) −0.612235 + 1.39638i −0.0790392 + 0.180271i
\(61\) 0.641767 1.11157i 0.0821698 0.142322i −0.822012 0.569470i \(-0.807148\pi\)
0.904182 + 0.427148i \(0.140482\pi\)
\(62\) −0.186162 + 0.694764i −0.0236425 + 0.0882352i
\(63\) −4.00759 6.94135i −0.504909 0.874528i
\(64\) −7.58920 −0.948650
\(65\) −4.44160 6.72846i −0.550913 0.834563i
\(66\) 0.183113 0.0225396
\(67\) −1.80814 3.13180i −0.220900 0.382610i 0.734181 0.678953i \(-0.237566\pi\)
−0.955082 + 0.296343i \(0.904233\pi\)
\(68\) −1.24418 + 4.64334i −0.150879 + 0.563088i
\(69\) −1.37168 + 2.37581i −0.165130 + 0.286014i
\(70\) 0.760703 0.296970i 0.0909214 0.0354948i
\(71\) −6.20800 + 1.66343i −0.736754 + 0.197413i −0.607635 0.794216i \(-0.707882\pi\)
−0.129119 + 0.991629i \(0.541215\pi\)
\(72\) 1.30509 + 0.753497i 0.153807 + 0.0888005i
\(73\) 9.93250 1.16251 0.581256 0.813721i \(-0.302562\pi\)
0.581256 + 0.813721i \(0.302562\pi\)
\(74\) 0.797139 + 0.460228i 0.0926655 + 0.0535005i
\(75\) −0.797968 1.52311i −0.0921414 0.175874i
\(76\) −3.63755 0.974678i −0.417255 0.111803i
\(77\) 7.97556 + 7.97556i 0.908899 + 0.908899i
\(78\) 0.144927 0.0741773i 0.0164098 0.00839892i
\(79\) 8.37577i 0.942347i 0.882040 + 0.471174i \(0.156169\pi\)
−0.882040 + 0.471174i \(0.843831\pi\)
\(80\) 5.44515 6.80278i 0.608786 0.760573i
\(81\) 3.97480 + 6.88456i 0.441645 + 0.764951i
\(82\) −0.814318 + 0.218196i −0.0899264 + 0.0240957i
\(83\) 3.17194i 0.348166i 0.984731 + 0.174083i \(0.0556961\pi\)
−0.984731 + 0.174083i \(0.944304\pi\)
\(84\) −0.490855 1.83190i −0.0535567 0.199876i
\(85\) −3.21139 4.36775i −0.348324 0.473749i
\(86\) 0.600143 0.600143i 0.0647151 0.0647151i
\(87\) 0.407576 + 1.52109i 0.0436967 + 0.163078i
\(88\) −2.04842 0.548871i −0.218362 0.0585099i
\(89\) −1.61226 + 6.01705i −0.170900 + 0.637806i 0.826314 + 0.563210i \(0.190434\pi\)
−0.997214 + 0.0745967i \(0.976233\pi\)
\(90\) −0.788152 + 0.307686i −0.0830785 + 0.0324330i
\(91\) 9.54319 + 3.08154i 1.00040 + 0.323033i
\(92\) 11.1843 11.1843i 1.16604 1.16604i
\(93\) −1.63147 + 0.941930i −0.169176 + 0.0976736i
\(94\) −0.0582629 + 0.0336381i −0.00600936 + 0.00346951i
\(95\) 3.42165 2.51577i 0.351054 0.258112i
\(96\) 0.378755 + 0.378755i 0.0386565 + 0.0386565i
\(97\) 5.88500 10.1931i 0.597531 1.03495i −0.395654 0.918400i \(-0.629482\pi\)
0.993184 0.116554i \(-0.0371847\pi\)
\(98\) −0.0483213 + 0.0836950i −0.00488119 + 0.00845447i
\(99\) −8.26335 8.26335i −0.830498 0.830498i
\(100\) 2.17112 + 9.67314i 0.217112 + 0.967314i
\(101\) 0.873807 0.504493i 0.0869471 0.0501989i −0.455896 0.890033i \(-0.650681\pi\)
0.542843 + 0.839834i \(0.317348\pi\)
\(102\) 0.0948088 0.0547379i 0.00938747 0.00541986i
\(103\) 6.00002 6.00002i 0.591200 0.591200i −0.346756 0.937955i \(-0.612717\pi\)
0.937955 + 0.346756i \(0.112717\pi\)
\(104\) −1.84359 + 0.395383i −0.180779 + 0.0387705i
\(105\) 1.95880 + 0.858830i 0.191160 + 0.0838132i
\(106\) 0.0637574 0.237946i 0.00619267 0.0231113i
\(107\) −4.78678 1.28261i −0.462755 0.123995i 0.0199063 0.999802i \(-0.493663\pi\)
−0.482662 + 0.875807i \(0.660330\pi\)
\(108\) 1.03801 + 3.87389i 0.0998821 + 0.372765i
\(109\) 6.51002 6.51002i 0.623546 0.623546i −0.322890 0.946436i \(-0.604654\pi\)
0.946436 + 0.322890i \(0.104654\pi\)
\(110\) 0.959249 0.705287i 0.0914608 0.0672465i
\(111\) 0.623956 + 2.32864i 0.0592233 + 0.221024i
\(112\) 10.8386i 1.02415i
\(113\) −7.24731 + 1.94191i −0.681769 + 0.182680i −0.583051 0.812436i \(-0.698141\pi\)
−0.0987188 + 0.995115i \(0.531474\pi\)
\(114\) 0.0428811 + 0.0742723i 0.00401619 + 0.00695624i
\(115\) 1.96519 + 17.7291i 0.183255 + 1.65325i
\(116\) 9.07933i 0.842995i
\(117\) −9.88755 3.19273i −0.914104 0.295168i
\(118\) −0.243826 0.243826i −0.0224460 0.0224460i
\(119\) 6.51358 + 1.74531i 0.597099 + 0.159992i
\(120\) −0.399686 + 0.0443033i −0.0364861 + 0.00404432i
\(121\) 4.71551 + 2.72250i 0.428683 + 0.247500i
\(122\) 0.168531 0.0152581
\(123\) −1.91221 1.10402i −0.172418 0.0995457i
\(124\) 10.4914 2.81117i 0.942157 0.252450i
\(125\) −10.0467 4.90544i −0.898606 0.438756i
\(126\) 0.526207 0.911417i 0.0468782 0.0811955i
\(127\) −4.28310 + 15.9847i −0.380064 + 1.41842i 0.465739 + 0.884922i \(0.345788\pi\)
−0.845803 + 0.533495i \(0.820878\pi\)
\(128\) −2.05580 3.56075i −0.181709 0.314729i
\(129\) 2.22292 0.195718
\(130\) 0.473506 0.946793i 0.0415292 0.0830392i
\(131\) −12.6880 −1.10856 −0.554278 0.832332i \(-0.687006\pi\)
−0.554278 + 0.832332i \(0.687006\pi\)
\(132\) −1.38256 2.39467i −0.120337 0.208429i
\(133\) −1.36726 + 5.10267i −0.118556 + 0.442458i
\(134\) 0.237414 0.411213i 0.0205095 0.0355234i
\(135\) −4.14226 1.81616i −0.356509 0.156310i
\(136\) −1.22467 + 0.328148i −0.105014 + 0.0281385i
\(137\) −12.9428 7.47254i −1.10578 0.638422i −0.168046 0.985779i \(-0.553746\pi\)
−0.937733 + 0.347357i \(0.887079\pi\)
\(138\) −0.360209 −0.0306631
\(139\) −7.42380 4.28613i −0.629679 0.363545i 0.150949 0.988542i \(-0.451767\pi\)
−0.780628 + 0.624996i \(0.785100\pi\)
\(140\) −9.62722 7.70592i −0.813649 0.651269i
\(141\) −0.170200 0.0456050i −0.0143334 0.00384063i
\(142\) −0.596714 0.596714i −0.0500751 0.0500751i
\(143\) 14.6027 + 0.738590i 1.22114 + 0.0617640i
\(144\) 11.2297i 0.935809i
\(145\) 7.99385 + 6.39852i 0.663853 + 0.531368i
\(146\) 0.652082 + 1.12944i 0.0539666 + 0.0934730i
\(147\) −0.244493 + 0.0655118i −0.0201655 + 0.00540332i
\(148\) 13.8995i 1.14253i
\(149\) 3.14239 + 11.7276i 0.257435 + 0.960759i 0.966720 + 0.255837i \(0.0823511\pi\)
−0.709285 + 0.704922i \(0.750982\pi\)
\(150\) 0.120808 0.190732i 0.00986390 0.0155732i
\(151\) 1.86999 1.86999i 0.152177 0.152177i −0.626912 0.779090i \(-0.715682\pi\)
0.779090 + 0.626912i \(0.215682\pi\)
\(152\) −0.257068 0.959392i −0.0208510 0.0778170i
\(153\) −6.74861 1.80829i −0.545593 0.146191i
\(154\) −0.383306 + 1.43052i −0.0308877 + 0.115274i
\(155\) −4.91859 + 11.2182i −0.395071 + 0.901071i
\(156\) −2.06431 1.33523i −0.165277 0.106904i
\(157\) −10.3194 + 10.3194i −0.823581 + 0.823581i −0.986620 0.163039i \(-0.947870\pi\)
0.163039 + 0.986620i \(0.447870\pi\)
\(158\) −0.952420 + 0.549880i −0.0757705 + 0.0437461i
\(159\) 0.558753 0.322596i 0.0443120 0.0255835i
\(160\) 3.44297 + 0.525301i 0.272191 + 0.0415287i
\(161\) −15.6891 15.6891i −1.23647 1.23647i
\(162\) −0.521902 + 0.903960i −0.0410045 + 0.0710218i
\(163\) −9.34772 + 16.1907i −0.732170 + 1.26815i 0.223784 + 0.974639i \(0.428159\pi\)
−0.955954 + 0.293516i \(0.905174\pi\)
\(164\) 9.00186 + 9.00186i 0.702927 + 0.702927i
\(165\) 3.08271 + 0.470336i 0.239989 + 0.0366156i
\(166\) −0.360686 + 0.208242i −0.0279947 + 0.0161627i
\(167\) 17.9075 10.3389i 1.38572 0.800049i 0.392895 0.919583i \(-0.371474\pi\)
0.992830 + 0.119535i \(0.0381403\pi\)
\(168\) 0.353695 0.353695i 0.0272882 0.0272882i
\(169\) 11.8567 5.33087i 0.912056 0.410067i
\(170\) 0.285831 0.651920i 0.0219223 0.0500000i
\(171\) 1.41659 5.28680i 0.108330 0.404292i
\(172\) −12.3797 3.31713i −0.943944 0.252929i
\(173\) 4.69655 + 17.5278i 0.357072 + 1.33261i 0.877856 + 0.478924i \(0.158973\pi\)
−0.520784 + 0.853688i \(0.674360\pi\)
\(174\) −0.146208 + 0.146208i −0.0110840 + 0.0110840i
\(175\) 13.5693 3.04560i 1.02574 0.230226i
\(176\) 4.09004 + 15.2642i 0.308298 + 1.15058i
\(177\) 0.903127i 0.0678832i
\(178\) −0.790055 + 0.211694i −0.0592171 + 0.0158672i
\(179\) −8.68110 15.0361i −0.648856 1.12385i −0.983396 0.181470i \(-0.941914\pi\)
0.334540 0.942382i \(-0.391419\pi\)
\(180\) 9.97461 + 7.98398i 0.743464 + 0.595091i
\(181\) 24.9284i 1.85291i −0.376406 0.926455i \(-0.622840\pi\)
0.376406 0.926455i \(-0.377160\pi\)
\(182\) 0.276117 + 1.28748i 0.0204672 + 0.0954341i
\(183\) 0.312119 + 0.312119i 0.0230725 + 0.0230725i
\(184\) 4.02953 + 1.07971i 0.297061 + 0.0795973i
\(185\) 12.2378 + 9.79548i 0.899738 + 0.720178i
\(186\) −0.214216 0.123678i −0.0157071 0.00906850i
\(187\) 9.83181 0.718973
\(188\) 0.879810 + 0.507958i 0.0641667 + 0.0370467i
\(189\) 5.43421 1.45609i 0.395280 0.105915i
\(190\) 0.510708 + 0.223918i 0.0370506 + 0.0162447i
\(191\) −3.39354 + 5.87779i −0.245548 + 0.425302i −0.962286 0.272041i \(-0.912301\pi\)
0.716737 + 0.697343i \(0.245635\pi\)
\(192\) 0.675492 2.52097i 0.0487494 0.181935i
\(193\) −0.597582 1.03504i −0.0430149 0.0745040i 0.843716 0.536789i \(-0.180363\pi\)
−0.886731 + 0.462285i \(0.847030\pi\)
\(194\) 1.54543 0.110955
\(195\) 2.63038 0.876525i 0.188366 0.0627693i
\(196\) 1.45937 0.104241
\(197\) −10.0605 17.4253i −0.716780 1.24150i −0.962269 0.272100i \(-0.912282\pi\)
0.245489 0.969399i \(-0.421051\pi\)
\(198\) 0.397137 1.48214i 0.0282233 0.105331i
\(199\) 1.08885 1.88594i 0.0771862 0.133690i −0.824849 0.565354i \(-0.808740\pi\)
0.902035 + 0.431663i \(0.142073\pi\)
\(200\) −1.92314 + 1.77154i −0.135987 + 0.125267i
\(201\) 1.20125 0.321875i 0.0847299 0.0227033i
\(202\) 0.114733 + 0.0662412i 0.00807259 + 0.00466071i
\(203\) −12.7363 −0.893912
\(204\) −1.43168 0.826580i −0.100237 0.0578721i
\(205\) −14.2695 + 1.58171i −0.996629 + 0.110472i
\(206\) 1.07618 + 0.288362i 0.0749810 + 0.0200911i
\(207\) 16.2552 + 16.2552i 1.12982 + 1.12982i
\(208\) 9.42052 + 10.4242i 0.653196 + 0.722792i
\(209\) 7.70215i 0.532769i
\(210\) 0.0309394 + 0.279122i 0.00213502 + 0.0192612i
\(211\) 9.97642 + 17.2797i 0.686805 + 1.18958i 0.972866 + 0.231370i \(0.0743208\pi\)
−0.286061 + 0.958211i \(0.592346\pi\)
\(212\) −3.59315 + 0.962781i −0.246778 + 0.0661240i
\(213\) 2.21022i 0.151442i
\(214\) −0.168410 0.628516i −0.0115123 0.0429645i
\(215\) 11.6450 8.56195i 0.794179 0.583920i
\(216\) −0.747956 + 0.747956i −0.0508919 + 0.0508919i
\(217\) −3.94345 14.7171i −0.267698 0.999064i
\(218\) 1.16765 + 0.312872i 0.0790835 + 0.0211904i
\(219\) −0.884062 + 3.29936i −0.0597394 + 0.222950i
\(220\) −16.4661 7.21950i −1.11015 0.486738i
\(221\) 7.78152 3.98278i 0.523442 0.267911i
\(222\) −0.223829 + 0.223829i −0.0150224 + 0.0150224i
\(223\) 11.6164 6.70672i 0.777891 0.449115i −0.0577915 0.998329i \(-0.518406\pi\)
0.835682 + 0.549213i \(0.185073\pi\)
\(224\) −3.75176 + 2.16608i −0.250675 + 0.144727i
\(225\) −14.0589 + 3.15550i −0.937260 + 0.210367i
\(226\) −0.696612 0.696612i −0.0463380 0.0463380i
\(227\) −7.34064 + 12.7144i −0.487215 + 0.843882i −0.999892 0.0147000i \(-0.995321\pi\)
0.512677 + 0.858582i \(0.328654\pi\)
\(228\) 0.647535 1.12156i 0.0428840 0.0742773i
\(229\) −2.65280 2.65280i −0.175302 0.175302i 0.614002 0.789304i \(-0.289558\pi\)
−0.789304 + 0.614002i \(0.789558\pi\)
\(230\) −1.88698 + 1.38740i −0.124424 + 0.0914827i
\(231\) −3.35919 + 1.93943i −0.221018 + 0.127605i
\(232\) 2.07382 1.19732i 0.136153 0.0786081i
\(233\) 13.9459 13.9459i 0.913629 0.913629i −0.0829267 0.996556i \(-0.526427\pi\)
0.996556 + 0.0829267i \(0.0264267\pi\)
\(234\) −0.286080 1.33393i −0.0187017 0.0872020i
\(235\) −1.06726 + 0.416648i −0.0696205 + 0.0271791i
\(236\) −1.34768 + 5.02962i −0.0877266 + 0.327400i
\(237\) −2.78225 0.745502i −0.180727 0.0484256i
\(238\) 0.229163 + 0.855249i 0.0148545 + 0.0554376i
\(239\) 10.1890 10.1890i 0.659074 0.659074i −0.296087 0.955161i \(-0.595682\pi\)
0.955161 + 0.296087i \(0.0956818\pi\)
\(240\) 1.77508 + 2.41426i 0.114581 + 0.155840i
\(241\) −2.09750 7.82799i −0.135112 0.504245i −0.999997 0.00227574i \(-0.999276\pi\)
0.864885 0.501970i \(-0.167391\pi\)
\(242\) 0.714943i 0.0459582i
\(243\) −8.50205 + 2.27812i −0.545407 + 0.146141i
\(244\) −1.27247 2.20398i −0.0814615 0.141095i
\(245\) −1.02847 + 1.28489i −0.0657064 + 0.0820889i
\(246\) 0.289920i 0.0184846i
\(247\) 3.12007 + 6.09597i 0.198525 + 0.387877i
\(248\) 2.02564 + 2.02564i 0.128628 + 0.128628i
\(249\) −1.05365 0.282325i −0.0667725 0.0178916i
\(250\) −0.101776 1.46448i −0.00643688 0.0926215i
\(251\) −4.04904 2.33771i −0.255573 0.147555i 0.366740 0.930323i \(-0.380474\pi\)
−0.622313 + 0.782768i \(0.713807\pi\)
\(252\) −15.8922 −1.00111
\(253\) −28.0157 16.1749i −1.76133 1.01690i
\(254\) −2.09884 + 0.562382i −0.131693 + 0.0352870i
\(255\) 1.73671 0.677993i 0.108757 0.0424576i
\(256\) −7.31927 + 12.6773i −0.457454 + 0.792334i
\(257\) −4.49187 + 16.7639i −0.280195 + 1.04570i 0.672085 + 0.740474i \(0.265399\pi\)
−0.952280 + 0.305227i \(0.901268\pi\)
\(258\) 0.145938 + 0.252772i 0.00908569 + 0.0157369i
\(259\) −19.4980 −1.21154
\(260\) −15.9569 + 0.956305i −0.989604 + 0.0593075i
\(261\) 13.1959 0.816804
\(262\) −0.832984 1.44277i −0.0514619 0.0891346i
\(263\) 0.626777 2.33916i 0.0386487 0.144239i −0.943905 0.330216i \(-0.892878\pi\)
0.982554 + 0.185977i \(0.0595450\pi\)
\(264\) 0.364647 0.631587i 0.0224425 0.0388715i
\(265\) 1.68454 3.84207i 0.103480 0.236016i
\(266\) −0.669994 + 0.179524i −0.0410800 + 0.0110073i
\(267\) −1.85523 1.07112i −0.113538 0.0655515i
\(268\) −7.17023 −0.437992
\(269\) 8.42829 + 4.86608i 0.513882 + 0.296690i 0.734428 0.678687i \(-0.237451\pi\)
−0.220546 + 0.975377i \(0.570784\pi\)
\(270\) −0.0654271 0.590255i −0.00398177 0.0359218i
\(271\) −21.1708 5.67269i −1.28603 0.344591i −0.449880 0.893089i \(-0.648533\pi\)
−0.836152 + 0.548498i \(0.815200\pi\)
\(272\) 6.68061 + 6.68061i 0.405071 + 0.405071i
\(273\) −1.87303 + 2.89577i −0.113361 + 0.175260i
\(274\) 1.96233i 0.118548i
\(275\) 17.9606 9.40967i 1.08306 0.567424i
\(276\) 2.71970 + 4.71067i 0.163707 + 0.283549i
\(277\) 17.4408 4.67325i 1.04792 0.280788i 0.306526 0.951862i \(-0.400833\pi\)
0.741390 + 0.671074i \(0.234167\pi\)
\(278\) 1.12556i 0.0675067i
\(279\) 4.08574 + 15.2482i 0.244607 + 0.912885i
\(280\) 0.490546 3.21517i 0.0293157 0.192143i
\(281\) 11.3739 11.3739i 0.678510 0.678510i −0.281153 0.959663i \(-0.590717\pi\)
0.959663 + 0.281153i \(0.0907168\pi\)
\(282\) −0.00598805 0.0223477i −0.000356583 0.00133079i
\(283\) 10.9682 + 2.93892i 0.651991 + 0.174700i 0.569629 0.821902i \(-0.307087\pi\)
0.0823620 + 0.996602i \(0.473754\pi\)
\(284\) −3.29818 + 12.3090i −0.195711 + 0.730403i
\(285\) 0.531134 + 1.36052i 0.0314616 + 0.0805904i
\(286\) 0.874701 + 1.70899i 0.0517222 + 0.101054i
\(287\) 12.6276 12.6276i 0.745384 0.745384i
\(288\) 3.88713 2.24424i 0.229052 0.132243i
\(289\) −9.63189 + 5.56098i −0.566582 + 0.327116i
\(290\) −0.202778 + 1.32906i −0.0119075 + 0.0780452i
\(291\) 2.86213 + 2.86213i 0.167781 + 0.167781i
\(292\) 9.84688 17.0553i 0.576245 0.998086i
\(293\) −0.349807 + 0.605883i −0.0204359 + 0.0353961i −0.876063 0.482198i \(-0.839839\pi\)
0.855627 + 0.517594i \(0.173172\pi\)
\(294\) −0.0235007 0.0235007i −0.00137059 0.00137059i
\(295\) −3.47854 4.73110i −0.202528 0.275455i
\(296\) 3.17481 1.83298i 0.184532 0.106540i
\(297\) 7.10364 4.10129i 0.412195 0.237981i
\(298\) −1.12725 + 1.12725i −0.0653001 + 0.0653001i
\(299\) −28.7257 1.45292i −1.66125 0.0840243i
\(300\) −3.40646 0.139776i −0.196672 0.00806999i
\(301\) −4.65320 + 17.3660i −0.268206 + 1.00096i
\(302\) 0.335406 + 0.0898718i 0.0193004 + 0.00517154i
\(303\) 0.0898068 + 0.335163i 0.00515926 + 0.0192546i
\(304\) −5.23352 + 5.23352i −0.300163 + 0.300163i
\(305\) 2.83724 + 0.432883i 0.162460 + 0.0247868i
\(306\) −0.237433 0.886110i −0.0135731 0.0506555i
\(307\) 14.2048i 0.810709i 0.914159 + 0.405355i \(0.132852\pi\)
−0.914159 + 0.405355i \(0.867148\pi\)
\(308\) 21.6018 5.78818i 1.23088 0.329812i
\(309\) 1.45904 + 2.52712i 0.0830016 + 0.143763i
\(310\) −1.59855 + 0.177192i −0.0907917 + 0.0100638i
\(311\) 21.4961i 1.21893i 0.792812 + 0.609466i \(0.208616\pi\)
−0.792812 + 0.609466i \(0.791384\pi\)
\(312\) 0.0327546 0.647593i 0.00185436 0.0366627i
\(313\) −9.36303 9.36303i −0.529230 0.529230i 0.391113 0.920343i \(-0.372090\pi\)
−0.920343 + 0.391113i \(0.872090\pi\)
\(314\) −1.85092 0.495953i −0.104454 0.0279882i
\(315\) 11.1998 13.9922i 0.631035 0.788369i
\(316\) 14.3822 + 8.30357i 0.809062 + 0.467112i
\(317\) 17.3024 0.971798 0.485899 0.874015i \(-0.338492\pi\)
0.485899 + 0.874015i \(0.338492\pi\)
\(318\) 0.0733657 + 0.0423577i 0.00411414 + 0.00237530i
\(319\) −17.9368 + 4.80615i −1.00427 + 0.269093i
\(320\) −6.17130 15.8081i −0.344986 0.883697i
\(321\) 0.852114 1.47590i 0.0475603 0.0823769i
\(322\) 0.754019 2.81404i 0.0420198 0.156820i
\(323\) 2.30240 + 3.98788i 0.128109 + 0.221892i
\(324\) 15.7622 0.875675
\(325\) 10.4034 14.7231i 0.577076 0.816690i
\(326\) −2.45476 −0.135957
\(327\) 1.58305 + 2.74193i 0.0875429 + 0.151629i
\(328\) −0.869022 + 3.24323i −0.0479837 + 0.179078i
\(329\) 0.712553 1.23418i 0.0392843 0.0680424i
\(330\) 0.148901 + 0.381418i 0.00819676 + 0.0209964i
\(331\) 17.3574 4.65090i 0.954049 0.255637i 0.251969 0.967735i \(-0.418922\pi\)
0.702079 + 0.712099i \(0.252255\pi\)
\(332\) 5.44661 + 3.14460i 0.298921 + 0.172582i
\(333\) 20.2015 1.10704
\(334\) 2.35130 + 1.35753i 0.128658 + 0.0742805i
\(335\) 5.05311 6.31299i 0.276081 0.344915i
\(336\) −3.60035 0.964712i −0.196415 0.0526293i
\(337\) −4.83668 4.83668i −0.263471 0.263471i 0.562992 0.826462i \(-0.309650\pi\)
−0.826462 + 0.562992i \(0.809650\pi\)
\(338\) 1.38459 + 0.998266i 0.0753117 + 0.0542985i
\(339\) 2.58024i 0.140140i
\(340\) −10.6837 + 1.18423i −0.579403 + 0.0642242i
\(341\) −11.1073 19.2384i −0.601493 1.04182i
\(342\) 0.694170 0.186002i 0.0375364 0.0100579i
\(343\) 17.4224i 0.940723i
\(344\) −0.874884 3.26511i −0.0471706 0.176043i
\(345\) −6.06415 0.925220i −0.326483 0.0498122i
\(346\) −1.68477 + 1.68477i −0.0905740 + 0.0905740i
\(347\) 4.81456 + 17.9682i 0.258459 + 0.964582i 0.966133 + 0.258043i \(0.0830778\pi\)
−0.707674 + 0.706539i \(0.750256\pi\)
\(348\) 3.01596 + 0.808124i 0.161672 + 0.0433200i
\(349\) −0.651455 + 2.43126i −0.0348716 + 0.130143i −0.981167 0.193160i \(-0.938126\pi\)
0.946296 + 0.323302i \(0.104793\pi\)
\(350\) 1.23716 + 1.34303i 0.0661290 + 0.0717881i
\(351\) 3.96088 6.12364i 0.211416 0.326856i
\(352\) −4.46629 + 4.46629i −0.238054 + 0.238054i
\(353\) −28.3377 + 16.3608i −1.50826 + 0.870795i −0.508308 + 0.861175i \(0.669729\pi\)
−0.999954 + 0.00962005i \(0.996938\pi\)
\(354\) 0.102696 0.0592915i 0.00545822 0.00315131i
\(355\) −8.51302 11.5784i −0.451824 0.614519i
\(356\) 8.73364 + 8.73364i 0.462882 + 0.462882i
\(357\) −1.15951 + 2.00833i −0.0613677 + 0.106292i
\(358\) 1.13985 1.97428i 0.0602430 0.104344i
\(359\) 0.699684 + 0.699684i 0.0369279 + 0.0369279i 0.725330 0.688402i \(-0.241687\pi\)
−0.688402 + 0.725330i \(0.741687\pi\)
\(360\) −0.508247 + 3.33119i −0.0267870 + 0.175569i
\(361\) 13.3304 7.69632i 0.701601 0.405069i
\(362\) 2.83464 1.63658i 0.148985 0.0860167i
\(363\) −1.32407 + 1.32407i −0.0694956 + 0.0694956i
\(364\) 14.7523 13.3318i 0.773231 0.698778i
\(365\) 8.07680 + 20.6891i 0.422759 + 1.08292i
\(366\) −0.0150005 + 0.0559825i −0.000784087 + 0.00292625i
\(367\) −13.9803 3.74601i −0.729767 0.195540i −0.125241 0.992126i \(-0.539971\pi\)
−0.604525 + 0.796586i \(0.706637\pi\)
\(368\) −8.04571 30.0270i −0.419411 1.56526i
\(369\) −13.0833 + 13.0833i −0.681087 + 0.681087i
\(370\) −0.310432 + 2.03466i −0.0161386 + 0.105777i
\(371\) 1.35057 + 5.04039i 0.0701180 + 0.261684i
\(372\) 3.73524i 0.193663i
\(373\) 9.79493 2.62454i 0.507162 0.135894i 0.00384023 0.999993i \(-0.498778\pi\)
0.503322 + 0.864099i \(0.332111\pi\)
\(374\) 0.645471 + 1.11799i 0.0333765 + 0.0578098i
\(375\) 2.52371 2.90069i 0.130324 0.149791i
\(376\) 0.267945i 0.0138182i
\(377\) −12.2494 + 11.0699i −0.630876 + 0.570130i
\(378\) 0.522337 + 0.522337i 0.0268661 + 0.0268661i
\(379\) −1.01470 0.271887i −0.0521215 0.0139659i 0.232664 0.972557i \(-0.425256\pi\)
−0.284786 + 0.958591i \(0.591922\pi\)
\(380\) −0.927718 8.36948i −0.0475909 0.429345i
\(381\) −4.92857 2.84551i −0.252498 0.145780i
\(382\) −0.891162 −0.0455958
\(383\) 10.3984 + 6.00353i 0.531334 + 0.306766i 0.741560 0.670887i \(-0.234086\pi\)
−0.210225 + 0.977653i \(0.567420\pi\)
\(384\) 1.36579 0.365961i 0.0696975 0.0186754i
\(385\) −10.1274 + 23.0983i −0.516138 + 1.17720i
\(386\) 0.0784640 0.135904i 0.00399371 0.00691732i
\(387\) 4.82111 17.9926i 0.245071 0.914616i
\(388\) −11.6685 20.2105i −0.592380 1.02603i
\(389\) −7.37166 −0.373758 −0.186879 0.982383i \(-0.559837\pi\)
−0.186879 + 0.982383i \(0.559837\pi\)
\(390\) 0.272359 + 0.241560i 0.0137914 + 0.0122318i
\(391\) −19.3406 −0.978097
\(392\) 0.192452 + 0.333337i 0.00972030 + 0.0168361i
\(393\) 1.12932 4.21468i 0.0569667 0.212603i
\(394\) 1.32097 2.28798i 0.0665494 0.115267i
\(395\) −17.4465 + 6.81091i −0.877826 + 0.342694i
\(396\) −22.3813 + 5.99704i −1.12470 + 0.301363i
\(397\) 5.24359 + 3.02739i 0.263168 + 0.151940i 0.625779 0.780001i \(-0.284781\pi\)
−0.362611 + 0.931941i \(0.618115\pi\)
\(398\) 0.285937 0.0143327
\(399\) −1.57330 0.908347i −0.0787637 0.0454742i
\(400\) 18.5978 + 5.81026i 0.929890 + 0.290513i
\(401\) −2.33226 0.624928i −0.116468 0.0312074i 0.200114 0.979773i \(-0.435869\pi\)
−0.316582 + 0.948565i \(0.602535\pi\)
\(402\) 0.115465 + 0.115465i 0.00575886 + 0.00575886i
\(403\) −16.5843 10.7270i −0.826123 0.534350i
\(404\) 2.00058i 0.0995324i
\(405\) −11.1081 + 13.8777i −0.551967 + 0.689588i
\(406\) −0.836154 1.44826i −0.0414976 0.0718760i
\(407\) −27.4594 + 7.35772i −1.36111 + 0.364709i
\(408\) 0.436016i 0.0215860i
\(409\) −5.21187 19.4510i −0.257710 0.961788i −0.966563 0.256431i \(-0.917453\pi\)
0.708852 0.705357i \(-0.249213\pi\)
\(410\) −1.11667 1.51877i −0.0551486 0.0750066i
\(411\) 3.63422 3.63422i 0.179263 0.179263i
\(412\) −4.35446 16.2511i −0.214529 0.800632i
\(413\) 7.05543 + 1.89050i 0.347175 + 0.0930253i
\(414\) −0.781227 + 2.91558i −0.0383952 + 0.143293i
\(415\) −6.60706 + 2.57933i −0.324328 + 0.126614i
\(416\) −1.72565 + 5.34416i −0.0846071 + 0.262019i
\(417\) 2.08453 2.08453i 0.102080 0.102080i
\(418\) −0.875822 + 0.505656i −0.0428378 + 0.0247324i
\(419\) 26.0503 15.0401i 1.27264 0.734759i 0.297156 0.954829i \(-0.403962\pi\)
0.975484 + 0.220070i \(0.0706287\pi\)
\(420\) 3.41663 2.51208i 0.166715 0.122577i
\(421\) 9.24685 + 9.24685i 0.450664 + 0.450664i 0.895575 0.444911i \(-0.146765\pi\)
−0.444911 + 0.895575i \(0.646765\pi\)
\(422\) −1.30993 + 2.26887i −0.0637664 + 0.110447i
\(423\) −0.738265 + 1.27871i −0.0358957 + 0.0621731i
\(424\) −0.693751 0.693751i −0.0336915 0.0336915i
\(425\) 6.48649 10.2409i 0.314641 0.496758i
\(426\) 0.251327 0.145104i 0.0121769 0.00703031i
\(427\) −3.09170 + 1.78499i −0.149618 + 0.0863818i
\(428\) −6.94792 + 6.94792i −0.335840 + 0.335840i
\(429\) −1.54509 + 4.78497i −0.0745976 + 0.231021i
\(430\) 1.73810 + 0.762061i 0.0838185 + 0.0367499i
\(431\) −1.63348 + 6.09624i −0.0786821 + 0.293646i −0.994043 0.108989i \(-0.965239\pi\)
0.915361 + 0.402634i \(0.131905\pi\)
\(432\) 7.61362 + 2.04006i 0.366311 + 0.0981527i
\(433\) 3.18071 + 11.8706i 0.152855 + 0.570463i 0.999279 + 0.0379543i \(0.0120841\pi\)
−0.846424 + 0.532509i \(0.821249\pi\)
\(434\) 1.41461 1.41461i 0.0679036 0.0679036i
\(435\) −2.83696 + 2.08587i −0.136022 + 0.100010i
\(436\) −4.72458 17.6324i −0.226266 0.844438i
\(437\) 15.1513i 0.724783i
\(438\) −0.433215 + 0.116080i −0.0206998 + 0.00554650i
\(439\) 17.2223 + 29.8300i 0.821977 + 1.42371i 0.904208 + 0.427093i \(0.140462\pi\)
−0.0822306 + 0.996613i \(0.526204\pi\)
\(440\) −0.522427 4.71311i −0.0249057 0.224689i
\(441\) 2.12104i 0.101002i
\(442\) 0.963754 + 0.623373i 0.0458411 + 0.0296508i
\(443\) −5.39452 5.39452i −0.256301 0.256301i 0.567247 0.823548i \(-0.308009\pi\)
−0.823548 + 0.567247i \(0.808009\pi\)
\(444\) 4.61713 + 1.23716i 0.219119 + 0.0587128i
\(445\) −13.8444 + 1.53459i −0.656286 + 0.0727463i
\(446\) 1.52526 + 0.880610i 0.0722232 + 0.0416981i
\(447\) −4.17534 −0.197487
\(448\) 18.2804 + 10.5542i 0.863668 + 0.498639i
\(449\) 30.0741 8.05832i 1.41928 0.380296i 0.534053 0.845451i \(-0.320668\pi\)
0.885229 + 0.465155i \(0.154002\pi\)
\(450\) −1.28180 1.39149i −0.0604247 0.0655957i
\(451\) 13.0186 22.5489i 0.613021 1.06178i
\(452\) −3.85034 + 14.3697i −0.181105 + 0.675892i
\(453\) 0.454728 + 0.787612i 0.0213650 + 0.0370053i
\(454\) −1.92769 −0.0904710
\(455\) 1.34148 + 22.3840i 0.0628897 + 1.04938i
\(456\) 0.341570 0.0159955
\(457\) 1.55375 + 2.69118i 0.0726814 + 0.125888i 0.900076 0.435734i \(-0.143511\pi\)
−0.827394 + 0.561622i \(0.810178\pi\)
\(458\) 0.127494 0.475812i 0.00595738 0.0222333i
\(459\) 2.45200 4.24698i 0.114449 0.198232i
\(460\) 32.3913 + 14.2018i 1.51025 + 0.662163i
\(461\) −16.1274 + 4.32132i −0.751126 + 0.201264i −0.614018 0.789292i \(-0.710448\pi\)
−0.137109 + 0.990556i \(0.543781\pi\)
\(462\) −0.441070 0.254652i −0.0205205 0.0118475i
\(463\) 15.6396 0.726832 0.363416 0.931627i \(-0.381610\pi\)
0.363416 + 0.931627i \(0.381610\pi\)
\(464\) −15.4536 8.92212i −0.717414 0.414199i
\(465\) −3.28867 2.63235i −0.152508 0.122072i
\(466\) 2.50138 + 0.670243i 0.115874 + 0.0310484i
\(467\) −15.0821 15.0821i −0.697916 0.697916i 0.266045 0.963961i \(-0.414283\pi\)
−0.963961 + 0.266045i \(0.914283\pi\)
\(468\) −15.2846 + 13.8129i −0.706532 + 0.638502i
\(469\) 10.0582i 0.464447i
\(470\) −0.117445 0.0940063i −0.00541732 0.00433619i
\(471\) −2.50939 4.34640i −0.115627 0.200272i
\(472\) −1.32655 + 0.355447i −0.0610592 + 0.0163608i
\(473\) 26.2128i 1.20527i
\(474\) −0.0978863 0.365317i −0.00449607 0.0167796i
\(475\) 8.02265 + 5.08145i 0.368104 + 0.233153i
\(476\) 9.45433 9.45433i 0.433339 0.433339i
\(477\) −1.39930 5.22226i −0.0640696 0.239111i
\(478\) 1.82753 + 0.489686i 0.0835894 + 0.0223977i
\(479\) 11.0386 41.1964i 0.504364 1.88231i 0.0348421 0.999393i \(-0.488907\pi\)
0.469522 0.882921i \(-0.344426\pi\)
\(480\) −0.480942 + 1.09693i −0.0219519 + 0.0500676i
\(481\) −18.7526 + 16.9469i −0.855043 + 0.772713i
\(482\) 0.752428 0.752428i 0.0342722 0.0342722i
\(483\) 6.60802 3.81514i 0.300675 0.173595i
\(484\) 9.34972 5.39806i 0.424987 0.245366i
\(485\) 26.0174 + 3.96953i 1.18139 + 0.180247i
\(486\) −0.817218 0.817218i −0.0370698 0.0370698i
\(487\) 7.60834 13.1780i 0.344767 0.597154i −0.640545 0.767921i \(-0.721291\pi\)
0.985311 + 0.170767i \(0.0546247\pi\)
\(488\) 0.335610 0.581293i 0.0151923 0.0263139i
\(489\) −4.54620 4.54620i −0.205586 0.205586i
\(490\) −0.213627 0.0325936i −0.00965070 0.00147243i
\(491\) 24.2273 13.9876i 1.09336 0.631254i 0.158894 0.987296i \(-0.449207\pi\)
0.934470 + 0.356042i \(0.115874\pi\)
\(492\) −3.79145 + 2.18900i −0.170932 + 0.0986876i
\(493\) −7.85029 + 7.85029i −0.353559 + 0.353559i
\(494\) −0.488345 + 0.754996i −0.0219717 + 0.0339689i
\(495\) 10.4928 23.9318i 0.471616 1.07565i
\(496\) 5.52498 20.6195i 0.248079 0.925844i
\(497\) 17.2668 + 4.62661i 0.774520 + 0.207532i
\(498\) −0.0370700 0.138347i −0.00166115 0.00619949i
\(499\) 1.67479 1.67479i 0.0749740 0.0749740i −0.668625 0.743599i \(-0.733117\pi\)
0.743599 + 0.668625i \(0.233117\pi\)
\(500\) −18.3833 + 12.3883i −0.822128 + 0.554021i
\(501\) 1.84047 + 6.86873i 0.0822261 + 0.306872i
\(502\) 0.613896i 0.0273995i
\(503\) −22.3705 + 5.99415i −0.997451 + 0.267266i −0.720377 0.693583i \(-0.756031\pi\)
−0.277073 + 0.960849i \(0.589365\pi\)
\(504\) −2.09575 3.62995i −0.0933523 0.161691i
\(505\) 1.76140 + 1.40987i 0.0783811 + 0.0627386i
\(506\) 4.24760i 0.188829i
\(507\) 0.715468 + 4.41303i 0.0317751 + 0.195990i
\(508\) 23.2016 + 23.2016i 1.02940 + 1.02940i
\(509\) −5.82068 1.55965i −0.257997 0.0691301i 0.127502 0.991838i \(-0.459304\pi\)
−0.385499 + 0.922708i \(0.625971\pi\)
\(510\) 0.191113 + 0.152973i 0.00846262 + 0.00677374i
\(511\) −23.9248 13.8130i −1.05837 0.611051i
\(512\) −10.1453 −0.448362
\(513\) 3.32705 + 1.92087i 0.146893 + 0.0848086i
\(514\) −2.20114 + 0.589794i −0.0970881 + 0.0260147i
\(515\) 17.3769 + 7.61882i 0.765717 + 0.335725i
\(516\) 2.20376 3.81703i 0.0970152 0.168035i
\(517\) 0.537776 2.00701i 0.0236514 0.0882681i
\(518\) −1.28007 2.21714i −0.0562429 0.0974155i
\(519\) −6.24038 −0.273922
\(520\) −2.32272 3.51863i −0.101858 0.154302i
\(521\) 27.8183 1.21874 0.609371 0.792886i \(-0.291422\pi\)
0.609371 + 0.792886i \(0.291422\pi\)
\(522\) 0.866326 + 1.50052i 0.0379180 + 0.0656760i
\(523\) −0.141761 + 0.529059i −0.00619877 + 0.0231341i −0.968956 0.247233i \(-0.920479\pi\)
0.962757 + 0.270368i \(0.0871452\pi\)
\(524\) −12.5786 + 21.7868i −0.549500 + 0.951762i
\(525\) −0.196075 + 4.77850i −0.00855742 + 0.208551i
\(526\) 0.307138 0.0822974i 0.0133919 0.00358834i
\(527\) −11.5019 6.64060i −0.501029 0.289269i
\(528\) −5.43449 −0.236506
\(529\) 35.1924 + 20.3183i 1.53010 + 0.883406i
\(530\) 0.547479 0.0606856i 0.0237810 0.00263601i
\(531\) −7.31002 1.95871i −0.317228 0.0850010i
\(532\) 7.40643 + 7.40643i 0.321110 + 0.321110i
\(533\) 1.16940 23.1203i 0.0506524 1.00145i
\(534\) 0.281282i 0.0121722i
\(535\) −1.22082 11.0137i −0.0527805 0.476163i
\(536\) −0.945563 1.63776i −0.0408421 0.0707406i
\(537\) 5.76736 1.54536i 0.248880 0.0666871i
\(538\) 1.27786i 0.0550923i
\(539\) −0.772518 2.88308i −0.0332747 0.124183i
\(540\) −7.22512 + 5.31226i −0.310919 + 0.228603i
\(541\) −29.7507 + 29.7507i −1.27908 + 1.27908i −0.337899 + 0.941182i \(0.609716\pi\)
−0.941182 + 0.337899i \(0.890284\pi\)
\(542\) −0.744839 2.77978i −0.0319936 0.119402i
\(543\) 8.28067 + 2.21880i 0.355357 + 0.0952177i
\(544\) −0.977367 + 3.64758i −0.0419043 + 0.156389i
\(545\) 18.8539 + 8.26641i 0.807612 + 0.354094i
\(546\) −0.452249 0.0228743i −0.0193545 0.000978928i
\(547\) −14.2594 + 14.2594i −0.609688 + 0.609688i −0.942864 0.333176i \(-0.891880\pi\)
0.333176 + 0.942864i \(0.391880\pi\)
\(548\) −25.6625 + 14.8162i −1.09625 + 0.632919i
\(549\) 3.20326 1.84940i 0.136712 0.0789306i
\(550\) 2.24912 + 1.42457i 0.0959029 + 0.0607438i
\(551\) −6.14984 6.14984i −0.261992 0.261992i
\(552\) −0.717314 + 1.24242i −0.0305309 + 0.0528811i
\(553\) 11.6481 20.1750i 0.495326 0.857930i
\(554\) 1.67641 + 1.67641i 0.0712240 + 0.0712240i
\(555\) −4.34309 + 3.19326i −0.184354 + 0.135546i
\(556\) −14.7196 + 8.49837i −0.624251 + 0.360411i
\(557\) −30.4644 + 17.5886i −1.29082 + 0.745254i −0.978799 0.204822i \(-0.934338\pi\)
−0.312018 + 0.950076i \(0.601005\pi\)
\(558\) −1.46566 + 1.46566i −0.0620463 + 0.0620463i
\(559\) 10.6186 + 20.7465i 0.449118 + 0.877483i
\(560\) −22.5765 + 8.81362i −0.954030 + 0.372443i
\(561\) −0.875100 + 3.26592i −0.0369468 + 0.137887i
\(562\) 2.04005 + 0.546631i 0.0860545 + 0.0230582i
\(563\) −10.8527 40.5028i −0.457387 1.70699i −0.680975 0.732306i \(-0.738444\pi\)
0.223589 0.974684i \(-0.428223\pi\)
\(564\) −0.247042 + 0.247042i −0.0104024 + 0.0104024i
\(565\) −9.93822 13.5168i −0.418104 0.568656i
\(566\) 0.385887 + 1.44015i 0.0162201 + 0.0605341i
\(567\) 22.1108i 0.928566i
\(568\) −3.24645 + 0.869884i −0.136218 + 0.0364995i
\(569\) −13.7741 23.8575i −0.577441 1.00016i −0.995772 0.0918621i \(-0.970718\pi\)
0.418331 0.908295i \(-0.362615\pi\)
\(570\) −0.119837 + 0.149716i −0.00501943 + 0.00627091i
\(571\) 4.72029i 0.197538i 0.995110 + 0.0987690i \(0.0314905\pi\)
−0.995110 + 0.0987690i \(0.968510\pi\)
\(572\) 15.7451 24.3424i 0.658335 1.01781i
\(573\) −1.65043 1.65043i −0.0689476 0.0689476i
\(574\) 2.26492 + 0.606884i 0.0945360 + 0.0253308i
\(575\) −35.3311 + 18.5102i −1.47341 + 0.771928i
\(576\) −18.9400 10.9350i −0.789168 0.455626i
\(577\) 6.73701 0.280465 0.140233 0.990119i \(-0.455215\pi\)
0.140233 + 0.990119i \(0.455215\pi\)
\(578\) −1.26469 0.730170i −0.0526043 0.0303711i
\(579\) 0.397008 0.106378i 0.0164991 0.00442092i
\(580\) 18.9120 7.38303i 0.785276 0.306564i
\(581\) 4.41118 7.64038i 0.183006 0.316977i
\(582\) −0.137554 + 0.513359i −0.00570180 + 0.0212794i
\(583\) 3.80407 + 6.58884i 0.157548 + 0.272882i
\(584\) 5.19417 0.214936
\(585\) −1.38989 23.1917i −0.0574649 0.958858i
\(586\) −0.0918611 −0.00379475
\(587\) 2.59719 + 4.49847i 0.107198 + 0.185672i 0.914634 0.404283i \(-0.132479\pi\)
−0.807436 + 0.589955i \(0.799146\pi\)
\(588\) −0.129894 + 0.484772i −0.00535674 + 0.0199916i
\(589\) 5.20218 9.01044i 0.214352 0.371269i
\(590\) 0.309609 0.706152i 0.0127464 0.0290718i
\(591\) 6.68376 1.79091i 0.274933 0.0736681i
\(592\) −23.6578 13.6589i −0.972331 0.561375i
\(593\) −12.9267 −0.530836 −0.265418 0.964133i \(-0.585510\pi\)
−0.265418 + 0.964133i \(0.585510\pi\)
\(594\) 0.932726 + 0.538510i 0.0382702 + 0.0220953i
\(595\) 1.66122 + 14.9868i 0.0681033 + 0.614399i
\(596\) 23.2529 + 6.23060i 0.952477 + 0.255215i
\(597\) 0.529553 + 0.529553i 0.0216732 + 0.0216732i
\(598\) −1.72067 3.36182i −0.0703633 0.137475i
\(599\) 16.7523i 0.684481i −0.939612 0.342241i \(-0.888814\pi\)
0.939612 0.342241i \(-0.111186\pi\)
\(600\) −0.417294 0.796506i −0.0170360 0.0325172i
\(601\) −6.28803 10.8912i −0.256494 0.444261i 0.708806 0.705403i \(-0.249234\pi\)
−0.965300 + 0.261142i \(0.915901\pi\)
\(602\) −2.28020 + 0.610977i −0.0929340 + 0.0249016i
\(603\) 10.4212i 0.424384i
\(604\) −1.35713 5.06486i −0.0552207 0.206086i
\(605\) −1.83638 + 12.0361i −0.0746593 + 0.489337i
\(606\) −0.0322160 + 0.0322160i −0.00130868 + 0.00130868i
\(607\) 9.69731 + 36.1909i 0.393602 + 1.46894i 0.824149 + 0.566374i \(0.191654\pi\)
−0.430547 + 0.902568i \(0.641679\pi\)
\(608\) −2.85748 0.765660i −0.115886 0.0310516i
\(609\) 1.13362 4.23072i 0.0459366 0.171438i
\(610\) 0.137044 + 0.351045i 0.00554877 + 0.0142134i
\(611\) −0.387390 1.80632i −0.0156721 0.0730760i
\(612\) −9.79548 + 9.79548i −0.395959 + 0.395959i
\(613\) 14.9776 8.64732i 0.604940 0.349262i −0.166043 0.986119i \(-0.553099\pi\)
0.770982 + 0.636856i \(0.219766\pi\)
\(614\) −1.61524 + 0.932562i −0.0651860 + 0.0376351i
\(615\) 0.744678 4.88082i 0.0300283 0.196814i
\(616\) 4.17079 + 4.17079i 0.168046 + 0.168046i
\(617\) −6.07005 + 10.5136i −0.244371 + 0.423263i −0.961955 0.273210i \(-0.911915\pi\)
0.717584 + 0.696472i \(0.245248\pi\)
\(618\) −0.191575 + 0.331818i −0.00770628 + 0.0133477i
\(619\) 2.99993 + 2.99993i 0.120577 + 0.120577i 0.764821 0.644243i \(-0.222828\pi\)
−0.644243 + 0.764821i \(0.722828\pi\)
\(620\) 14.3869 + 19.5673i 0.577791 + 0.785843i
\(621\) −13.9739 + 8.06784i −0.560753 + 0.323751i
\(622\) −2.44435 + 1.41125i −0.0980095 + 0.0565858i
\(623\) 12.2514 12.2514i 0.490840 0.490840i
\(624\) −4.30121 + 2.20147i −0.172186 + 0.0881291i
\(625\) 2.04819 24.9160i 0.0819276 0.996638i
\(626\) 0.449988 1.67938i 0.0179851 0.0671215i
\(627\) −2.55849 0.685545i −0.102176 0.0273780i
\(628\) 7.48923 + 27.9502i 0.298853 + 1.11533i
\(629\) −12.0180 + 12.0180i −0.479188 + 0.479188i
\(630\) 2.32635 + 0.354936i 0.0926839 + 0.0141410i
\(631\) 5.60031 + 20.9006i 0.222945 + 0.832041i 0.983218 + 0.182437i \(0.0583986\pi\)
−0.760273 + 0.649604i \(0.774935\pi\)
\(632\) 4.38008i 0.174230i
\(633\) −6.62791 + 1.77594i −0.263436 + 0.0705874i
\(634\) 1.13592 + 1.96748i 0.0451133 + 0.0781385i
\(635\) −36.7786 + 4.07674i −1.45951 + 0.161781i
\(636\) 1.27926i 0.0507260i
\(637\) −1.77933 1.96891i −0.0704996 0.0780111i
\(638\) −1.72409 1.72409i −0.0682572 0.0682572i
\(639\) −17.8898 4.79356i −0.707710 0.189630i
\(640\) 5.74522 7.17766i 0.227100 0.283722i
\(641\) 39.2467 + 22.6591i 1.55015 + 0.894980i 0.998129 + 0.0611509i \(0.0194771\pi\)
0.552022 + 0.833829i \(0.313856\pi\)
\(642\) 0.223769 0.00883148
\(643\) 27.4095 + 15.8249i 1.08092 + 0.624072i 0.931146 0.364647i \(-0.118810\pi\)
0.149779 + 0.988719i \(0.452144\pi\)
\(644\) −42.4939 + 11.3862i −1.67449 + 0.448679i
\(645\) 1.80761 + 4.63028i 0.0711747 + 0.182317i
\(646\) −0.302312 + 0.523619i −0.0118943 + 0.0206015i
\(647\) 9.83169 36.6924i 0.386524 1.44253i −0.449227 0.893418i \(-0.648301\pi\)
0.835751 0.549109i \(-0.185033\pi\)
\(648\) 2.07861 + 3.60026i 0.0816555 + 0.141431i
\(649\) 10.6497 0.418038
\(650\) 2.35718 + 0.216394i 0.0924562 + 0.00848769i
\(651\) 5.23971 0.205361
\(652\) 18.5343 + 32.1023i 0.725858 + 1.25722i
\(653\) 0.713775 2.66385i 0.0279322 0.104244i −0.950552 0.310564i \(-0.899482\pi\)
0.978485 + 0.206320i \(0.0661487\pi\)
\(654\) −0.207859 + 0.360022i −0.00812792 + 0.0140780i
\(655\) −10.3175 26.4287i −0.403138 1.03265i
\(656\) 24.1677 6.47571i 0.943590 0.252834i
\(657\) 24.7881 + 14.3114i 0.967076 + 0.558342i
\(658\) 0.187120 0.00729470
\(659\) −1.80219 1.04050i −0.0702034 0.0405320i 0.464487 0.885580i \(-0.346239\pi\)
−0.534691 + 0.845048i \(0.679572\pi\)
\(660\) 3.86376 4.82711i 0.150397 0.187895i
\(661\) 36.3010 + 9.72683i 1.41195 + 0.378330i 0.882619 0.470089i \(-0.155778\pi\)
0.529326 + 0.848418i \(0.322445\pi\)
\(662\) 1.66840 + 1.66840i 0.0648440 + 0.0648440i
\(663\) 0.630384 + 2.93935i 0.0244821 + 0.114155i
\(664\) 1.65876i 0.0643723i
\(665\) −11.7405 + 1.30138i −0.455278 + 0.0504655i
\(666\) 1.32626 + 2.29714i 0.0513914 + 0.0890125i
\(667\) 35.2843 9.45440i 1.36621 0.366076i
\(668\) 40.9991i 1.58630i
\(669\) 1.19389 + 4.45566i 0.0461585 + 0.172266i
\(670\) 1.04960 + 0.160140i 0.0405497 + 0.00618675i
\(671\) −3.68052 + 3.68052i −0.142085 + 0.142085i
\(672\) −0.385592 1.43905i −0.0148745 0.0555125i
\(673\) −17.3908 4.65984i −0.670364 0.179624i −0.0924454 0.995718i \(-0.529468\pi\)
−0.577919 + 0.816094i \(0.696135\pi\)
\(674\) 0.232451 0.867519i 0.00895368 0.0334156i
\(675\) 0.414638 10.1050i 0.0159594 0.388943i
\(676\) 2.60078 25.6443i 0.100030 0.986320i
\(677\) 15.4021 15.4021i 0.591952 0.591952i −0.346206 0.938158i \(-0.612530\pi\)
0.938158 + 0.346206i \(0.112530\pi\)
\(678\) 0.293403 0.169396i 0.0112681 0.00650563i
\(679\) −28.3508 + 16.3684i −1.08801 + 0.628160i
\(680\) −1.67938 2.28410i −0.0644014 0.0875913i
\(681\) −3.57007 3.57007i −0.136805 0.136805i
\(682\) 1.45841 2.52605i 0.0558455 0.0967273i
\(683\) 3.08376 5.34122i 0.117997 0.204376i −0.800977 0.598695i \(-0.795686\pi\)
0.918974 + 0.394319i \(0.129019\pi\)
\(684\) −7.67369 7.67369i −0.293411 0.293411i
\(685\) 5.04036 33.0359i 0.192582 1.26224i
\(686\) −1.98113 + 1.14381i −0.0756398 + 0.0436707i
\(687\) 1.11732 0.645085i 0.0426284 0.0246115i
\(688\) −17.8113 + 17.8113i −0.679050 + 0.679050i
\(689\) 5.67986 + 3.67383i 0.216385 + 0.139962i
\(690\) −0.292911 0.750304i −0.0111509 0.0285636i
\(691\) 3.39841 12.6830i 0.129282 0.482486i −0.870674 0.491860i \(-0.836317\pi\)
0.999956 + 0.00937405i \(0.00298390\pi\)
\(692\) 34.7534 + 9.31214i 1.32112 + 0.353994i
\(693\) 8.41252 + 31.3960i 0.319565 + 1.19263i
\(694\) −1.72710 + 1.72710i −0.0655600 + 0.0655600i
\(695\) 2.89107 18.9489i 0.109665 0.718773i
\(696\) 0.213140 + 0.795450i 0.00807906 + 0.0301515i
\(697\) 15.5666i 0.589627i
\(698\) −0.319231 + 0.0855377i −0.0120831 + 0.00323765i
\(699\) 3.39126 + 5.87383i 0.128269 + 0.222169i
\(700\) 8.22263 26.3194i 0.310786 0.994780i
\(701\) 23.2292i 0.877354i 0.898645 + 0.438677i \(0.144553\pi\)
−0.898645 + 0.438677i \(0.855447\pi\)
\(702\) 0.956365 + 0.0483719i 0.0360957 + 0.00182568i
\(703\) −9.41478 9.41478i −0.355085 0.355085i
\(704\) 29.7274 + 7.96543i 1.12039 + 0.300208i
\(705\) −0.0434078 0.391606i −0.00163483 0.0147487i
\(706\) −3.72081 2.14821i −0.140034 0.0808490i
\(707\) −2.80636 −0.105544
\(708\) −1.55078 0.895342i −0.0582818 0.0336490i
\(709\) −2.00482 + 0.537189i −0.0752925 + 0.0201746i −0.296269 0.955105i \(-0.595742\pi\)
0.220976 + 0.975279i \(0.429076\pi\)
\(710\) 0.757707 1.72817i 0.0284362 0.0648569i
\(711\) −12.0684 + 20.9030i −0.452599 + 0.783925i
\(712\) −0.843128 + 3.14660i −0.0315976 + 0.117924i
\(713\) 21.8496 + 37.8447i 0.818275 + 1.41729i
\(714\) −0.304493 −0.0113954
\(715\) 10.3360 + 31.0176i 0.386545 + 1.15999i
\(716\) −34.4251 −1.28653
\(717\) 2.47769 + 4.29148i 0.0925309 + 0.160268i
\(718\) −0.0336269 + 0.125497i −0.00125494 + 0.00468351i
\(719\) −3.36848 + 5.83438i −0.125623 + 0.217586i −0.921976 0.387246i \(-0.873426\pi\)
0.796353 + 0.604832i \(0.206760\pi\)
\(720\) 23.3911 9.13165i 0.871735 0.340316i
\(721\) −22.7966 + 6.10834i −0.848991 + 0.227486i
\(722\) 1.75032 + 1.01055i 0.0651401 + 0.0376086i
\(723\) 2.78698 0.103649
\(724\) −42.8050 24.7135i −1.59083 0.918469i
\(725\) −6.82756 + 21.8540i −0.253569 + 0.811637i
\(726\) −0.237489 0.0636349i −0.00881403 0.00236171i
\(727\) −34.4733 34.4733i −1.27854 1.27854i −0.941483 0.337062i \(-0.890567\pi\)
−0.337062 0.941483i \(-0.609433\pi\)
\(728\) 4.99058 + 1.61148i 0.184963 + 0.0597254i
\(729\) 20.8218i 0.771179i
\(730\) −1.82233 + 2.27669i −0.0674475 + 0.0842641i
\(731\) 7.83580 + 13.5720i 0.289817 + 0.501979i
\(732\) 0.845374 0.226517i 0.0312459 0.00837232i
\(733\) 28.7555i 1.06211i −0.847338 0.531054i \(-0.821796\pi\)
0.847338 0.531054i \(-0.178204\pi\)
\(734\) −0.491861 1.83565i −0.0181549 0.0677551i
\(735\) −0.335273 0.456000i −0.0123667 0.0168198i
\(736\) 8.78585 8.78585i 0.323851 0.323851i
\(737\) 3.79556 + 14.1652i 0.139811 + 0.521783i
\(738\) −2.34665 0.628783i −0.0863813 0.0231458i
\(739\) −7.94129 + 29.6373i −0.292125 + 1.09023i 0.651349 + 0.758778i \(0.274203\pi\)
−0.943474 + 0.331447i \(0.892463\pi\)
\(740\) 28.9523 11.3027i 1.06431 0.415494i
\(741\) −2.30266 + 0.493837i −0.0845903 + 0.0181416i
\(742\) −0.484483 + 0.484483i −0.0177859 + 0.0177859i
\(743\) 45.8676 26.4817i 1.68272 0.971519i 0.722878 0.690976i \(-0.242819\pi\)
0.959841 0.280543i \(-0.0905146\pi\)
\(744\) −0.853172 + 0.492579i −0.0312788 + 0.0180588i
\(745\) −21.8728 + 16.0820i −0.801359 + 0.589198i
\(746\) 0.941490 + 0.941490i 0.0344704 + 0.0344704i
\(747\) −4.57035 + 7.91608i −0.167220 + 0.289634i
\(748\) 9.74706 16.8824i 0.356388 0.617282i
\(749\) 9.74639 + 9.74639i 0.356125 + 0.356125i
\(750\) 0.495526 + 0.0965407i 0.0180941 + 0.00352517i
\(751\) −40.3780 + 23.3123i −1.47341 + 0.850676i −0.999552 0.0299230i \(-0.990474\pi\)
−0.473862 + 0.880599i \(0.657140\pi\)
\(752\) 1.72915 0.998326i 0.0630557 0.0364052i
\(753\) 1.13693 1.13693i 0.0414321 0.0414321i
\(754\) −2.06296 0.666140i −0.0751287 0.0242594i
\(755\) 5.41574 + 2.37451i 0.197099 + 0.0864172i
\(756\) 2.88708 10.7747i 0.105002 0.391873i
\(757\) 1.20667 + 0.323327i 0.0438572 + 0.0117515i 0.280681 0.959801i \(-0.409440\pi\)
−0.236824 + 0.971553i \(0.576106\pi\)
\(758\) −0.0356995 0.133232i −0.00129666 0.00483922i
\(759\) 7.86654 7.86654i 0.285537 0.285537i
\(760\) 1.78934 1.31561i 0.0649063 0.0477223i
\(761\) −5.28278 19.7156i −0.191501 0.714690i −0.993145 0.116889i \(-0.962708\pi\)
0.801644 0.597801i \(-0.203959\pi\)
\(762\) 0.747246i 0.0270698i
\(763\) −24.7343 + 6.62754i −0.895442 + 0.239933i
\(764\) 6.72858 + 11.6542i 0.243432 + 0.421636i
\(765\) −1.72116 15.5276i −0.0622288 0.561401i
\(766\) 1.57656i 0.0569633i
\(767\) 8.42886 4.31410i 0.304349 0.155773i
\(768\) −3.55968 3.55968i −0.128449 0.128449i
\(769\) −35.6638 9.55609i −1.28607 0.344602i −0.449904 0.893077i \(-0.648542\pi\)
−0.836167 + 0.548476i \(0.815208\pi\)
\(770\) −3.29141 + 0.364838i −0.118614 + 0.0131479i
\(771\) −5.16879 2.98420i −0.186150