# Properties

 Label 65.2.o.a.2.3 Level $65$ Weight $2$ Character 65.2 Analytic conductor $0.519$ Analytic rank $0$ Dimension $20$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$65 = 5 \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 65.o (of order $$12$$, degree $$4$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$0.519027613138$$ Analytic rank: $$0$$ Dimension: $$20$$ Relative dimension: $$5$$ over $$\Q(\zeta_{12})$$ Coefficient field: $$\mathbb{Q}[x]/(x^{20} + \cdots)$$ Defining polynomial: $$x^{20} + 26 x^{18} + 279 x^{16} + 1604 x^{14} + 5353 x^{12} + 10466 x^{10} + 11441 x^{8} + 6176 x^{6} + 1263 x^{4} + 78 x^{2} + 1$$ Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

## Embedding invariants

 Embedding label 2.3 Root $$0.493902i$$ of defining polynomial Character $$\chi$$ $$=$$ 65.2 Dual form 65.2.o.a.33.3

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-0.246951 - 0.427732i) q^{2} +(0.908353 + 0.243392i) q^{3} +(0.878030 - 1.52079i) q^{4} +(-2.21791 + 0.284413i) q^{5} +(-0.120212 - 0.448637i) q^{6} +(3.18307 + 1.83775i) q^{7} -1.85513 q^{8} +(-1.83221 - 1.05783i) q^{9} +O(q^{10})$$ $$q+(-0.246951 - 0.427732i) q^{2} +(0.908353 + 0.243392i) q^{3} +(0.878030 - 1.52079i) q^{4} +(-2.21791 + 0.284413i) q^{5} +(-0.120212 - 0.448637i) q^{6} +(3.18307 + 1.83775i) q^{7} -1.85513 q^{8} +(-1.83221 - 1.05783i) q^{9} +(0.669366 + 0.878433i) q^{10} +(-0.177987 + 0.664257i) q^{11} +(1.16771 - 1.16771i) q^{12} +(-2.11051 + 2.92331i) q^{13} -1.81533i q^{14} +(-2.08387 - 0.281475i) q^{15} +(-1.29794 - 2.24809i) q^{16} +(0.614565 + 2.29359i) q^{17} +1.04493i q^{18} +(-5.29067 + 1.41763i) q^{19} +(-1.51486 + 3.62270i) q^{20} +(2.44406 + 2.44406i) q^{21} +(0.328078 - 0.0879082i) q^{22} +(0.350507 - 1.30811i) q^{23} +(-1.68511 - 0.451523i) q^{24} +(4.83822 - 1.26160i) q^{25} +(1.77158 + 0.180816i) q^{26} +(-3.40171 - 3.40171i) q^{27} +(5.58966 - 3.22719i) q^{28} +(8.24134 - 4.75814i) q^{29} +(0.394217 + 0.960845i) q^{30} +(4.81595 - 4.81595i) q^{31} +(-2.49618 + 4.32351i) q^{32} +(-0.323350 + 0.560059i) q^{33} +(0.829273 - 0.829273i) q^{34} +(-7.58243 - 3.17064i) q^{35} +(-3.21748 + 1.85761i) q^{36} +(1.58936 - 0.917615i) q^{37} +(1.91290 + 1.91290i) q^{38} +(-2.62860 + 2.14172i) q^{39} +(4.11449 - 0.527621i) q^{40} +(-0.534988 - 0.143350i) q^{41} +(0.441838 - 1.64896i) q^{42} +(-2.09285 + 0.560778i) q^{43} +(0.853919 + 0.853919i) q^{44} +(4.36453 + 1.82506i) q^{45} +(-0.646078 + 0.173116i) q^{46} -3.80918i q^{47} +(-0.631815 - 2.35797i) q^{48} +(3.25462 + 5.63717i) q^{49} +(-1.73443 - 1.75791i) q^{50} +2.23297i q^{51} +(2.59266 + 5.77640i) q^{52} +(-2.47293 + 2.47293i) q^{53} +(-0.614963 + 2.29507i) q^{54} +(0.205836 - 1.52388i) q^{55} +(-5.90499 - 3.40925i) q^{56} -5.15084 q^{57} +(-4.07041 - 2.35005i) q^{58} +(2.69310 + 10.0508i) q^{59} +(-2.25776 + 2.92199i) q^{60} +(-3.09904 + 5.36770i) q^{61} +(-3.24924 - 0.870630i) q^{62} +(-3.88804 - 6.73428i) q^{63} -2.72601 q^{64} +(3.84948 - 7.08389i) q^{65} +0.319406 q^{66} +(-6.12371 - 10.6066i) q^{67} +(4.02768 + 1.07921i) q^{68} +(0.636768 - 1.10291i) q^{69} +(0.516303 + 4.02624i) q^{70} +(-1.73500 - 6.47512i) q^{71} +(3.39898 + 1.96240i) q^{72} +3.37642 q^{73} +(-0.784986 - 0.453212i) q^{74} +(4.70187 + 0.0316067i) q^{75} +(-2.48945 + 9.29074i) q^{76} +(-1.78728 + 1.78728i) q^{77} +(1.56521 + 0.595435i) q^{78} +3.12149i q^{79} +(3.51809 + 4.61691i) q^{80} +(0.911483 + 1.57873i) q^{81} +(0.0708006 + 0.264231i) q^{82} -2.13918i q^{83} +(5.86286 - 1.57095i) q^{84} +(-2.01537 - 4.91217i) q^{85} +(0.756694 + 0.756694i) q^{86} +(8.64414 - 2.31619i) q^{87} +(0.330188 - 1.23228i) q^{88} +(-3.26255 - 0.874198i) q^{89} +(-0.297190 - 2.31755i) q^{90} +(-12.0902 + 5.42653i) q^{91} +(-1.68161 - 1.68161i) q^{92} +(5.54675 - 3.20242i) q^{93} +(-1.62931 + 0.940681i) q^{94} +(11.3310 - 4.64891i) q^{95} +(-3.31972 + 3.31972i) q^{96} +(-3.53688 + 6.12606i) q^{97} +(1.60746 - 2.78421i) q^{98} +(1.02878 - 1.02878i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$20q - 4q^{2} - 2q^{3} - 6q^{4} - 6q^{5} - 8q^{6} - 6q^{7} + 12q^{8} - 12q^{9} + O(q^{10})$$ $$20q - 4q^{2} - 2q^{3} - 6q^{4} - 6q^{5} - 8q^{6} - 6q^{7} + 12q^{8} - 12q^{9} - 10q^{10} - 16q^{11} + 24q^{12} + 2q^{13} + 12q^{15} - 2q^{16} - 10q^{17} + 20q^{19} + 14q^{20} + 4q^{21} + 16q^{22} - 2q^{23} - 32q^{24} - 18q^{25} - 24q^{26} + 4q^{27} + 6q^{28} + 14q^{30} - 6q^{32} - 18q^{33} - 2q^{34} - 20q^{35} + 36q^{36} + 42q^{37} + 8q^{38} - 4q^{39} - 16q^{40} + 10q^{41} - 56q^{42} - 22q^{43} + 36q^{44} + 52q^{45} + 4q^{46} + 28q^{48} - 18q^{49} + 44q^{50} + 46q^{52} - 10q^{53} + 48q^{54} + 26q^{55} - 12q^{57} - 90q^{58} + 16q^{59} - 92q^{60} - 16q^{61} - 40q^{62} - 32q^{63} - 20q^{64} + 8q^{65} - 32q^{66} - 58q^{67} + 28q^{68} + 16q^{69} + 32q^{70} - 16q^{71} - 66q^{72} + 72q^{73} - 18q^{74} - 34q^{75} - 64q^{76} + 28q^{77} + 32q^{78} - 34q^{80} - 14q^{81} + 22q^{82} + 40q^{84} - 6q^{85} + 60q^{86} + 62q^{87} + 50q^{88} + 6q^{89} - 46q^{90} + 8q^{91} - 8q^{92} + 48q^{93} + 48q^{94} + 14q^{95} + 56q^{96} - 22q^{97} + 4q^{98} - 60q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/65\mathbb{Z}\right)^\times$$.

 $$n$$ $$27$$ $$41$$ $$\chi(n)$$ $$e\left(\frac{1}{4}\right)$$ $$e\left(\frac{1}{12}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −0.246951 0.427732i −0.174621 0.302452i 0.765409 0.643544i $$-0.222537\pi$$
−0.940030 + 0.341092i $$0.889203\pi$$
$$3$$ 0.908353 + 0.243392i 0.524438 + 0.140523i 0.511318 0.859391i $$-0.329157\pi$$
0.0131191 + 0.999914i $$0.495824\pi$$
$$4$$ 0.878030 1.52079i 0.439015 0.760397i
$$5$$ −2.21791 + 0.284413i −0.991878 + 0.127193i
$$6$$ −0.120212 0.448637i −0.0490763 0.183155i
$$7$$ 3.18307 + 1.83775i 1.20309 + 0.694603i 0.961240 0.275712i $$-0.0889135\pi$$
0.241847 + 0.970314i $$0.422247\pi$$
$$8$$ −1.85513 −0.655886
$$9$$ −1.83221 1.05783i −0.610737 0.352609i
$$10$$ 0.669366 + 0.878433i 0.211672 + 0.277785i
$$11$$ −0.177987 + 0.664257i −0.0536651 + 0.200281i −0.987553 0.157284i $$-0.949726\pi$$
0.933888 + 0.357565i $$0.116393\pi$$
$$12$$ 1.16771 1.16771i 0.337089 0.337089i
$$13$$ −2.11051 + 2.92331i −0.585350 + 0.810781i
$$14$$ 1.81533i 0.485168i
$$15$$ −2.08387 0.281475i −0.538052 0.0726764i
$$16$$ −1.29794 2.24809i −0.324484 0.562023i
$$17$$ 0.614565 + 2.29359i 0.149054 + 0.556277i 0.999541 + 0.0302815i $$0.00964039\pi$$
−0.850487 + 0.525995i $$0.823693\pi$$
$$18$$ 1.04493i 0.246291i
$$19$$ −5.29067 + 1.41763i −1.21376 + 0.325227i −0.808238 0.588857i $$-0.799578\pi$$
−0.405526 + 0.914084i $$0.632912\pi$$
$$20$$ −1.51486 + 3.62270i −0.338732 + 0.810060i
$$21$$ 2.44406 + 2.44406i 0.533337 + 0.533337i
$$22$$ 0.328078 0.0879082i 0.0699464 0.0187421i
$$23$$ 0.350507 1.30811i 0.0730858 0.272760i −0.919707 0.392606i $$-0.871574\pi$$
0.992792 + 0.119846i $$0.0382402\pi$$
$$24$$ −1.68511 0.451523i −0.343971 0.0921668i
$$25$$ 4.83822 1.26160i 0.967644 0.252320i
$$26$$ 1.77158 + 0.180816i 0.347436 + 0.0354610i
$$27$$ −3.40171 3.40171i −0.654659 0.654659i
$$28$$ 5.58966 3.22719i 1.05635 0.609882i
$$29$$ 8.24134 4.75814i 1.53038 0.883564i 0.531034 0.847350i $$-0.321803\pi$$
0.999344 0.0362142i $$-0.0115299\pi$$
$$30$$ 0.394217 + 0.960845i 0.0719738 + 0.175426i
$$31$$ 4.81595 4.81595i 0.864970 0.864970i −0.126940 0.991910i $$-0.540516\pi$$
0.991910 + 0.126940i $$0.0405157\pi$$
$$32$$ −2.49618 + 4.32351i −0.441266 + 0.764295i
$$33$$ −0.323350 + 0.560059i −0.0562880 + 0.0974937i
$$34$$ 0.829273 0.829273i 0.142219 0.142219i
$$35$$ −7.58243 3.17064i −1.28166 0.535937i
$$36$$ −3.21748 + 1.85761i −0.536246 + 0.309602i
$$37$$ 1.58936 0.917615i 0.261289 0.150855i −0.363634 0.931542i $$-0.618464\pi$$
0.624922 + 0.780687i $$0.285131\pi$$
$$38$$ 1.91290 + 1.91290i 0.310314 + 0.310314i
$$39$$ −2.62860 + 2.14172i −0.420912 + 0.342949i
$$40$$ 4.11449 0.527621i 0.650559 0.0834242i
$$41$$ −0.534988 0.143350i −0.0835510 0.0223874i 0.216801 0.976216i $$-0.430438\pi$$
−0.300352 + 0.953828i $$0.597104\pi$$
$$42$$ 0.441838 1.64896i 0.0681771 0.254440i
$$43$$ −2.09285 + 0.560778i −0.319157 + 0.0855178i −0.414841 0.909894i $$-0.636163\pi$$
0.0956841 + 0.995412i $$0.469496\pi$$
$$44$$ 0.853919 + 0.853919i 0.128733 + 0.128733i
$$45$$ 4.36453 + 1.82506i 0.650626 + 0.272064i
$$46$$ −0.646078 + 0.173116i −0.0952590 + 0.0255246i
$$47$$ 3.80918i 0.555626i −0.960635 0.277813i $$-0.910390\pi$$
0.960635 0.277813i $$-0.0896096\pi$$
$$48$$ −0.631815 2.35797i −0.0911947 0.340343i
$$49$$ 3.25462 + 5.63717i 0.464946 + 0.805310i
$$50$$ −1.73443 1.75791i −0.245285 0.248605i
$$51$$ 2.23297i 0.312678i
$$52$$ 2.59266 + 5.77640i 0.359538 + 0.801043i
$$53$$ −2.47293 + 2.47293i −0.339683 + 0.339683i −0.856248 0.516565i $$-0.827211\pi$$
0.516565 + 0.856248i $$0.327211\pi$$
$$54$$ −0.614963 + 2.29507i −0.0836858 + 0.312320i
$$55$$ 0.205836 1.52388i 0.0277549 0.205480i
$$56$$ −5.90499 3.40925i −0.789088 0.455580i
$$57$$ −5.15084 −0.682245
$$58$$ −4.07041 2.35005i −0.534471 0.308577i
$$59$$ 2.69310 + 10.0508i 0.350612 + 1.30850i 0.885917 + 0.463844i $$0.153530\pi$$
−0.535305 + 0.844659i $$0.679803\pi$$
$$60$$ −2.25776 + 2.92199i −0.291476 + 0.377227i
$$61$$ −3.09904 + 5.36770i −0.396792 + 0.687263i −0.993328 0.115323i $$-0.963210\pi$$
0.596536 + 0.802586i $$0.296543\pi$$
$$62$$ −3.24924 0.870630i −0.412653 0.110570i
$$63$$ −3.88804 6.73428i −0.489847 0.848439i
$$64$$ −2.72601 −0.340751
$$65$$ 3.84948 7.08389i 0.477470 0.878648i
$$66$$ 0.319406 0.0393162
$$67$$ −6.12371 10.6066i −0.748130 1.29580i −0.948718 0.316124i $$-0.897619\pi$$
0.200588 0.979676i $$-0.435715\pi$$
$$68$$ 4.02768 + 1.07921i 0.488428 + 0.130874i
$$69$$ 0.636768 1.10291i 0.0766579 0.132775i
$$70$$ 0.516303 + 4.02624i 0.0617101 + 0.481227i
$$71$$ −1.73500 6.47512i −0.205907 0.768456i −0.989171 0.146767i $$-0.953113\pi$$
0.783264 0.621689i $$-0.213553\pi$$
$$72$$ 3.39898 + 1.96240i 0.400574 + 0.231271i
$$73$$ 3.37642 0.395180 0.197590 0.980285i $$-0.436688\pi$$
0.197590 + 0.980285i $$0.436688\pi$$
$$74$$ −0.784986 0.453212i −0.0912528 0.0526848i
$$75$$ 4.70187 + 0.0316067i 0.542926 + 0.00364963i
$$76$$ −2.48945 + 9.29074i −0.285559 + 1.06572i
$$77$$ −1.78728 + 1.78728i −0.203680 + 0.203680i
$$78$$ 1.56521 + 0.595435i 0.177226 + 0.0674198i
$$79$$ 3.12149i 0.351195i 0.984462 + 0.175598i $$0.0561857\pi$$
−0.984462 + 0.175598i $$0.943814\pi$$
$$80$$ 3.51809 + 4.61691i 0.393334 + 0.516186i
$$81$$ 0.911483 + 1.57873i 0.101276 + 0.175415i
$$82$$ 0.0708006 + 0.264231i 0.00781862 + 0.0291795i
$$83$$ 2.13918i 0.234805i −0.993084 0.117403i $$-0.962543\pi$$
0.993084 0.117403i $$-0.0374568\pi$$
$$84$$ 5.86286 1.57095i 0.639691 0.171405i
$$85$$ −2.01537 4.91217i −0.218598 0.532800i
$$86$$ 0.756694 + 0.756694i 0.0815964 + 0.0815964i
$$87$$ 8.64414 2.31619i 0.926749 0.248322i
$$88$$ 0.330188 1.23228i 0.0351982 0.131361i
$$89$$ −3.26255 0.874198i −0.345830 0.0926648i 0.0817233 0.996655i $$-0.473958\pi$$
−0.427553 + 0.903990i $$0.640624\pi$$
$$90$$ −0.297190 2.31755i −0.0313266 0.244291i
$$91$$ −12.0902 + 5.42653i −1.26740 + 0.568855i
$$92$$ −1.68161 1.68161i −0.175320 0.175320i
$$93$$ 5.54675 3.20242i 0.575171 0.332075i
$$94$$ −1.62931 + 0.940681i −0.168050 + 0.0970238i
$$95$$ 11.3310 4.64891i 1.16254 0.476968i
$$96$$ −3.31972 + 3.31972i −0.338817 + 0.338817i
$$97$$ −3.53688 + 6.12606i −0.359116 + 0.622007i −0.987813 0.155643i $$-0.950255\pi$$
0.628697 + 0.777650i $$0.283588\pi$$
$$98$$ 1.60746 2.78421i 0.162378 0.281248i
$$99$$ 1.02878 1.02878i 0.103396 0.103396i
$$100$$ 2.32947 8.46566i 0.232947 0.846566i
$$101$$ 12.9641 7.48483i 1.28998 0.744769i 0.311327 0.950303i $$-0.399226\pi$$
0.978650 + 0.205534i $$0.0658932\pi$$
$$102$$ 0.955111 0.551433i 0.0945700 0.0546000i
$$103$$ 3.17851 + 3.17851i 0.313188 + 0.313188i 0.846143 0.532956i $$-0.178919\pi$$
−0.532956 + 0.846143i $$0.678919\pi$$
$$104$$ 3.91526 5.42311i 0.383923 0.531780i
$$105$$ −6.11581 4.72557i −0.596842 0.461168i
$$106$$ 1.66844 + 0.447058i 0.162054 + 0.0434221i
$$107$$ −3.94767 + 14.7329i −0.381635 + 1.42428i 0.461767 + 0.887001i $$0.347216\pi$$
−0.843403 + 0.537282i $$0.819451\pi$$
$$108$$ −8.16010 + 2.18649i −0.785206 + 0.210395i
$$109$$ −2.25902 2.25902i −0.216375 0.216375i 0.590594 0.806969i $$-0.298893\pi$$
−0.806969 + 0.590594i $$0.798893\pi$$
$$110$$ −0.702643 + 0.288282i −0.0669944 + 0.0274866i
$$111$$ 1.66704 0.446681i 0.158228 0.0423971i
$$112$$ 9.54111i 0.901550i
$$113$$ 4.28882 + 16.0061i 0.403458 + 1.50573i 0.806881 + 0.590713i $$0.201154\pi$$
−0.403423 + 0.915014i $$0.632180\pi$$
$$114$$ 1.27200 + 2.20318i 0.119134 + 0.206346i
$$115$$ −0.405349 + 3.00096i −0.0377990 + 0.279841i
$$116$$ 16.7112i 1.55159i
$$117$$ 6.95926 3.12357i 0.643384 0.288774i
$$118$$ 3.63398 3.63398i 0.334535 0.334535i
$$119$$ −2.25883 + 8.43007i −0.207067 + 0.772783i
$$120$$ 3.86583 + 0.522171i 0.352900 + 0.0476674i
$$121$$ 9.11672 + 5.26354i 0.828793 + 0.478504i
$$122$$ 3.06124 0.277152
$$123$$ −0.451067 0.260424i −0.0406714 0.0234816i
$$124$$ −3.09551 11.5526i −0.277985 1.03746i
$$125$$ −10.3719 + 4.17416i −0.927691 + 0.373349i
$$126$$ −1.92031 + 3.32607i −0.171075 + 0.296310i
$$127$$ −8.01688 2.14812i −0.711383 0.190614i −0.115059 0.993359i $$-0.536706\pi$$
−0.596324 + 0.802744i $$0.703372\pi$$
$$128$$ 5.66555 + 9.81302i 0.500768 + 0.867356i
$$129$$ −2.03754 −0.179395
$$130$$ −3.98064 + 0.102827i −0.349125 + 0.00901855i
$$131$$ 1.37409 0.120054 0.0600272 0.998197i $$-0.480881\pi$$
0.0600272 + 0.998197i $$0.480881\pi$$
$$132$$ 0.567822 + 0.983497i 0.0494226 + 0.0856025i
$$133$$ −19.4458 5.21049i −1.68617 0.451807i
$$134$$ −3.02451 + 5.23861i −0.261278 + 0.452547i
$$135$$ 8.51216 + 6.57718i 0.732610 + 0.566074i
$$136$$ −1.14010 4.25489i −0.0977624 0.364854i
$$137$$ −10.6760 6.16380i −0.912114 0.526609i −0.0310029 0.999519i $$-0.509870\pi$$
−0.881111 + 0.472910i $$0.843203\pi$$
$$138$$ −0.629002 −0.0535442
$$139$$ −5.54392 3.20078i −0.470229 0.271487i 0.246107 0.969243i $$-0.420849\pi$$
−0.716336 + 0.697756i $$0.754182\pi$$
$$140$$ −11.4795 + 8.74739i −0.970195 + 0.739289i
$$141$$ 0.927126 3.46008i 0.0780781 0.291391i
$$142$$ −2.34115 + 2.34115i −0.196465 + 0.196465i
$$143$$ −1.56619 1.92223i −0.130971 0.160745i
$$144$$ 5.49197i 0.457664i
$$145$$ −16.9252 + 12.8971i −1.40557 + 1.07104i
$$146$$ −0.833811 1.44420i −0.0690067 0.119523i
$$147$$ 1.58430 + 5.91269i 0.130671 + 0.487670i
$$148$$ 3.22278i 0.264911i
$$149$$ 16.2300 4.34882i 1.32961 0.356269i 0.477043 0.878880i $$-0.341709\pi$$
0.852571 + 0.522611i $$0.175042\pi$$
$$150$$ −1.14761 2.01894i −0.0937022 0.164846i
$$151$$ −3.31542 3.31542i −0.269805 0.269805i 0.559217 0.829022i $$-0.311102\pi$$
−0.829022 + 0.559217i $$0.811102\pi$$
$$152$$ 9.81486 2.62988i 0.796090 0.213312i
$$153$$ 1.30021 4.85244i 0.105116 0.392297i
$$154$$ 1.20585 + 0.323106i 0.0971699 + 0.0260366i
$$155$$ −9.31161 + 12.0510i −0.747926 + 0.967963i
$$156$$ 0.949120 + 5.87805i 0.0759904 + 0.470620i
$$157$$ 9.87941 + 9.87941i 0.788463 + 0.788463i 0.981242 0.192779i $$-0.0617501\pi$$
−0.192779 + 0.981242i $$0.561750\pi$$
$$158$$ 1.33516 0.770855i 0.106220 0.0613259i
$$159$$ −2.84819 + 1.64440i −0.225876 + 0.130410i
$$160$$ 4.30663 10.2991i 0.340469 0.814214i
$$161$$ 3.51966 3.51966i 0.277388 0.277388i
$$162$$ 0.450183 0.779740i 0.0353697 0.0612622i
$$163$$ −0.0659848 + 0.114289i −0.00516833 + 0.00895180i −0.868598 0.495517i $$-0.834978\pi$$
0.863430 + 0.504469i $$0.168312\pi$$
$$164$$ −0.687741 + 0.687741i −0.0537035 + 0.0537035i
$$165$$ 0.557872 1.33412i 0.0434303 0.103861i
$$166$$ −0.914995 + 0.528272i −0.0710174 + 0.0410019i
$$167$$ 18.7380 10.8184i 1.44999 0.837152i 0.451509 0.892267i $$-0.350886\pi$$
0.998480 + 0.0551149i $$0.0175525\pi$$
$$168$$ −4.53403 4.53403i −0.349808 0.349808i
$$169$$ −4.09151 12.3393i −0.314731 0.949181i
$$170$$ −1.60339 + 2.07510i −0.122975 + 0.159153i
$$171$$ 11.1932 + 2.99922i 0.855969 + 0.229356i
$$172$$ −0.984760 + 3.67518i −0.0750873 + 0.280230i
$$173$$ −7.47013 + 2.00162i −0.567943 + 0.152180i −0.531353 0.847150i $$-0.678316\pi$$
−0.0365902 + 0.999330i $$0.511650\pi$$
$$174$$ −3.12539 3.12539i −0.236935 0.236935i
$$175$$ 17.7189 + 4.87565i 1.33942 + 0.368565i
$$176$$ 1.72433 0.462032i 0.129976 0.0348270i
$$177$$ 9.78515i 0.735497i
$$178$$ 0.431768 + 1.61138i 0.0323624 + 0.120778i
$$179$$ −8.17681 14.1627i −0.611164 1.05857i −0.991045 0.133531i $$-0.957368\pi$$
0.379881 0.925035i $$-0.375965\pi$$
$$180$$ 6.60773 5.03510i 0.492511 0.375294i
$$181$$ 18.0387i 1.34081i 0.741997 + 0.670403i $$0.233879\pi$$
−0.741997 + 0.670403i $$0.766121\pi$$
$$182$$ 5.30678 + 3.83127i 0.393365 + 0.283993i
$$183$$ −4.12148 + 4.12148i −0.304668 + 0.304668i
$$184$$ −0.650235 + 2.42671i −0.0479359 + 0.178899i
$$185$$ −3.26406 + 2.48722i −0.239979 + 0.182864i
$$186$$ −2.73955 1.58168i −0.200873 0.115974i
$$187$$ −1.63292 −0.119411
$$188$$ −5.79298 3.34458i −0.422496 0.243928i
$$189$$ −4.57640 17.0793i −0.332884 1.24234i
$$190$$ −4.78669 3.69858i −0.347263 0.268324i
$$191$$ −2.59552 + 4.49557i −0.187805 + 0.325288i −0.944518 0.328459i $$-0.893471\pi$$
0.756713 + 0.653747i $$0.226804\pi$$
$$192$$ −2.47618 0.663490i −0.178703 0.0478833i
$$193$$ 5.05073 + 8.74813i 0.363560 + 0.629704i 0.988544 0.150934i $$-0.0482279\pi$$
−0.624984 + 0.780637i $$0.714895\pi$$
$$194$$ 3.49375 0.250836
$$195$$ 5.22085 5.49773i 0.373873 0.393701i
$$196$$ 11.4306 0.816473
$$197$$ −6.53197 11.3137i −0.465384 0.806068i 0.533835 0.845589i $$-0.320750\pi$$
−0.999219 + 0.0395205i $$0.987417\pi$$
$$198$$ −0.694099 0.185983i −0.0493275 0.0132173i
$$199$$ 3.92506 6.79840i 0.278240 0.481926i −0.692707 0.721219i $$-0.743582\pi$$
0.970947 + 0.239293i $$0.0769156\pi$$
$$200$$ −8.97550 + 2.34043i −0.634664 + 0.165493i
$$201$$ −2.98093 11.1250i −0.210258 0.784695i
$$202$$ −6.40300 3.69677i −0.450513 0.260104i
$$203$$ 34.9770 2.45491
$$204$$ 3.39588 + 1.96061i 0.237759 + 0.137270i
$$205$$ 1.22732 + 0.165779i 0.0857200 + 0.0115785i
$$206$$ 0.574613 2.14448i 0.0400352 0.149413i
$$207$$ −2.02596 + 2.02596i −0.140814 + 0.140814i
$$208$$ 9.31118 + 0.950343i 0.645614 + 0.0658944i
$$209$$ 3.76669i 0.260547i
$$210$$ −0.510970 + 3.78291i −0.0352603 + 0.261045i
$$211$$ −6.21205 10.7596i −0.427655 0.740720i 0.569009 0.822331i $$-0.307327\pi$$
−0.996664 + 0.0816108i $$0.973994\pi$$
$$212$$ 1.58951 + 5.93213i 0.109168 + 0.407420i
$$213$$ 6.30398i 0.431942i
$$214$$ 7.27661 1.94976i 0.497419 0.133283i
$$215$$ 4.48226 1.83899i 0.305687 0.125418i
$$216$$ 6.31059 + 6.31059i 0.429382 + 0.429382i
$$217$$ 24.1800 6.47901i 1.64145 0.439824i
$$218$$ −0.408387 + 1.52412i −0.0276594 + 0.103226i
$$219$$ 3.06698 + 0.821796i 0.207248 + 0.0555318i
$$220$$ −2.13678 1.65105i −0.144062 0.111314i
$$221$$ −8.00192 3.04407i −0.538267 0.204766i
$$222$$ −0.602736 0.602736i −0.0404530 0.0404530i
$$223$$ −8.61258 + 4.97247i −0.576741 + 0.332981i −0.759837 0.650114i $$-0.774721\pi$$
0.183096 + 0.983095i $$0.441388\pi$$
$$224$$ −15.8910 + 9.17468i −1.06176 + 0.613009i
$$225$$ −10.1992 2.80648i −0.679946 0.187099i
$$226$$ 5.78718 5.78718i 0.384958 0.384958i
$$227$$ −7.30290 + 12.6490i −0.484710 + 0.839543i −0.999846 0.0175659i $$-0.994408\pi$$
0.515135 + 0.857109i $$0.327742\pi$$
$$228$$ −4.52259 + 7.83336i −0.299516 + 0.518777i
$$229$$ −15.6183 + 15.6183i −1.03209 + 1.03209i −0.0326207 + 0.999468i $$0.510385\pi$$
−0.999468 + 0.0326207i $$0.989615\pi$$
$$230$$ 1.38370 0.567708i 0.0912388 0.0374336i
$$231$$ −2.05849 + 1.18847i −0.135439 + 0.0781956i
$$232$$ −15.2887 + 8.82695i −1.00375 + 0.579517i
$$233$$ −16.5625 16.5625i −1.08505 1.08505i −0.996030 0.0890148i $$-0.971628\pi$$
−0.0890148 0.996030i $$-0.528372\pi$$
$$234$$ −3.05465 2.20533i −0.199688 0.144167i
$$235$$ 1.08338 + 8.44841i 0.0706719 + 0.551113i
$$236$$ 17.6498 + 4.72926i 1.14891 + 0.307848i
$$237$$ −0.759747 + 2.83541i −0.0493509 + 0.184180i
$$238$$ 4.16362 1.11564i 0.269888 0.0723162i
$$239$$ 14.6022 + 14.6022i 0.944535 + 0.944535i 0.998541 0.0540053i $$-0.0171988\pi$$
−0.0540053 + 0.998541i $$0.517199\pi$$
$$240$$ 2.07194 + 5.05005i 0.133743 + 0.325980i
$$241$$ 2.99335 0.802065i 0.192818 0.0516656i −0.161117 0.986935i $$-0.551510\pi$$
0.353936 + 0.935270i $$0.384843\pi$$
$$242$$ 5.19935i 0.334227i
$$243$$ 4.17903 + 15.5964i 0.268085 + 1.00051i
$$244$$ 5.44211 + 9.42600i 0.348395 + 0.603438i
$$245$$ −8.82173 11.5771i −0.563600 0.739631i
$$246$$ 0.257248i 0.0164015i
$$247$$ 7.02183 18.4582i 0.446788 1.17447i
$$248$$ −8.93419 + 8.93419i −0.567322 + 0.567322i
$$249$$ 0.520660 1.94313i 0.0329955 0.123141i
$$250$$ 4.34677 + 3.40558i 0.274914 + 0.215388i
$$251$$ −25.5728 14.7645i −1.61414 0.931925i −0.988396 0.151897i $$-0.951462\pi$$
−0.625745 0.780028i $$-0.715205\pi$$
$$252$$ −13.6553 −0.860201
$$253$$ 0.806536 + 0.465654i 0.0507065 + 0.0292754i
$$254$$ 1.06096 + 3.95955i 0.0665704 + 0.248444i
$$255$$ −0.635084 4.95251i −0.0397705 0.310138i
$$256$$ 0.0722145 0.125079i 0.00451341 0.00781745i
$$257$$ −6.92097 1.85447i −0.431718 0.115679i 0.0364143 0.999337i $$-0.488406\pi$$
−0.468133 + 0.883658i $$0.655073\pi$$
$$258$$ 0.503172 + 0.871519i 0.0313261 + 0.0542584i
$$259$$ 6.74538 0.419137
$$260$$ −7.39317 12.0741i −0.458505 0.748806i
$$261$$ −20.1332 −1.24621
$$262$$ −0.339332 0.587740i −0.0209640 0.0363107i
$$263$$ 13.0066 + 3.48511i 0.802023 + 0.214901i 0.636472 0.771300i $$-0.280393\pi$$
0.165551 + 0.986201i $$0.447060\pi$$
$$264$$ 0.599855 1.03898i 0.0369185 0.0639448i
$$265$$ 4.78140 6.18807i 0.293719 0.380130i
$$266$$ 2.57347 + 9.60433i 0.157790 + 0.588879i
$$267$$ −2.75077 1.58816i −0.168345 0.0971938i
$$268$$ −21.5072 −1.31376
$$269$$ 7.01806 + 4.05188i 0.427899 + 0.247047i 0.698451 0.715658i $$-0.253873\pi$$
−0.270552 + 0.962705i $$0.587206\pi$$
$$270$$ 0.711183 5.26516i 0.0432812 0.320427i
$$271$$ −2.38026 + 8.88325i −0.144590 + 0.539619i 0.855183 + 0.518326i $$0.173445\pi$$
−0.999773 + 0.0212923i $$0.993222\pi$$
$$272$$ 4.35853 4.35853i 0.264275 0.264275i
$$273$$ −12.3029 + 1.98654i −0.744608 + 0.120231i
$$274$$ 6.08862i 0.367827i
$$275$$ −0.0231133 + 3.43837i −0.00139378 + 0.207341i
$$276$$ −1.11820 1.93679i −0.0673080 0.116581i
$$277$$ 6.68911 + 24.9641i 0.401910 + 1.49995i 0.809685 + 0.586865i $$0.199638\pi$$
−0.407775 + 0.913082i $$0.633695\pi$$
$$278$$ 3.16174i 0.189629i
$$279$$ −13.9183 + 3.72939i −0.833266 + 0.223273i
$$280$$ 14.0664 + 5.88194i 0.840626 + 0.351513i
$$281$$ 5.41928 + 5.41928i 0.323287 + 0.323287i 0.850027 0.526740i $$-0.176586\pi$$
−0.526740 + 0.850027i $$0.676586\pi$$
$$282$$ −1.70894 + 0.457909i −0.101766 + 0.0272681i
$$283$$ 2.27388 8.48623i 0.135168 0.504454i −0.864829 0.502066i $$-0.832573\pi$$
0.999997 0.00238762i $$-0.000760005\pi$$
$$284$$ −11.3707 3.04677i −0.674728 0.180793i
$$285$$ 11.4241 1.46496i 0.676704 0.0867769i
$$286$$ −0.435428 + 1.14460i −0.0257474 + 0.0676819i
$$287$$ −1.43946 1.43946i −0.0849688 0.0849688i
$$288$$ 9.14705 5.28105i 0.538995 0.311189i
$$289$$ 9.83958 5.68088i 0.578799 0.334170i
$$290$$ 9.69618 + 4.05452i 0.569379 + 0.238090i
$$291$$ −4.70377 + 4.70377i −0.275740 + 0.275740i
$$292$$ 2.96460 5.13484i 0.173490 0.300494i
$$293$$ 6.61798 11.4627i 0.386626 0.669657i −0.605367 0.795947i $$-0.706974\pi$$
0.991993 + 0.126290i $$0.0403069\pi$$
$$294$$ 2.13780 2.13780i 0.124679 0.124679i
$$295$$ −8.83163 21.5258i −0.514197 1.25328i
$$296$$ −2.94846 + 1.70229i −0.171375 + 0.0989437i
$$297$$ 2.86507 1.65415i 0.166248 0.0959834i
$$298$$ −5.86814 5.86814i −0.339932 0.339932i
$$299$$ 3.08427 + 3.78542i 0.178368 + 0.218916i
$$300$$ 4.17646 7.12283i 0.241128 0.411237i
$$301$$ −7.69226 2.06114i −0.443375 0.118802i
$$302$$ −0.599363 + 2.23685i −0.0344895 + 0.128716i
$$303$$ 13.5977 3.64350i 0.781169 0.209314i
$$304$$ 10.0539 + 10.0539i 0.576632 + 0.576632i
$$305$$ 5.34674 12.7865i 0.306154 0.732150i
$$306$$ −2.39663 + 0.642175i −0.137006 + 0.0367107i
$$307$$ 15.4782i 0.883389i −0.897165 0.441695i $$-0.854377\pi$$
0.897165 0.441695i $$-0.145623\pi$$
$$308$$ 1.14880 + 4.28737i 0.0654588 + 0.244296i
$$309$$ 2.11358 + 3.66083i 0.120237 + 0.208257i
$$310$$ 7.45412 + 1.00685i 0.423366 + 0.0571854i
$$311$$ 5.34922i 0.303326i 0.988432 + 0.151663i $$0.0484629\pi$$
−0.988432 + 0.151663i $$0.951537\pi$$
$$312$$ 4.87638 3.97315i 0.276071 0.224936i
$$313$$ 24.3923 24.3923i 1.37873 1.37873i 0.531967 0.846765i $$-0.321453\pi$$
0.846765 0.531967i $$-0.178547\pi$$
$$314$$ 1.78601 6.66547i 0.100790 0.376154i
$$315$$ 10.5386 + 13.8302i 0.593784 + 0.779243i
$$316$$ 4.74714 + 2.74076i 0.267048 + 0.154180i
$$317$$ −18.9851 −1.06631 −0.533156 0.846017i $$-0.678994\pi$$
−0.533156 + 0.846017i $$0.678994\pi$$
$$318$$ 1.40673 + 0.812173i 0.0788852 + 0.0455444i
$$319$$ 1.69378 + 6.32125i 0.0948332 + 0.353922i
$$320$$ 6.04604 0.775312i 0.337984 0.0433412i
$$321$$ −7.17175 + 12.4218i −0.400288 + 0.693319i
$$322$$ −2.37466 0.636287i −0.132334 0.0354589i
$$323$$ −6.50293 11.2634i −0.361832 0.626712i
$$324$$ 3.20124 0.177847
$$325$$ −6.52305 + 16.8062i −0.361834 + 0.932243i
$$326$$ 0.0651800 0.00360999
$$327$$ −1.50216 2.60181i −0.0830695 0.143881i
$$328$$ 0.992469 + 0.265931i 0.0548000 + 0.0146836i
$$329$$ 7.00031 12.1249i 0.385940 0.668467i
$$330$$ −0.708414 + 0.0908432i −0.0389969 + 0.00500075i
$$331$$ −1.81607 6.77766i −0.0998202 0.372534i 0.897886 0.440228i $$-0.145102\pi$$
−0.997706 + 0.0676941i $$0.978436\pi$$
$$332$$ −3.25325 1.87826i −0.178545 0.103083i
$$333$$ −3.88272 −0.212772
$$334$$ −9.25473 5.34322i −0.506396 0.292368i
$$335$$ 16.5985 + 21.7827i 0.906871 + 1.19012i
$$336$$ 2.32223 8.66669i 0.126688 0.472807i
$$337$$ 1.10195 1.10195i 0.0600271 0.0600271i −0.676456 0.736483i $$-0.736485\pi$$
0.736483 + 0.676456i $$0.236485\pi$$
$$338$$ −4.26753 + 4.79728i −0.232123 + 0.260938i
$$339$$ 15.5830i 0.846355i
$$340$$ −9.23996 1.24807i −0.501107 0.0676862i
$$341$$ 2.34185 + 4.05620i 0.126818 + 0.219656i
$$342$$ −1.48132 5.52836i −0.0801006 0.298940i
$$343$$ 1.80378i 0.0973947i
$$344$$ 3.88250 1.04031i 0.209331 0.0560899i
$$345$$ −1.09861 + 2.62727i −0.0591471 + 0.141447i
$$346$$ 2.70091 + 2.70091i 0.145202 + 0.145202i
$$347$$ −24.9510 + 6.68561i −1.33944 + 0.358902i −0.856227 0.516600i $$-0.827197\pi$$
−0.483214 + 0.875502i $$0.660531\pi$$
$$348$$ 4.06737 15.1796i 0.218034 0.813714i
$$349$$ 9.07958 + 2.43287i 0.486019 + 0.130228i 0.493504 0.869744i $$-0.335716\pi$$
−0.00748510 + 0.999972i $$0.502383\pi$$
$$350$$ −2.29023 8.78298i −0.122418 0.469470i
$$351$$ 17.1236 2.76492i 0.913989 0.147581i
$$352$$ −2.42763 2.42763i −0.129393 0.129393i
$$353$$ 2.82798 1.63274i 0.150518 0.0869017i −0.422849 0.906200i $$-0.638970\pi$$
0.573368 + 0.819298i $$0.305637\pi$$
$$354$$ 4.18542 2.41645i 0.222452 0.128433i
$$355$$ 5.68968 + 13.8678i 0.301977 + 0.736024i
$$356$$ −4.19410 + 4.19410i −0.222287 + 0.222287i
$$357$$ −4.10363 + 7.10769i −0.217187 + 0.376179i
$$358$$ −4.03854 + 6.99496i −0.213444 + 0.369695i
$$359$$ −3.12090 + 3.12090i −0.164715 + 0.164715i −0.784652 0.619937i $$-0.787158\pi$$
0.619937 + 0.784652i $$0.287158\pi$$
$$360$$ −8.09676 3.38571i −0.426737 0.178443i
$$361$$ 9.52706 5.50045i 0.501424 0.289497i
$$362$$ 7.71573 4.45468i 0.405530 0.234133i
$$363$$ 7.00009 + 7.00009i 0.367410 + 0.367410i
$$364$$ −2.36294 + 23.1514i −0.123852 + 1.21346i
$$365$$ −7.48859 + 0.960297i −0.391971 + 0.0502643i
$$366$$ 2.78069 + 0.745084i 0.145349 + 0.0389461i
$$367$$ 6.49371 24.2349i 0.338969 1.26505i −0.560533 0.828132i $$-0.689404\pi$$
0.899502 0.436917i $$-0.143930\pi$$
$$368$$ −3.39569 + 0.909872i −0.177012 + 0.0474303i
$$369$$ 0.828572 + 0.828572i 0.0431337 + 0.0431337i
$$370$$ 1.86992 + 0.781922i 0.0972128 + 0.0406502i
$$371$$ −12.4161 + 3.32690i −0.644614 + 0.172724i
$$372$$ 11.2473i 0.583144i
$$373$$ −2.95740 11.0372i −0.153128 0.571483i −0.999258 0.0385061i $$-0.987740\pi$$
0.846130 0.532976i $$-0.178927\pi$$
$$374$$ 0.403250 + 0.698450i 0.0208516 + 0.0361160i
$$375$$ −10.4373 + 1.26717i −0.538980 + 0.0654364i
$$376$$ 7.06651i 0.364427i
$$377$$ −3.48389 + 34.1341i −0.179429 + 1.75800i
$$378$$ −6.17523 + 6.17523i −0.317620 + 0.317620i
$$379$$ −0.520109 + 1.94107i −0.0267162 + 0.0997062i −0.977997 0.208621i $$-0.933102\pi$$
0.951280 + 0.308327i $$0.0997692\pi$$
$$380$$ 2.87896 21.3140i 0.147687 1.09339i
$$381$$ −6.75932 3.90249i −0.346290 0.199931i
$$382$$ 2.56386 0.131179
$$383$$ −22.9077 13.2258i −1.17053 0.675806i −0.216725 0.976233i $$-0.569538\pi$$
−0.953805 + 0.300427i $$0.902871\pi$$
$$384$$ 2.75790 + 10.2926i 0.140739 + 0.525244i
$$385$$ 3.45570 4.47235i 0.176119 0.227932i
$$386$$ 2.49457 4.32072i 0.126970 0.219919i
$$387$$ 4.42775 + 1.18641i 0.225075 + 0.0603088i
$$388$$ 6.21098 + 10.7577i 0.315315 + 0.546141i
$$389$$ 0.650094 0.0329611 0.0164805 0.999864i $$-0.494754\pi$$
0.0164805 + 0.999864i $$0.494754\pi$$
$$390$$ −3.64085 0.875453i −0.184362 0.0443303i
$$391$$ 3.21568 0.162624
$$392$$ −6.03773 10.4577i −0.304951 0.528191i
$$393$$ 1.24815 + 0.334442i 0.0629610 + 0.0168704i
$$394$$ −3.22615 + 5.58786i −0.162531 + 0.281512i
$$395$$ −0.887791 6.92317i −0.0446696 0.348343i
$$396$$ −0.661261 2.46786i −0.0332296 0.124015i
$$397$$ 23.3897 + 13.5041i 1.17390 + 0.677750i 0.954595 0.297907i $$-0.0962884\pi$$
0.219303 + 0.975657i $$0.429622\pi$$
$$398$$ −3.87719 −0.194346
$$399$$ −16.3955 9.46593i −0.820800 0.473889i
$$400$$ −9.11589 9.23928i −0.455795 0.461964i
$$401$$ −1.28339 + 4.78969i −0.0640896 + 0.239186i −0.990539 0.137235i $$-0.956179\pi$$
0.926449 + 0.376421i $$0.122845\pi$$
$$402$$ −4.02236 + 4.02236i −0.200617 + 0.200617i
$$403$$ 3.91442 + 24.2426i 0.194991 + 1.20761i
$$404$$ 26.2876i 1.30786i
$$405$$ −2.47060 3.24225i −0.122765 0.161109i
$$406$$ −8.63761 14.9608i −0.428677 0.742491i
$$407$$ 0.326647 + 1.21906i 0.0161913 + 0.0604268i
$$408$$ 4.14243i 0.205081i
$$409$$ −5.83965 + 1.56473i −0.288752 + 0.0773708i −0.400288 0.916390i $$-0.631090\pi$$
0.111536 + 0.993760i $$0.464423\pi$$
$$410$$ −0.232180 0.565904i −0.0114665 0.0279480i
$$411$$ −8.19736 8.19736i −0.404346 0.404346i
$$412$$ 7.62468 2.04303i 0.375641 0.100653i
$$413$$ −9.89848 + 36.9416i −0.487073 + 1.81778i
$$414$$ 1.36688 + 0.366254i 0.0671784 + 0.0180004i
$$415$$ 0.608410 + 4.74450i 0.0298657 + 0.232898i
$$416$$ −7.37076 16.4219i −0.361381 0.805150i
$$417$$ −4.25679 4.25679i −0.208456 0.208456i
$$418$$ −1.61113 + 0.930187i −0.0788030 + 0.0454969i
$$419$$ −4.65114 + 2.68534i −0.227223 + 0.131187i −0.609290 0.792947i $$-0.708546\pi$$
0.382067 + 0.924135i $$0.375212\pi$$
$$420$$ −12.5565 + 5.15169i −0.612693 + 0.251377i
$$421$$ 14.1377 14.1377i 0.689029 0.689029i −0.272988 0.962017i $$-0.588012\pi$$
0.962017 + 0.272988i $$0.0880119\pi$$
$$422$$ −3.06814 + 5.31418i −0.149355 + 0.258690i
$$423$$ −4.02946 + 6.97923i −0.195919 + 0.339342i
$$424$$ 4.58760 4.58760i 0.222794 0.222794i
$$425$$ 5.86699 + 10.3215i 0.284591 + 0.500668i
$$426$$ −2.69641 + 1.55677i −0.130642 + 0.0754260i
$$427$$ −19.7289 + 11.3905i −0.954750 + 0.551225i
$$428$$ 18.9395 + 18.9395i 0.915476 + 0.915476i
$$429$$ −0.954794 2.12726i −0.0460979 0.102705i
$$430$$ −1.89349 1.46306i −0.0913122 0.0705552i
$$431$$ 16.1219 + 4.31985i 0.776564 + 0.208080i 0.625269 0.780409i $$-0.284989\pi$$
0.151295 + 0.988489i $$0.451656\pi$$
$$432$$ −3.23215 + 12.0625i −0.155507 + 0.580360i
$$433$$ −7.33490 + 1.96538i −0.352493 + 0.0944502i −0.430721 0.902485i $$-0.641741\pi$$
0.0782277 + 0.996936i $$0.475074\pi$$
$$434$$ −8.74255 8.74255i −0.419656 0.419656i
$$435$$ −18.5131 + 7.59559i −0.887637 + 0.364181i
$$436$$ −5.41899 + 1.45201i −0.259522 + 0.0695388i
$$437$$ 7.41767i 0.354835i
$$438$$ −0.405886 1.51479i −0.0193940 0.0723794i
$$439$$ −6.84536 11.8565i −0.326711 0.565880i 0.655146 0.755502i $$-0.272607\pi$$
−0.981857 + 0.189622i $$0.939274\pi$$
$$440$$ −0.381851 + 2.82699i −0.0182040 + 0.134772i
$$441$$ 13.7713i 0.655777i
$$442$$ 0.674036 + 4.17441i 0.0320606 + 0.198556i
$$443$$ 6.46290 6.46290i 0.307062 0.307062i −0.536707 0.843769i $$-0.680332\pi$$
0.843769 + 0.536707i $$0.180332\pi$$
$$444$$ 0.784399 2.92742i 0.0372259 0.138929i
$$445$$ 7.48467 + 1.01098i 0.354807 + 0.0479250i
$$446$$ 4.25377 + 2.45591i 0.201422 + 0.116291i
$$447$$ 15.8010 0.747364
$$448$$ −8.67708 5.00971i −0.409953 0.236687i
$$449$$ 6.65458 + 24.8352i 0.314049 + 1.17205i 0.924872 + 0.380280i $$0.124172\pi$$
−0.610822 + 0.791768i $$0.709161\pi$$
$$450$$ 1.31828 + 5.05558i 0.0621443 + 0.238322i
$$451$$ 0.190442 0.329855i 0.00896755 0.0155323i
$$452$$ 28.1077 + 7.53143i 1.32207 + 0.354249i
$$453$$ −2.20462 3.81852i −0.103582 0.179409i
$$454$$ 7.21383 0.338562
$$455$$ 25.2716 15.4741i 1.18475 0.725439i
$$456$$ 9.55545 0.447475
$$457$$ −0.413767 0.716665i −0.0193552 0.0335242i 0.856186 0.516668i $$-0.172828\pi$$
−0.875541 + 0.483144i $$0.839495\pi$$
$$458$$ 10.5374 + 2.82349i 0.492381 + 0.131933i
$$459$$ 5.71155 9.89269i 0.266592 0.461751i
$$460$$ 4.20792 + 3.25138i 0.196195 + 0.151596i
$$461$$ 6.23219 + 23.2589i 0.290262 + 1.08327i 0.944908 + 0.327337i $$0.106151\pi$$
−0.654646 + 0.755936i $$0.727182\pi$$
$$462$$ 1.01669 + 0.586988i 0.0473008 + 0.0273091i
$$463$$ 6.35566 0.295373 0.147686 0.989034i $$-0.452817\pi$$
0.147686 + 0.989034i $$0.452817\pi$$
$$464$$ −21.3935 12.3515i −0.993167 0.573405i
$$465$$ −11.3914 + 8.68022i −0.528262 + 0.402536i
$$466$$ −2.99418 + 11.1744i −0.138703 + 0.517645i
$$467$$ 15.6194 15.6194i 0.722781 0.722781i −0.246390 0.969171i $$-0.579244\pi$$
0.969171 + 0.246390i $$0.0792443\pi$$
$$468$$ 1.36013 13.3262i 0.0628722 0.616003i
$$469$$ 45.0153i 2.07861i
$$470$$ 3.34611 2.54974i 0.154345 0.117611i
$$471$$ 6.56942 + 11.3786i 0.302703 + 0.524297i
$$472$$ −4.99605 18.6455i −0.229962 0.858229i
$$473$$ 1.49000i 0.0685104i
$$474$$ 1.40042 0.375240i 0.0643232 0.0172354i
$$475$$ −23.8089 + 13.5335i −1.09243 + 0.620961i
$$476$$ 10.8371 + 10.8371i 0.496716 + 0.496716i
$$477$$ 7.14687 1.91500i 0.327233 0.0876818i
$$478$$ 2.63979 9.85182i 0.120741 0.450612i
$$479$$ −9.14111 2.44935i −0.417668 0.111914i 0.0438638 0.999038i $$-0.486033\pi$$
−0.461532 + 0.887124i $$0.652700\pi$$
$$480$$ 6.41866 8.30700i 0.292970 0.379161i
$$481$$ −0.671874 + 6.58282i −0.0306348 + 0.300151i
$$482$$ −1.08228 1.08228i −0.0492964 0.0492964i
$$483$$ 4.05375 2.34044i 0.184452 0.106494i
$$484$$ 16.0095 9.24310i 0.727705 0.420141i
$$485$$ 6.10215 14.5930i 0.277084 0.662633i
$$486$$ 5.63904 5.63904i 0.255792 0.255792i
$$487$$ −3.07948 + 5.33382i −0.139545 + 0.241698i −0.927324 0.374259i $$-0.877897\pi$$
0.787780 + 0.615957i $$0.211231\pi$$
$$488$$ 5.74911 9.95775i 0.260250 0.450766i
$$489$$ −0.0877545 + 0.0877545i −0.00396840 + 0.00396840i
$$490$$ −2.77334 + 6.63230i −0.125287 + 0.299617i
$$491$$ 12.8290 7.40681i 0.578964 0.334265i −0.181758 0.983343i $$-0.558179\pi$$
0.760721 + 0.649078i $$0.224845\pi$$
$$492$$ −0.792102 + 0.457320i −0.0357107 + 0.0206176i
$$493$$ 15.9781 + 15.9781i 0.719615 + 0.719615i
$$494$$ −9.62921 + 1.55481i −0.433238 + 0.0699544i
$$495$$ −1.98914 + 2.57433i −0.0894051 + 0.115708i
$$496$$ −17.0775 4.57590i −0.766802 0.205464i
$$497$$ 6.37699 23.7993i 0.286047 1.06754i
$$498$$ −0.959715 + 0.257155i −0.0430059 + 0.0115234i
$$499$$ −21.0529 21.0529i −0.942459 0.942459i 0.0559733 0.998432i $$-0.482174\pi$$
−0.998432 + 0.0559733i $$0.982174\pi$$
$$500$$ −2.75881 + 19.4386i −0.123378 + 0.869319i
$$501$$ 19.6538 5.26622i 0.878068 0.235278i
$$502$$ 14.5844i 0.650933i
$$503$$ −10.0318 37.4393i −0.447297 1.66934i −0.709799 0.704404i $$-0.751214\pi$$
0.262502 0.964932i $$-0.415452\pi$$
$$504$$ 7.21280 + 12.4929i 0.321284 + 0.556479i
$$505$$ −26.6244 + 20.2878i −1.18477 + 0.902796i
$$506$$ 0.459974i 0.0204484i
$$507$$ −0.713230 12.2043i −0.0316756 0.542013i
$$508$$ −10.3059 + 10.3059i −0.457250 + 0.457250i
$$509$$ 1.43699 5.36291i 0.0636933 0.237707i −0.926739 0.375706i $$-0.877400\pi$$
0.990432 + 0.137999i $$0.0440670\pi$$
$$510$$ −1.96151 + 1.49467i −0.0868572 + 0.0661852i
$$511$$ 10.7474 + 6.20501i 0.475437 + 0.274493i
$$512$$ 22.5909 0.998384
$$513$$ 22.8197 + 13.1750i 1.00751 + 0.581688i
$$514$$ 0.915926 + 3.41828i 0.0403997 + 0.150774i
$$515$$ −7.95364 6.14563i −0.350479 0.270809i
$$516$$ −1.78902 + 3.09867i −0.0787572 + 0.136411i
$$517$$ 2.53028 + 0.677985i 0.111281 + 0.0298178i
$$518$$ −1.66578 2.88521i −0.0731900 0.126769i
$$519$$ −7.27269 −0.319236
$$520$$ −7.14127 + 13.1415i −0.313166 + 0.576293i
$$521$$ −13.8692 −0.607619 −0.303809 0.952733i $$-0.598259\pi$$
−0.303809 + 0.952733i $$0.598259\pi$$
$$522$$ 4.97191 + 8.61159i 0.217614 + 0.376919i
$$523$$ −30.2601 8.10818i −1.32318 0.354546i −0.473014 0.881055i $$-0.656834\pi$$
−0.850170 + 0.526509i $$0.823501\pi$$
$$524$$ 1.20649 2.08970i 0.0527057 0.0912890i
$$525$$ 14.9083 + 8.74146i 0.650652 + 0.381508i
$$526$$ −1.72130 6.42400i −0.0750524 0.280100i
$$527$$ 14.0055 + 8.08609i 0.610090 + 0.352236i
$$528$$ 1.67875 0.0730583
$$529$$ 18.3303 + 10.5830i 0.796969 + 0.460130i
$$530$$ −3.82760 0.517007i −0.166260 0.0224574i
$$531$$ 5.69768 21.2640i 0.247258 0.922781i
$$532$$ −24.9981 + 24.9981i −1.08381 + 1.08381i
$$533$$ 1.54815 1.26140i 0.0670579 0.0546371i
$$534$$ 1.56879i 0.0678882i
$$535$$ 4.56534 33.7990i 0.197377 1.46126i
$$536$$ 11.3602 + 19.6765i 0.490688 + 0.849897i
$$537$$ −3.98035 14.8549i −0.171765 0.641035i
$$538$$ 4.00246i 0.172558i
$$539$$ −4.32381 + 1.15856i −0.186240 + 0.0499028i
$$540$$ 17.4765 7.17027i 0.752067 0.308559i
$$541$$ −10.7732 10.7732i −0.463175 0.463175i 0.436520 0.899695i $$-0.356211\pi$$
−0.899695 + 0.436520i $$0.856211\pi$$
$$542$$ 4.38745 1.17561i 0.188457 0.0504969i
$$543$$ −4.39048 + 16.3855i −0.188414 + 0.703170i
$$544$$ −11.4504 3.06813i −0.490932 0.131545i
$$545$$ 5.65278 + 4.36780i 0.242139 + 0.187096i
$$546$$ 3.88793 + 4.77178i 0.166388 + 0.204213i
$$547$$ 14.2704 + 14.2704i 0.610159 + 0.610159i 0.942987 0.332828i $$-0.108003\pi$$
−0.332828 + 0.942987i $$0.608003\pi$$
$$548$$ −18.7477 + 10.8240i −0.800863 + 0.462379i
$$549$$ 11.3562 6.55650i 0.484671 0.279825i
$$550$$ 1.47641 0.839222i 0.0629542 0.0357846i
$$551$$ −36.8569 + 36.8569i −1.57016 + 1.57016i
$$552$$ −1.18128 + 2.04605i −0.0502788 + 0.0870855i
$$553$$ −5.73651 + 9.93592i −0.243941 + 0.422518i
$$554$$ 9.02605 9.02605i 0.383480 0.383480i
$$555$$ −3.57029 + 1.46482i −0.151550 + 0.0621783i
$$556$$ −9.73546 + 5.62077i −0.412875 + 0.238374i
$$557$$ 14.4727 8.35584i 0.613229 0.354048i −0.160999 0.986955i $$-0.551472\pi$$
0.774228 + 0.632906i $$0.218138\pi$$
$$558$$ 5.03231 + 5.03231i 0.213035 + 0.213035i
$$559$$ 2.77765 7.30159i 0.117482 0.308824i
$$560$$ 2.71361 + 21.1613i 0.114671 + 0.894227i
$$561$$ −1.48326 0.397439i −0.0626234 0.0167799i
$$562$$ 0.979701 3.65629i 0.0413262 0.154231i
$$563$$ −21.8019 + 5.84179i −0.918839 + 0.246202i −0.687089 0.726573i $$-0.741112\pi$$
−0.231750 + 0.972775i $$0.574445\pi$$
$$564$$ −4.44802 4.44802i −0.187296 0.187296i
$$565$$ −14.0645 34.2802i −0.591700 1.44218i
$$566$$ −4.19136 + 1.12307i −0.176176 + 0.0472063i
$$567$$ 6.70030i 0.281386i
$$568$$ 3.21865 + 12.0122i 0.135052 + 0.504019i
$$569$$ −2.86843 4.96826i −0.120251 0.208280i 0.799616 0.600512i $$-0.205037\pi$$
−0.919866 + 0.392232i $$0.871703\pi$$
$$570$$ −3.44780 4.52466i −0.144412 0.189517i
$$571$$ 46.5634i 1.94862i −0.225214 0.974309i $$-0.572308\pi$$
0.225214 0.974309i $$-0.427692\pi$$
$$572$$ −4.29848 + 0.694069i −0.179728 + 0.0290205i
$$573$$ −3.45183 + 3.45183i −0.144202 + 0.144202i
$$574$$ −0.260227 + 0.971181i −0.0108617 + 0.0405363i
$$575$$ 0.0455166 6.77112i 0.00189817 0.282375i
$$576$$ 4.99463 + 2.88365i 0.208109 + 0.120152i
$$577$$ −28.9429 −1.20491 −0.602455 0.798153i $$-0.705811\pi$$
−0.602455 + 0.798153i $$0.705811\pi$$
$$578$$ −4.85978 2.80580i −0.202140 0.116706i
$$579$$ 2.45862 + 9.17569i 0.102177 + 0.381329i
$$580$$ 4.75287 + 37.0638i 0.197352 + 1.53899i
$$581$$ 3.93127 6.80916i 0.163097 0.282491i
$$582$$ 3.17355 + 0.850351i 0.131548 + 0.0352482i
$$583$$ −1.20251 2.08281i −0.0498030 0.0862613i
$$584$$ −6.26369 −0.259193
$$585$$ −14.5466 + 8.90709i −0.601428 + 0.368263i
$$586$$ −6.53726 −0.270052
$$587$$ 9.84577 + 17.0534i 0.406379 + 0.703868i 0.994481 0.104918i $$-0.0334581\pi$$
−0.588102 + 0.808787i $$0.700125\pi$$
$$588$$ 10.3830 + 2.78213i 0.428189 + 0.114733i
$$589$$ −18.6524 + 32.3069i −0.768558 + 1.33118i
$$590$$ −7.02628 + 9.09338i −0.289267 + 0.374368i
$$591$$ −3.17966 11.8667i −0.130794 0.488129i
$$592$$ −4.12577 2.38201i −0.169568 0.0979001i
$$593$$ −21.8216 −0.896106 −0.448053 0.894007i $$-0.647882\pi$$
−0.448053 + 0.894007i $$0.647882\pi$$
$$594$$ −1.41506 0.816987i −0.0580607 0.0335214i
$$595$$ 2.61226 19.3395i 0.107092 0.792844i
$$596$$ 7.63679 28.5009i 0.312815 1.16744i
$$597$$ 5.22002 5.22002i 0.213641 0.213641i
$$598$$ 0.857481 2.25405i 0.0350650 0.0921750i
$$599$$ 37.6041i 1.53646i 0.640172 + 0.768232i $$0.278863\pi$$
−0.640172 + 0.768232i $$0.721137\pi$$
$$600$$ −8.72256 0.0586345i −0.356097 0.00239374i
$$601$$ 10.1487 + 17.5781i 0.413976 + 0.717027i 0.995320 0.0966302i $$-0.0308064\pi$$
−0.581344 + 0.813658i $$0.697473\pi$$
$$602$$ 1.01800 + 3.79922i 0.0414905 + 0.154845i
$$603$$ 25.9113i 1.05519i
$$604$$ −7.95310 + 2.13103i −0.323607 + 0.0867103i
$$605$$ −21.7171 9.08113i −0.882924 0.369201i
$$606$$ −4.91641 4.91641i −0.199716 0.199716i
$$607$$ −33.2808 + 8.91757i −1.35083 + 0.361953i −0.860440 0.509552i $$-0.829811\pi$$
−0.490387 + 0.871505i $$0.663144\pi$$
$$608$$ 7.07732 26.4129i 0.287023 1.07119i
$$609$$ 31.7715 + 8.51314i 1.28744 + 0.344970i
$$610$$ −6.78955 + 0.870657i −0.274901 + 0.0352519i
$$611$$ 11.1354 + 8.03931i 0.450491 + 0.325236i
$$612$$ −6.23794 6.23794i −0.252154 0.252154i
$$613$$ 21.5350 12.4332i 0.869790 0.502173i 0.00251133 0.999997i $$-0.499201\pi$$
0.867278 + 0.497824i $$0.165867\pi$$
$$614$$ −6.62053 + 3.82236i −0.267183 + 0.154258i
$$615$$ 1.07449 + 0.449307i 0.0433277 + 0.0181178i
$$616$$ 3.31563 3.31563i 0.133591 0.133591i
$$617$$ 13.9081 24.0895i 0.559917 0.969805i −0.437585 0.899177i $$-0.644166\pi$$
0.997503 0.0706286i $$-0.0225005\pi$$
$$618$$ 1.04390 1.80809i 0.0419919 0.0727321i
$$619$$ 19.5593 19.5593i 0.786156 0.786156i −0.194705 0.980862i $$-0.562375\pi$$
0.980862 + 0.194705i $$0.0623751\pi$$
$$620$$ 10.1513 + 24.7422i 0.407685 + 0.993671i
$$621$$ −5.64213 + 3.25749i −0.226411 + 0.130718i
$$622$$ 2.28803 1.32099i 0.0917416 0.0529671i
$$623$$ −8.77838 8.77838i −0.351698 0.351698i
$$624$$ 8.22653 + 3.12952i 0.329325 + 0.125281i
$$625$$ 21.8167 12.2078i 0.872669 0.488312i
$$626$$ −16.4570 4.40965i −0.657755 0.176245i
$$627$$ 0.916783 3.42148i 0.0366128 0.136641i
$$628$$ 23.6990 6.35012i 0.945692 0.253397i
$$629$$ 3.08139 + 3.08139i 0.122863 + 0.122863i
$$630$$ 3.31309 7.92308i 0.131997 0.315663i
$$631$$ 12.6187 3.38116i 0.502341 0.134602i 0.00125496 0.999999i $$-0.499601\pi$$
0.501086 + 0.865397i $$0.332934\pi$$
$$632$$ 5.79076i 0.230344i
$$633$$ −3.02393 11.2855i −0.120190 0.448557i
$$634$$ 4.68840 + 8.12054i 0.186200 + 0.322508i
$$635$$ 18.3916 + 2.48422i 0.729850 + 0.0985832i
$$636$$ 5.77534i 0.229007i
$$637$$ −23.3481 2.38302i −0.925086 0.0944186i
$$638$$ 2.28552 2.28552i 0.0904846 0.0904846i
$$639$$ −3.67067 + 13.6991i −0.145210 + 0.541929i
$$640$$ −15.3566 20.1530i −0.607023 0.796617i
$$641$$ 23.7092 + 13.6885i 0.936456 + 0.540663i 0.888848 0.458203i $$-0.151507\pi$$
0.0476083 + 0.998866i $$0.484840\pi$$
$$642$$ 7.08428 0.279594
$$643$$ 27.2816 + 15.7510i 1.07588 + 0.621161i 0.929783 0.368109i $$-0.119995\pi$$
0.146099 + 0.989270i $$0.453328\pi$$
$$644$$ −2.26231 8.44305i −0.0891475 0.332703i
$$645$$ 4.51907 0.579501i 0.177938 0.0228178i
$$646$$ −3.21181 + 5.56301i −0.126367 + 0.218874i
$$647$$ −40.3457 10.8106i −1.58615 0.425008i −0.645329 0.763905i $$-0.723280\pi$$
−0.940824 + 0.338896i $$0.889946\pi$$
$$648$$ −1.69092 2.92875i −0.0664254 0.115052i
$$649$$ −7.15565 −0.280884
$$650$$ 8.79943 1.36020i 0.345142 0.0533516i
$$651$$ 23.5409 0.922641
$$652$$ 0.115873 + 0.200698i 0.00453795 + 0.00785996i
$$653$$ 14.6695 + 3.93069i 0.574064 + 0.153820i 0.534160 0.845384i $$-0.320628\pi$$
0.0399041 + 0.999204i $$0.487295\pi$$
$$654$$ −0.741918 + 1.28504i −0.0290113 + 0.0502490i
$$655$$ −3.04759 + 0.390807i −0.119079 + 0.0152701i
$$656$$ 0.372117 + 1.38876i 0.0145287 + 0.0542220i
$$657$$ −6.18632 3.57167i −0.241351 0.139344i
$$658$$ −6.91493 −0.269572
$$659$$ 24.6914 + 14.2556i 0.961840 + 0.555319i 0.896739 0.442560i $$-0.145930\pi$$
0.0651015 + 0.997879i $$0.479263\pi$$
$$660$$ −1.53910 2.01981i −0.0599092 0.0786210i
$$661$$ −1.63091 + 6.08664i −0.0634351 + 0.236743i −0.990363 0.138497i $$-0.955773\pi$$
0.926928 + 0.375240i $$0.122440\pi$$
$$662$$ −2.45054 + 2.45054i −0.0952430 + 0.0952430i
$$663$$ −6.52766 4.71270i −0.253513 0.183026i
$$664$$ 3.96845i 0.154006i
$$665$$ 44.6110 + 6.02575i 1.72994 + 0.233669i
$$666$$ 0.958840 + 1.66076i 0.0371543 + 0.0643531i
$$667$$ −3.33552 12.4483i −0.129152 0.482002i
$$668$$ 37.9955i 1.47009i
$$669$$ −9.03352 + 2.42052i −0.349256 + 0.0935829i
$$670$$ 5.21816 12.4790i 0.201595 0.482104i
$$671$$ −3.01394 3.01394i −0.116352 0.116352i
$$672$$ −16.6677 + 4.46610i −0.642970 + 0.172283i
$$673$$ −5.92931 + 22.1285i −0.228558 + 0.852991i 0.752389 + 0.658719i $$0.228901\pi$$
−0.980948 + 0.194272i $$0.937765\pi$$
$$674$$ −0.743468 0.199212i −0.0286373 0.00767334i
$$675$$ −20.7498 12.1666i −0.798660 0.468293i
$$676$$ −22.3581 4.61199i −0.859926 0.177384i
$$677$$ −16.1247 16.1247i −0.619724 0.619724i 0.325736 0.945461i $$-0.394388\pi$$
−0.945461 + 0.325736i $$0.894388\pi$$
$$678$$ 6.66536 3.84825i 0.255982 0.147791i
$$679$$ −22.5163 + 12.9998i −0.864096 + 0.498886i
$$680$$ 3.73877 + 9.11270i 0.143375 + 0.349456i
$$681$$ −9.71227 + 9.71227i −0.372175 + 0.372175i
$$682$$ 1.15664 2.00337i 0.0442902 0.0767129i
$$683$$ 16.0240 27.7544i 0.613142 1.06199i −0.377565 0.925983i $$-0.623239\pi$$
0.990707 0.136010i $$-0.0434280\pi$$
$$684$$ 14.3892 14.3892i 0.550185 0.550185i
$$685$$ 25.4315 + 10.6343i 0.971686 + 0.406317i
$$686$$ −0.771532 + 0.445444i −0.0294572 + 0.0170071i
$$687$$ −17.9883 + 10.3856i −0.686298 + 0.396234i
$$688$$ 3.97707 + 3.97707i 0.151624 + 0.151624i
$$689$$ −2.01001 12.4483i −0.0765753 0.474243i
$$690$$ 1.39507 0.178896i 0.0531093 0.00681046i
$$691$$ −0.532264 0.142620i −0.0202483 0.00542551i 0.248681 0.968586i $$-0.420003\pi$$
−0.268929 + 0.963160i $$0.586670\pi$$
$$692$$ −3.51496 + 13.1180i −0.133619 + 0.498672i
$$693$$ 5.16531 1.38404i 0.196214 0.0525754i
$$694$$ 9.02132 + 9.02132i 0.342445 + 0.342445i
$$695$$ 13.2062 + 5.52228i 0.500941 + 0.209472i
$$696$$ −16.0360 + 4.29682i −0.607842 + 0.162871i
$$697$$ 1.31514i 0.0498144i
$$698$$ −1.20160 4.48442i −0.0454811 0.169738i
$$699$$ −11.0134 19.0758i −0.416565 0.721512i
$$700$$ 22.9726 22.6658i 0.868282 0.856687i
$$701$$ 9.52279i 0.359671i 0.983697 + 0.179835i $$0.0575565\pi$$
−0.983697 + 0.179835i $$0.942443\pi$$
$$702$$ −5.41133 6.64150i −0.204237 0.250667i
$$703$$ −7.10792 + 7.10792i −0.268080 + 0.268080i
$$704$$ 0.485195 1.81077i 0.0182865 0.0682460i
$$705$$ −1.07219 + 7.93782i −0.0403809 + 0.298956i
$$706$$ −1.39674 0.806411i −0.0525672 0.0303497i
$$707$$ 55.0209 2.06927
$$708$$ 14.8812 + 8.59166i 0.559270 + 0.322894i
$$709$$ −8.39944 31.3471i −0.315448 1.17727i −0.923572 0.383425i $$-0.874745\pi$$
0.608124 0.793842i $$-0.291922\pi$$
$$710$$ 4.52661 5.85831i 0.169881 0.219859i
$$711$$ 3.30200 5.71923i 0.123835 0.214488i
$$712$$ 6.05244 + 1.62175i 0.226825 + 0.0607776i
$$713$$ −4.61177 7.98782i −0.172712 0.299146i
$$714$$ 4.05358 0.151701
$$715$$ 4.02036 + 3.81789i 0.150353 + 0.142781i
$$716$$ −28.7180 −1.07324
$$717$$ 9.70986 + 16.8180i 0.362621 + 0.628079i
$$718$$ 2.10561 + 0.564197i 0.0785808 + 0.0210557i
$$719$$ −4.21240 + 7.29608i −0.157096 + 0.272098i −0.933820 0.357743i $$-0.883546\pi$$
0.776724 + 0.629841i $$0.216880\pi$$
$$720$$ −1.56199 12.1807i −0.0582118 0.453947i
$$721$$ 4.27612 + 15.9587i 0.159251 + 0.594333i
$$722$$ −4.70543 2.71668i −0.175118 0.101104i
$$723$$ 2.91423 0.108381
$$724$$ 27.4332 + 15.8385i 1.01955 + 0.588635i
$$725$$ 33.8705 33.4182i 1.25792 1.24112i
$$726$$ 1.26548 4.72284i 0.0469664 0.175281i
$$727$$ 8.33682 8.33682i 0.309195 0.309195i −0.535402 0.844597i $$-0.679840\pi$$
0.844597 + 0.535402i $$0.179840\pi$$
$$728$$ 22.4288 10.0669i 0.831268 0.373104i
$$729$$ 9.71523i 0.359824i
$$730$$ 2.26006 + 2.96596i 0.0836487 + 0.109775i
$$731$$ −2.57239 4.45551i −0.0951432 0.164793i
$$732$$ 2.64913 + 9.88670i 0.0979148 + 0.365423i
$$733$$ 18.6238i 0.687887i 0.938990 + 0.343944i $$0.111763\pi$$
−0.938990 + 0.343944i $$0.888237\pi$$
$$734$$ −11.9696 + 3.20725i −0.441807 + 0.118382i
$$735$$ −5.19547 12.6632i −0.191638 0.467089i
$$736$$ 4.78070 + 4.78070i 0.176219 + 0.176219i
$$737$$ 8.13543 2.17988i 0.299672 0.0802970i
$$738$$ 0.149790 0.559023i 0.00551383 0.0205779i
$$739$$ 31.8740 + 8.54061i 1.17250 + 0.314171i 0.791949 0.610587i $$-0.209066\pi$$
0.380555 + 0.924758i $$0.375733\pi$$
$$740$$ 0.916598 + 7.14782i 0.0336948 + 0.262759i
$$741$$ 10.8709 15.0575i 0.399352 0.553151i
$$742$$ 4.48920 + 4.48920i 0.164804 + 0.164804i
$$743$$ −32.5366 + 18.7850i −1.19365 + 0.689155i −0.959133 0.282957i $$-0.908685\pi$$
−0.234518 + 0.972112i $$0.575351\pi$$
$$744$$ −10.2899 + 5.94088i −0.377246 + 0.217803i
$$745$$ −34.7598 + 14.2613i −1.27350 + 0.522493i
$$746$$ −3.99061 + 3.99061i −0.146107 + 0.146107i
$$747$$ −2.26288 + 3.91943i −0.0827946 + 0.143404i
$$748$$ −1.43375 + 2.48333i −0.0524231 + 0.0907995i
$$749$$ −39.6410 + 39.6410i −1.44845 + 1.44845i
$$750$$ 3.11951 + 4.15144i 0.113908 + 0.151589i
$$751$$ −29.1051 + 16.8038i −1.06206 + 0.613181i −0.926001 0.377520i $$-0.876777\pi$$
−0.136059 + 0.990701i $$0.543444\pi$$
$$752$$ −8.56339 + 4.94407i −0.312275 + 0.180292i
$$753$$ −19.6356 19.6356i −0.715560 0.715560i
$$754$$ 15.4606 6.93928i 0.563041 0.252714i
$$755$$ 8.29623 + 6.41034i 0.301931 + 0.233296i
$$756$$ −29.9924 8.03643i −1.09081 0.292282i
$$757$$ −4.17654 + 15.5871i −0.151799 + 0.566521i 0.847559 + 0.530701i $$0.178071\pi$$
−0.999358 + 0.0358205i $$0.988596\pi$$
$$758$$ 0.958699 0.256883i 0.0348215 0.00933040i
$$759$$ 0.619282 + 0.619282i 0.0224785 + 0.0224785i
$$760$$ −21.0205 + 8.62431i −0.762493 + 0.312837i
$$761$$ −15.1340 + 4.05514i −0.548606 + 0.146999i −0.522467 0.852660i $$-0.674988\pi$$
−0.0261397 + 0.999658i $$0.508321\pi$$
$$762$$ 3.85490i 0.139648i
$$763$$ −3.03911 11.3421i −0.110023 0.410612i
$$764$$ 4.55789 + 7.89449i 0.164899 + 0.285613i
$$765$$ −1.50364 + 11.1321i −0.0543644 + 0.402480i
$$766$$ 13.0645i 0.472039i
$$767$$ −35.0655 13.3395i −1.26614 0.481662i
$$768$$ 0.0960396 0.0960396i 0.00346553 0.00346553i
$$769$$ −8.43930 + 31.4959i −0.304329 + 1.13577i 0.629193 + 0.777249i $$0.283386\pi$$
−0.933522 + 0.358521i $$0.883281\pi$$
$$770$$ −2.76635 0.373660i −0.0996924 0.0134658i
$$771$$ −5.83532 3.36902i −0.210154 0.121332i
$$772$$ 1