Properties

Label 65.2.o
Level 6565
Weight 22
Character orbit 65.o
Rep. character χ65(2,)\chi_{65}(2,\cdot)
Character field Q(ζ12)\Q(\zeta_{12})
Dimension 2020
Newform subspaces 11
Sturm bound 1414
Trace bound 00

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 65=513 65 = 5 \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 65.o (of order 1212 and degree 44)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 65 65
Character field: Q(ζ12)\Q(\zeta_{12})
Newform subspaces: 1 1
Sturm bound: 1414
Trace bound: 00

Dimensions

The following table gives the dimensions of various subspaces of M2(65,[χ])M_{2}(65, [\chi]).

Total New Old
Modular forms 36 36 0
Cusp forms 20 20 0
Eisenstein series 16 16 0

Trace form

20q4q22q36q46q58q66q7+12q812q910q1016q11+24q12+2q13+12q152q1610q17+20q19+14q20+4q21+60q99+O(q100) 20 q - 4 q^{2} - 2 q^{3} - 6 q^{4} - 6 q^{5} - 8 q^{6} - 6 q^{7} + 12 q^{8} - 12 q^{9} - 10 q^{10} - 16 q^{11} + 24 q^{12} + 2 q^{13} + 12 q^{15} - 2 q^{16} - 10 q^{17} + 20 q^{19} + 14 q^{20} + 4 q^{21}+ \cdots - 60 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(65,[χ])S_{2}^{\mathrm{new}}(65, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
65.2.o.a 65.o 65.o 2020 0.5190.519 Q[x]/(x20+)\mathbb{Q}[x]/(x^{20} + \cdots) None 65.2.o.a 4-4 2-2 6-6 6-6 SU(2)[C12]\mathrm{SU}(2)[C_{12}] q+(β3+β4)q2+(β2+β4+β8β12+)q3+q+(-\beta _{3}+\beta _{4})q^{2}+(\beta _{2}+\beta _{4}+\beta _{8}-\beta _{12}+\cdots)q^{3}+\cdots