Properties

Label 65.2.n.a.9.6
Level $65$
Weight $2$
Character 65.9
Analytic conductor $0.519$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 65 = 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 65.n (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.519027613138\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Defining polynomial: \(x^{12} - 8 x^{10} + 54 x^{8} - 78 x^{6} + 92 x^{4} - 10 x^{2} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 9.6
Root \(2.20467 - 1.27287i\) of defining polynomial
Character \(\chi\) \(=\) 65.9
Dual form 65.2.n.a.29.6

$q$-expansion

\(f(q)\) \(=\) \(q+(2.20467 + 1.27287i) q^{2} +(-1.86449 - 1.07646i) q^{3} +(2.24039 + 3.88048i) q^{4} +(-0.817544 - 2.08125i) q^{5} +(-2.74039 - 4.74650i) q^{6} +(-2.54486 + 1.46928i) q^{7} +6.31544i q^{8} +(0.817544 + 1.41603i) q^{9} +O(q^{10})\) \(q+(2.20467 + 1.27287i) q^{2} +(-1.86449 - 1.07646i) q^{3} +(2.24039 + 3.88048i) q^{4} +(-0.817544 - 2.08125i) q^{5} +(-2.74039 - 4.74650i) q^{6} +(-2.54486 + 1.46928i) q^{7} +6.31544i q^{8} +(0.817544 + 1.41603i) q^{9} +(0.846746 - 5.62912i) q^{10} +(0.317544 - 0.550003i) q^{11} -9.64680i q^{12} +(3.60484 - 0.0716710i) q^{13} -7.48079 q^{14} +(-0.716091 + 4.76053i) q^{15} +(-3.55794 + 6.16253i) q^{16} +(-1.05998 + 0.611979i) q^{17} +4.16251i q^{18} +(0.682456 + 1.18205i) q^{19} +(6.24464 - 7.83529i) q^{20} +6.32648 q^{21} +(1.40016 - 0.808385i) q^{22} +(1.86449 + 1.07646i) q^{23} +(6.79833 - 11.7751i) q^{24} +(-3.66324 + 3.40304i) q^{25} +(8.03872 + 4.43048i) q^{26} +2.93855i q^{27} +(-11.4030 - 6.58351i) q^{28} +(1.50000 - 2.59808i) q^{29} +(-7.63828 + 9.58393i) q^{30} -8.96157 q^{31} +(-4.74954 + 2.74215i) q^{32} +(-1.18412 + 0.683650i) q^{33} -3.11588 q^{34} +(5.13847 + 4.09531i) q^{35} +(-3.66324 + 6.34492i) q^{36} +(-1.05998 - 0.611979i) q^{37} +3.47471i q^{38} +(-6.79833 - 3.74685i) q^{39} +(13.1440 - 5.16315i) q^{40} +(4.98079 - 8.62698i) q^{41} +(13.9478 + 8.05279i) q^{42} +(1.18412 - 0.683650i) q^{43} +2.84570 q^{44} +(2.27874 - 2.85918i) q^{45} +(2.74039 + 4.74650i) q^{46} -6.16379i q^{47} +(13.2675 - 7.65998i) q^{48} +(0.817544 - 1.41603i) q^{49} +(-12.4079 + 2.83976i) q^{50} +2.63509 q^{51} +(8.35437 + 13.8279i) q^{52} -0.642285i q^{53} +(-3.74039 + 6.47855i) q^{54} +(-1.40430 - 0.211239i) q^{55} +(-9.27912 - 16.0719i) q^{56} -2.93855i q^{57} +(6.61402 - 3.81861i) q^{58} +(3.79833 + 6.57890i) q^{59} +(-20.0774 + 7.88669i) q^{60} +(1.13509 + 1.96603i) q^{61} +(-19.7574 - 11.4069i) q^{62} +(-4.16107 - 2.40240i) q^{63} +0.270178 q^{64} +(-3.09628 - 7.44399i) q^{65} -3.48079 q^{66} +(-6.95421 - 4.01502i) q^{67} +(-4.74954 - 2.74215i) q^{68} +(-2.31754 - 4.01410i) q^{69} +(6.11588 + 15.5694i) q^{70} +(-1.31754 - 2.28205i) q^{71} +(-8.94284 + 5.16315i) q^{72} +10.3263i q^{73} +(-1.55794 - 2.69843i) q^{74} +(10.4933 - 2.40158i) q^{75} +(-3.05794 + 5.29650i) q^{76} +1.86624i q^{77} +(-10.2189 - 16.9140i) q^{78} -1.03843 q^{79} +(15.7346 + 2.36683i) q^{80} +(5.61588 - 9.72698i) q^{81} +(21.9620 - 12.6798i) q^{82} -11.8452i q^{83} +(14.1738 + 24.5498i) q^{84} +(2.14026 + 1.70576i) q^{85} +3.48079 q^{86} +(-5.59346 + 3.22939i) q^{87} +(3.47351 + 2.00543i) q^{88} +(-6.27912 + 10.8758i) q^{89} +(8.66324 - 3.40304i) q^{90} +(-9.06851 + 5.47890i) q^{91} +9.64680i q^{92} +(16.7087 + 9.64680i) q^{93} +(7.84570 - 13.5891i) q^{94} +(1.90220 - 2.38674i) q^{95} +11.8073 q^{96} +(-12.8031 + 7.39190i) q^{97} +(3.60484 - 2.08125i) q^{98} +1.03843 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12q + 4q^{4} - 6q^{5} - 10q^{6} + 6q^{9} + O(q^{10}) \) \( 12q + 4q^{4} - 6q^{5} - 10q^{6} + 6q^{9} + 7q^{10} - 44q^{14} - 4q^{15} - 16q^{16} + 12q^{19} - q^{20} - 8q^{21} + 32q^{24} - 2q^{25} + 24q^{26} + 18q^{29} + 4q^{30} - 16q^{31} + 16q^{34} + 10q^{35} - 2q^{36} - 32q^{39} + 70q^{40} + 14q^{41} - 4q^{44} - 29q^{45} + 10q^{46} + 6q^{49} - 31q^{50} + 24q^{51} - 22q^{54} - 26q^{55} - 16q^{56} - 4q^{59} - 96q^{60} + 6q^{61} - 12q^{64} + 23q^{65} + 4q^{66} - 24q^{69} + 20q^{70} - 12q^{71} + 8q^{74} + 2q^{75} - 10q^{76} - 104q^{79} + 33q^{80} + 14q^{81} + 90q^{84} + 21q^{85} - 4q^{86} + 20q^{89} + 62q^{90} - 44q^{91} + 56q^{94} + 20q^{95} + 12q^{96} + 104q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/65\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(41\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.20467 + 1.27287i 1.55894 + 0.900055i 0.997359 + 0.0726333i \(0.0231403\pi\)
0.561582 + 0.827421i \(0.310193\pi\)
\(3\) −1.86449 1.07646i −1.07646 0.621496i −0.146523 0.989207i \(-0.546808\pi\)
−0.929940 + 0.367711i \(0.880142\pi\)
\(4\) 2.24039 + 3.88048i 1.12020 + 1.94024i
\(5\) −0.817544 2.08125i −0.365617 0.930765i
\(6\) −2.74039 4.74650i −1.11876 1.93775i
\(7\) −2.54486 + 1.46928i −0.961867 + 0.555334i −0.896747 0.442543i \(-0.854076\pi\)
−0.0651198 + 0.997877i \(0.520743\pi\)
\(8\) 6.31544i 2.23284i
\(9\) 0.817544 + 1.41603i 0.272515 + 0.472010i
\(10\) 0.846746 5.62912i 0.267765 1.78008i
\(11\) 0.317544 0.550003i 0.0957433 0.165832i −0.814175 0.580619i \(-0.802811\pi\)
0.909919 + 0.414787i \(0.136144\pi\)
\(12\) 9.64680i 2.78479i
\(13\) 3.60484 0.0716710i 0.999802 0.0198779i
\(14\) −7.48079 −1.99932
\(15\) −0.716091 + 4.76053i −0.184894 + 1.22916i
\(16\) −3.55794 + 6.16253i −0.889484 + 1.54063i
\(17\) −1.05998 + 0.611979i −0.257082 + 0.148427i −0.623003 0.782220i \(-0.714088\pi\)
0.365920 + 0.930646i \(0.380754\pi\)
\(18\) 4.16251i 0.981113i
\(19\) 0.682456 + 1.18205i 0.156566 + 0.271180i 0.933628 0.358244i \(-0.116624\pi\)
−0.777062 + 0.629424i \(0.783291\pi\)
\(20\) 6.24464 7.83529i 1.39634 1.75202i
\(21\) 6.32648 1.38055
\(22\) 1.40016 0.808385i 0.298516 0.172348i
\(23\) 1.86449 + 1.07646i 0.388773 + 0.224458i 0.681628 0.731699i \(-0.261272\pi\)
−0.292856 + 0.956157i \(0.594606\pi\)
\(24\) 6.79833 11.7751i 1.38770 2.40357i
\(25\) −3.66324 + 3.40304i −0.732648 + 0.680607i
\(26\) 8.03872 + 4.43048i 1.57652 + 0.868888i
\(27\) 2.93855i 0.565525i
\(28\) −11.4030 6.58351i −2.15496 1.24417i
\(29\) 1.50000 2.59808i 0.278543 0.482451i −0.692480 0.721437i \(-0.743482\pi\)
0.971023 + 0.238987i \(0.0768152\pi\)
\(30\) −7.63828 + 9.58393i −1.39455 + 1.74978i
\(31\) −8.96157 −1.60955 −0.804773 0.593583i \(-0.797713\pi\)
−0.804773 + 0.593583i \(0.797713\pi\)
\(32\) −4.74954 + 2.74215i −0.839607 + 0.484747i
\(33\) −1.18412 + 0.683650i −0.206128 + 0.119008i
\(34\) −3.11588 −0.534368
\(35\) 5.13847 + 4.09531i 0.868561 + 0.692233i
\(36\) −3.66324 + 6.34492i −0.610540 + 1.05749i
\(37\) −1.05998 0.611979i −0.174259 0.100609i 0.410333 0.911936i \(-0.365412\pi\)
−0.584593 + 0.811327i \(0.698746\pi\)
\(38\) 3.47471i 0.563672i
\(39\) −6.79833 3.74685i −1.08860 0.599975i
\(40\) 13.1440 5.16315i 2.07825 0.816366i
\(41\) 4.98079 8.62698i 0.777868 1.34731i −0.155300 0.987867i \(-0.549634\pi\)
0.933168 0.359440i \(-0.117032\pi\)
\(42\) 13.9478 + 8.05279i 2.15220 + 1.24257i
\(43\) 1.18412 0.683650i 0.180576 0.104256i −0.406987 0.913434i \(-0.633421\pi\)
0.587563 + 0.809178i \(0.300087\pi\)
\(44\) 2.84570 0.429005
\(45\) 2.27874 2.85918i 0.339694 0.426222i
\(46\) 2.74039 + 4.74650i 0.404049 + 0.699833i
\(47\) 6.16379i 0.899081i −0.893260 0.449540i \(-0.851588\pi\)
0.893260 0.449540i \(-0.148412\pi\)
\(48\) 13.2675 7.65998i 1.91499 1.10562i
\(49\) 0.817544 1.41603i 0.116792 0.202290i
\(50\) −12.4079 + 2.83976i −1.75474 + 0.401603i
\(51\) 2.63509 0.368986
\(52\) 8.35437 + 13.8279i 1.15854 + 1.91759i
\(53\) 0.642285i 0.0882246i −0.999027 0.0441123i \(-0.985954\pi\)
0.999027 0.0441123i \(-0.0140459\pi\)
\(54\) −3.74039 + 6.47855i −0.509003 + 0.881619i
\(55\) −1.40430 0.211239i −0.189356 0.0284834i
\(56\) −9.27912 16.0719i −1.23997 2.14770i
\(57\) 2.93855i 0.389221i
\(58\) 6.61402 3.81861i 0.868464 0.501408i
\(59\) 3.79833 + 6.57890i 0.494501 + 0.856500i 0.999980 0.00633858i \(-0.00201765\pi\)
−0.505479 + 0.862839i \(0.668684\pi\)
\(60\) −20.0774 + 7.88669i −2.59199 + 1.01817i
\(61\) 1.13509 + 1.96603i 0.145333 + 0.251725i 0.929497 0.368829i \(-0.120241\pi\)
−0.784164 + 0.620554i \(0.786908\pi\)
\(62\) −19.7574 11.4069i −2.50919 1.44868i
\(63\) −4.16107 2.40240i −0.524246 0.302674i
\(64\) 0.270178 0.0337722
\(65\) −3.09628 7.44399i −0.384046 0.923314i
\(66\) −3.48079 −0.428455
\(67\) −6.95421 4.01502i −0.849592 0.490512i 0.0109212 0.999940i \(-0.496524\pi\)
−0.860513 + 0.509428i \(0.829857\pi\)
\(68\) −4.74954 2.74215i −0.575966 0.332534i
\(69\) −2.31754 4.01410i −0.279000 0.483241i
\(70\) 6.11588 + 15.5694i 0.730987 + 1.86090i
\(71\) −1.31754 2.28205i −0.156364 0.270830i 0.777191 0.629265i \(-0.216644\pi\)
−0.933555 + 0.358435i \(0.883311\pi\)
\(72\) −8.94284 + 5.16315i −1.05392 + 0.608483i
\(73\) 10.3263i 1.20860i 0.796756 + 0.604301i \(0.206547\pi\)
−0.796756 + 0.604301i \(0.793453\pi\)
\(74\) −1.55794 2.69843i −0.181107 0.313686i
\(75\) 10.4933 2.40158i 1.21166 0.277310i
\(76\) −3.05794 + 5.29650i −0.350770 + 0.607551i
\(77\) 1.86624i 0.212678i
\(78\) −10.2189 16.9140i −1.15706 1.91513i
\(79\) −1.03843 −0.116832 −0.0584161 0.998292i \(-0.518605\pi\)
−0.0584161 + 0.998292i \(0.518605\pi\)
\(80\) 15.7346 + 2.36683i 1.75918 + 0.264620i
\(81\) 5.61588 9.72698i 0.623986 1.08078i
\(82\) 21.9620 12.6798i 2.42530 1.40025i
\(83\) 11.8452i 1.30018i −0.759855 0.650092i \(-0.774730\pi\)
0.759855 0.650092i \(-0.225270\pi\)
\(84\) 14.1738 + 24.5498i 1.54649 + 2.67860i
\(85\) 2.14026 + 1.70576i 0.232144 + 0.185016i
\(86\) 3.48079 0.375343
\(87\) −5.59346 + 3.22939i −0.599682 + 0.346227i
\(88\) 3.47351 + 2.00543i 0.370277 + 0.213780i
\(89\) −6.27912 + 10.8758i −0.665585 + 1.15283i 0.313541 + 0.949575i \(0.398485\pi\)
−0.979126 + 0.203253i \(0.934849\pi\)
\(90\) 8.66324 3.40304i 0.913186 0.358712i
\(91\) −9.06851 + 5.47890i −0.950638 + 0.574344i
\(92\) 9.64680i 1.00575i
\(93\) 16.7087 + 9.64680i 1.73262 + 1.00033i
\(94\) 7.84570 13.5891i 0.809222 1.40161i
\(95\) 1.90220 2.38674i 0.195162 0.244874i
\(96\) 11.8073 1.20507
\(97\) −12.8031 + 7.39190i −1.29996 + 0.750534i −0.980397 0.197031i \(-0.936870\pi\)
−0.319565 + 0.947564i \(0.603537\pi\)
\(98\) 3.60484 2.08125i 0.364144 0.210238i
\(99\) 1.03843 0.104366
\(100\) −21.4125 6.59098i −2.14125 0.659098i
\(101\) −6.61588 + 11.4590i −0.658304 + 1.14022i 0.322750 + 0.946484i \(0.395393\pi\)
−0.981054 + 0.193732i \(0.937941\pi\)
\(102\) 5.80951 + 3.35412i 0.575228 + 0.332108i
\(103\) 10.9686i 1.08077i −0.841419 0.540383i \(-0.818279\pi\)
0.841419 0.540383i \(-0.181721\pi\)
\(104\) 0.452633 + 22.7661i 0.0443843 + 2.23240i
\(105\) −5.17218 13.1670i −0.504753 1.28497i
\(106\) 0.817544 1.41603i 0.0794069 0.137537i
\(107\) 9.24360 + 5.33680i 0.893613 + 0.515928i 0.875123 0.483901i \(-0.160781\pi\)
0.0184903 + 0.999829i \(0.494114\pi\)
\(108\) −11.4030 + 6.58351i −1.09725 + 0.633499i
\(109\) 3.27018 0.313226 0.156613 0.987660i \(-0.449942\pi\)
0.156613 + 0.987660i \(0.449942\pi\)
\(110\) −2.82715 2.25321i −0.269558 0.214835i
\(111\) 1.31754 + 2.28205i 0.125056 + 0.216603i
\(112\) 20.9104i 1.97584i
\(113\) 4.78895 2.76490i 0.450507 0.260100i −0.257537 0.966268i \(-0.582911\pi\)
0.708044 + 0.706168i \(0.249578\pi\)
\(114\) 3.74039 6.47855i 0.350320 0.606772i
\(115\) 0.716091 4.76053i 0.0667759 0.443922i
\(116\) 13.4424 1.24809
\(117\) 3.04860 + 5.04596i 0.281844 + 0.466499i
\(118\) 19.3391i 1.78031i
\(119\) 1.79833 3.11480i 0.164853 0.285533i
\(120\) −30.0648 4.52243i −2.74453 0.412839i
\(121\) 5.29833 + 9.17698i 0.481666 + 0.834271i
\(122\) 5.77928i 0.523231i
\(123\) −18.5732 + 10.7233i −1.67469 + 0.966884i
\(124\) −20.0774 34.7752i −1.80301 3.12290i
\(125\) 10.0774 + 4.84201i 0.901354 + 0.433082i
\(126\) −6.11588 10.5930i −0.544845 0.943700i
\(127\) 14.9231 + 8.61586i 1.32421 + 0.764534i 0.984397 0.175959i \(-0.0563027\pi\)
0.339813 + 0.940493i \(0.389636\pi\)
\(128\) 10.0947 + 5.82819i 0.892256 + 0.515144i
\(129\) −2.94369 −0.259178
\(130\) 2.64894 20.3527i 0.232327 1.78505i
\(131\) 10.0000 0.873704 0.436852 0.899533i \(-0.356093\pi\)
0.436852 + 0.899533i \(0.356093\pi\)
\(132\) −5.30577 3.06329i −0.461808 0.266625i
\(133\) −3.47351 2.00543i −0.301191 0.173893i
\(134\) −10.2212 17.7036i −0.882975 1.52936i
\(135\) 6.11588 2.40240i 0.526371 0.206765i
\(136\) −3.86491 6.69422i −0.331413 0.574025i
\(137\) −7.51044 + 4.33616i −0.641661 + 0.370463i −0.785254 0.619174i \(-0.787468\pi\)
0.143593 + 0.989637i \(0.454134\pi\)
\(138\) 11.7997i 1.00446i
\(139\) 7.16324 + 12.4071i 0.607578 + 1.05236i 0.991638 + 0.129048i \(0.0411922\pi\)
−0.384060 + 0.923308i \(0.625474\pi\)
\(140\) −4.37953 + 29.1148i −0.370137 + 2.46065i
\(141\) −6.63509 + 11.4923i −0.558775 + 0.967827i
\(142\) 6.70825i 0.562944i
\(143\) 1.10528 2.00543i 0.0924279 0.167703i
\(144\) −11.6351 −0.969591
\(145\) −6.63357 0.997839i −0.550888 0.0828660i
\(146\) −13.1440 + 22.7661i −1.08781 + 1.88414i
\(147\) −3.04860 + 1.76011i −0.251445 + 0.145172i
\(148\) 5.48429i 0.450806i
\(149\) −8.57745 14.8566i −0.702692 1.21710i −0.967518 0.252802i \(-0.918648\pi\)
0.264826 0.964296i \(-0.414685\pi\)
\(150\) 26.1912 + 8.06192i 2.13851 + 0.658253i
\(151\) −21.3828 −1.74011 −0.870053 0.492957i \(-0.835916\pi\)
−0.870053 + 0.492957i \(0.835916\pi\)
\(152\) −7.46515 + 4.31000i −0.605503 + 0.349587i
\(153\) −1.73316 1.00064i −0.140118 0.0808969i
\(154\) −2.37548 + 4.11446i −0.191422 + 0.331552i
\(155\) 7.32648 + 18.6513i 0.588477 + 1.49811i
\(156\) −0.691395 34.7752i −0.0553559 2.78424i
\(157\) 18.3646i 1.46566i −0.680413 0.732829i \(-0.738200\pi\)
0.680413 0.732829i \(-0.261800\pi\)
\(158\) −2.28939 1.32178i −0.182134 0.105155i
\(159\) −0.691395 + 1.19753i −0.0548312 + 0.0949705i
\(160\) 9.59006 + 7.64317i 0.758161 + 0.604245i
\(161\) −6.32648 −0.498597
\(162\) 24.7624 14.2966i 1.94551 1.12324i
\(163\) 3.47351 2.00543i 0.272066 0.157078i −0.357760 0.933814i \(-0.616459\pi\)
0.629826 + 0.776736i \(0.283126\pi\)
\(164\) 44.6357 3.48546
\(165\) 2.39092 + 1.90553i 0.186133 + 0.148346i
\(166\) 15.0774 26.1149i 1.17024 2.02691i
\(167\) −2.54486 1.46928i −0.196927 0.113696i 0.398294 0.917258i \(-0.369602\pi\)
−0.595221 + 0.803562i \(0.702936\pi\)
\(168\) 39.9545i 3.08256i
\(169\) 12.9897 0.516725i 0.999210 0.0397480i
\(170\) 2.54737 + 6.48493i 0.195374 + 0.497371i
\(171\) −1.11588 + 1.93275i −0.0853331 + 0.147801i
\(172\) 5.30577 + 3.06329i 0.404561 + 0.233574i
\(173\) −1.18412 + 0.683650i −0.0900267 + 0.0519769i −0.544337 0.838866i \(-0.683219\pi\)
0.454311 + 0.890843i \(0.349886\pi\)
\(174\) −16.4424 −1.24649
\(175\) 4.32244 14.0426i 0.326746 1.06152i
\(176\) 2.25961 + 3.91375i 0.170324 + 0.295010i
\(177\) 16.3550i 1.22932i
\(178\) −27.6868 + 15.9850i −2.07522 + 1.19813i
\(179\) 3.89306 6.74299i 0.290981 0.503994i −0.683061 0.730362i \(-0.739352\pi\)
0.974042 + 0.226367i \(0.0726849\pi\)
\(180\) 16.2003 + 2.43688i 1.20750 + 0.181635i
\(181\) −3.86684 −0.287420 −0.143710 0.989620i \(-0.545903\pi\)
−0.143710 + 0.989620i \(0.545903\pi\)
\(182\) −26.9670 + 0.536155i −1.99893 + 0.0397425i
\(183\) 4.88752i 0.361296i
\(184\) −6.79833 + 11.7751i −0.501180 + 0.868069i
\(185\) −0.407104 + 2.70640i −0.0299309 + 0.198979i
\(186\) 24.5582 + 42.5361i 1.80070 + 3.11890i
\(187\) 0.777322i 0.0568434i
\(188\) 23.9184 13.8093i 1.74443 1.00715i
\(189\) −4.31754 7.47821i −0.314055 0.543959i
\(190\) 7.23175 2.84073i 0.524646 0.206088i
\(191\) −2.47185 4.28136i −0.178857 0.309789i 0.762633 0.646832i \(-0.223906\pi\)
−0.941489 + 0.337043i \(0.890573\pi\)
\(192\) −0.503743 0.290836i −0.0363545 0.0209893i
\(193\) 4.29240 + 2.47822i 0.308974 + 0.178386i 0.646467 0.762942i \(-0.276246\pi\)
−0.337493 + 0.941328i \(0.609579\pi\)
\(194\) −37.6357 −2.70208
\(195\) −2.24020 + 17.2123i −0.160424 + 1.23260i
\(196\) 7.32648 0.523320
\(197\) −5.84174 3.37273i −0.416207 0.240297i 0.277246 0.960799i \(-0.410578\pi\)
−0.693453 + 0.720502i \(0.743912\pi\)
\(198\) 2.28939 + 1.32178i 0.162700 + 0.0939349i
\(199\) 2.58772 + 4.48207i 0.183439 + 0.317725i 0.943049 0.332653i \(-0.107944\pi\)
−0.759611 + 0.650378i \(0.774610\pi\)
\(200\) −21.4917 23.1350i −1.51969 1.63589i
\(201\) 8.64403 + 14.9719i 0.609703 + 1.05604i
\(202\) −29.1717 + 16.8423i −2.05251 + 1.18502i
\(203\) 8.81566i 0.618738i
\(204\) 5.90364 + 10.2254i 0.413337 + 0.715921i
\(205\) −22.0269 3.31335i −1.53843 0.231414i
\(206\) 13.9616 24.1822i 0.972749 1.68485i
\(207\) 3.52022i 0.244673i
\(208\) −12.3841 + 22.4699i −0.858684 + 1.55801i
\(209\) 0.866840 0.0599606
\(210\) 5.35693 35.6125i 0.369663 2.45750i
\(211\) 7.00894 12.1398i 0.482515 0.835741i −0.517283 0.855814i \(-0.673057\pi\)
0.999799 + 0.0200732i \(0.00638994\pi\)
\(212\) 2.49237 1.43897i 0.171177 0.0988289i
\(213\) 5.67315i 0.388718i
\(214\) 13.5861 + 23.5318i 0.928726 + 1.60860i
\(215\) −2.39092 1.90553i −0.163059 0.129956i
\(216\) −18.5582 −1.26273
\(217\) 22.8060 13.1670i 1.54817 0.893836i
\(218\) 7.20968 + 4.16251i 0.488301 + 0.281921i
\(219\) 11.1159 19.2533i 0.751141 1.30101i
\(220\) −2.32648 5.92262i −0.156852 0.399303i
\(221\) −3.77719 + 2.28205i −0.254081 + 0.153508i
\(222\) 6.70825i 0.450228i
\(223\) −0.00719226 0.00415245i −0.000481629 0.000278069i 0.499759 0.866164i \(-0.333422\pi\)
−0.500241 + 0.865886i \(0.666755\pi\)
\(224\) 8.05794 13.9568i 0.538394 0.932525i
\(225\) −7.81366 2.40512i −0.520911 0.160341i
\(226\) 14.0774 0.936418
\(227\) 9.75454 5.63179i 0.647431 0.373795i −0.140040 0.990146i \(-0.544723\pi\)
0.787471 + 0.616351i \(0.211390\pi\)
\(228\) 11.4030 6.58351i 0.755181 0.436004i
\(229\) 16.5404 1.09302 0.546509 0.837453i \(-0.315957\pi\)
0.546509 + 0.837453i \(0.315957\pi\)
\(230\) 7.63828 9.58393i 0.503653 0.631946i
\(231\) 2.00894 3.47959i 0.132179 0.228940i
\(232\) 16.4080 + 9.47315i 1.07724 + 0.621943i
\(233\) 6.94941i 0.455271i −0.973746 0.227636i \(-0.926900\pi\)
0.973746 0.227636i \(-0.0730995\pi\)
\(234\) 0.298331 + 15.0052i 0.0195025 + 0.980919i
\(235\) −12.8284 + 5.03917i −0.836833 + 0.328719i
\(236\) −17.0195 + 29.4787i −1.10788 + 1.91890i
\(237\) 1.93613 + 1.11783i 0.125765 + 0.0726107i
\(238\) 7.92947 4.57808i 0.513991 0.296753i
\(239\) −4.00000 −0.258738 −0.129369 0.991596i \(-0.541295\pi\)
−0.129369 + 0.991596i \(0.541295\pi\)
\(240\) −26.7891 21.3506i −1.72923 1.37818i
\(241\) −9.88605 17.1231i −0.636817 1.10300i −0.986127 0.165992i \(-0.946917\pi\)
0.349310 0.937007i \(-0.386416\pi\)
\(242\) 26.9763i 1.73410i
\(243\) −13.3069 + 7.68273i −0.853637 + 0.492848i
\(244\) −5.08609 + 8.80937i −0.325604 + 0.563962i
\(245\) −3.61549 0.543852i −0.230985 0.0347454i
\(246\) −54.5973 −3.48099
\(247\) 2.54486 + 4.21218i 0.161926 + 0.268015i
\(248\) 56.5962i 3.59386i
\(249\) −12.7510 + 22.0853i −0.808060 + 1.39960i
\(250\) 16.0543 + 23.5023i 1.01536 + 1.48642i
\(251\) −1.83676 3.18136i −0.115935 0.200806i 0.802218 0.597031i \(-0.203653\pi\)
−0.918153 + 0.396226i \(0.870320\pi\)
\(252\) 21.5293i 1.35622i
\(253\) 1.18412 0.683650i 0.0744447 0.0429807i
\(254\) 21.9337 + 37.9903i 1.37624 + 2.38372i
\(255\) −2.15430 5.48429i −0.134908 0.343440i
\(256\) 14.5669 + 25.2306i 0.910430 + 1.57691i
\(257\) 11.4877 + 6.63242i 0.716583 + 0.413719i 0.813494 0.581574i \(-0.197563\pi\)
−0.0969108 + 0.995293i \(0.530896\pi\)
\(258\) −6.48989 3.74694i −0.404043 0.233274i
\(259\) 3.59666 0.223486
\(260\) 21.9493 28.6925i 1.36124 1.77943i
\(261\) 4.90527 0.303628
\(262\) 22.0467 + 12.7287i 1.36205 + 0.786381i
\(263\) −26.2150 15.1352i −1.61649 0.933279i −0.987819 0.155605i \(-0.950267\pi\)
−0.628667 0.777674i \(-0.716399\pi\)
\(264\) −4.31754 7.47821i −0.265726 0.460252i
\(265\) −1.33676 + 0.525096i −0.0821164 + 0.0322564i
\(266\) −5.10530 8.84265i −0.313026 0.542177i
\(267\) 23.4147 13.5185i 1.43296 0.827317i
\(268\) 35.9809i 2.19788i
\(269\) −11.1248 19.2687i −0.678292 1.17484i −0.975495 0.220022i \(-0.929387\pi\)
0.297203 0.954814i \(-0.403946\pi\)
\(270\) 16.5415 + 2.48821i 1.00668 + 0.151427i
\(271\) 5.91421 10.2437i 0.359262 0.622261i −0.628575 0.777749i \(-0.716362\pi\)
0.987838 + 0.155488i \(0.0496950\pi\)
\(272\) 8.70953i 0.528093i
\(273\) 22.8060 0.453425i 1.38028 0.0274425i
\(274\) −22.0774 −1.33375
\(275\) 0.708438 + 3.09541i 0.0427204 + 0.186660i
\(276\) 10.3844 17.9863i 0.625069 1.08265i
\(277\) −14.5363 + 8.39254i −0.873402 + 0.504259i −0.868477 0.495729i \(-0.834901\pi\)
−0.00492452 + 0.999988i \(0.501568\pi\)
\(278\) 36.4715i 2.18741i
\(279\) −7.32648 12.6898i −0.438625 0.759721i
\(280\) −25.8636 + 32.4517i −1.54565 + 1.93936i
\(281\) −10.5967 −0.632144 −0.316072 0.948735i \(-0.602364\pi\)
−0.316072 + 0.948735i \(0.602364\pi\)
\(282\) −29.2564 + 16.8912i −1.74219 + 1.00586i
\(283\) 7.63458 + 4.40783i 0.453829 + 0.262018i 0.709446 0.704760i \(-0.248945\pi\)
−0.255617 + 0.966778i \(0.582279\pi\)
\(284\) 5.90364 10.2254i 0.350316 0.606766i
\(285\) −6.11588 + 2.40240i −0.362273 + 0.142306i
\(286\) 4.98943 3.01445i 0.295031 0.178248i
\(287\) 29.2726i 1.72791i
\(288\) −7.76591 4.48365i −0.457611 0.264202i
\(289\) −7.75096 + 13.4251i −0.455939 + 0.789710i
\(290\) −13.3548 10.6436i −0.784218 0.625013i
\(291\) 31.8284 1.86581
\(292\) −40.0709 + 23.1350i −2.34497 + 1.35387i
\(293\) −24.4675 + 14.1263i −1.42940 + 0.825267i −0.997074 0.0764476i \(-0.975642\pi\)
−0.432331 + 0.901715i \(0.642309\pi\)
\(294\) −8.96157 −0.522650
\(295\) 10.5871 13.2838i 0.616403 0.773415i
\(296\) 3.86491 6.69422i 0.224643 0.389094i
\(297\) 1.61621 + 0.933121i 0.0937822 + 0.0541452i
\(298\) 43.6719i 2.52984i
\(299\) 6.79833 + 3.74685i 0.393158 + 0.216686i
\(300\) 32.8284 + 35.3386i 1.89535 + 2.04027i
\(301\) −2.00894 + 3.47959i −0.115793 + 0.200560i
\(302\) −47.1421 27.2175i −2.71272 1.56619i
\(303\) 24.6704 14.2435i 1.41728 0.818267i
\(304\) −9.71254 −0.557052
\(305\) 3.16383 3.96973i 0.181160 0.227306i
\(306\) −2.54737 4.41217i −0.145623 0.252227i
\(307\) 12.7219i 0.726077i −0.931774 0.363039i \(-0.881739\pi\)
0.931774 0.363039i \(-0.118261\pi\)
\(308\) −7.24190 + 4.18112i −0.412646 + 0.238241i
\(309\) −11.8073 + 20.4508i −0.671692 + 1.16340i
\(310\) −7.58818 + 50.4457i −0.430980 + 2.86513i
\(311\) 27.9231 1.58338 0.791688 0.610925i \(-0.209202\pi\)
0.791688 + 0.610925i \(0.209202\pi\)
\(312\) 23.6630 42.9344i 1.33965 2.43068i
\(313\) 24.5807i 1.38938i 0.719307 + 0.694692i \(0.244460\pi\)
−0.719307 + 0.694692i \(0.755540\pi\)
\(314\) 23.3758 40.4880i 1.31917 2.28487i
\(315\) −1.59814 + 10.6243i −0.0900448 + 0.598613i
\(316\) −2.32648 4.02959i −0.130875 0.226682i
\(317\) 0.234377i 0.0131639i 0.999978 + 0.00658196i \(0.00209512\pi\)
−0.999978 + 0.00658196i \(0.997905\pi\)
\(318\) −3.04860 + 1.76011i −0.170957 + 0.0987022i
\(319\) −0.952633 1.65001i −0.0533372 0.0923828i
\(320\) −0.220882 0.562309i −0.0123477 0.0314340i
\(321\) −11.4897 19.9008i −0.641294 1.11075i
\(322\) −13.9478 8.05279i −0.777283 0.448764i
\(323\) −1.44678 0.835296i −0.0805008 0.0464771i
\(324\) 50.3271 2.79595
\(325\) −12.9615 + 12.5299i −0.718975 + 0.695036i
\(326\) 10.2106 0.565513
\(327\) −6.09721 3.52022i −0.337176 0.194669i
\(328\) 54.4831 + 31.4558i 3.00833 + 1.73686i
\(329\) 9.05631 + 15.6860i 0.499290 + 0.864796i
\(330\) 2.84570 + 7.24440i 0.156651 + 0.398791i
\(331\) 9.16324 + 15.8712i 0.503657 + 0.872360i 0.999991 + 0.00422829i \(0.00134591\pi\)
−0.496334 + 0.868132i \(0.665321\pi\)
\(332\) 45.9652 26.5380i 2.52267 1.45646i
\(333\) 2.00128i 0.109669i
\(334\) −3.74039 6.47855i −0.204665 0.354491i
\(335\) −2.67089 + 17.7559i −0.145926 + 0.970110i
\(336\) −22.5092 + 38.9871i −1.22798 + 2.12692i
\(337\) 21.2949i 1.16001i 0.814614 + 0.580003i \(0.196949\pi\)
−0.814614 + 0.580003i \(0.803051\pi\)
\(338\) 29.2958 + 15.3950i 1.59348 + 0.837379i
\(339\) −11.9053 −0.646605
\(340\) −1.82415 + 12.1268i −0.0989283 + 0.657669i
\(341\) −2.84570 + 4.92889i −0.154103 + 0.266915i
\(342\) −4.92028 + 2.84073i −0.266059 + 0.153609i
\(343\) 15.7651i 0.851234i
\(344\) 4.31754 + 7.47821i 0.232786 + 0.403198i
\(345\) −6.45968 + 8.10511i −0.347777 + 0.436364i
\(346\) −3.48079 −0.187128
\(347\) 3.30407 1.90761i 0.177372 0.102406i −0.408685 0.912675i \(-0.634013\pi\)
0.586057 + 0.810270i \(0.300679\pi\)
\(348\) −25.0631 14.4702i −1.34352 0.775684i
\(349\) 12.1632 21.0674i 0.651083 1.12771i −0.331777 0.943358i \(-0.607648\pi\)
0.982860 0.184352i \(-0.0590185\pi\)
\(350\) 27.4039 25.4574i 1.46480 1.36075i
\(351\) 0.210609 + 10.5930i 0.0112415 + 0.565413i
\(352\) 3.48301i 0.185645i
\(353\) 23.4338 + 13.5295i 1.24726 + 0.720104i 0.970562 0.240853i \(-0.0774272\pi\)
0.276696 + 0.960958i \(0.410761\pi\)
\(354\) 20.8178 36.0576i 1.10646 1.91644i
\(355\) −3.67238 + 4.60783i −0.194910 + 0.244558i
\(356\) −56.2708 −2.98235
\(357\) −6.70593 + 3.87167i −0.354916 + 0.204911i
\(358\) 17.1659 9.91073i 0.907245 0.523798i
\(359\) −27.0039 −1.42521 −0.712605 0.701566i \(-0.752485\pi\)
−0.712605 + 0.701566i \(0.752485\pi\)
\(360\) 18.0570 + 14.3912i 0.951687 + 0.758484i
\(361\) 8.56851 14.8411i 0.450974 0.781110i
\(362\) −8.52512 4.92198i −0.448071 0.258694i
\(363\) 22.8138i 1.19742i
\(364\) −41.5777 22.9152i −2.17927 1.20108i
\(365\) 21.4917 8.44221i 1.12492 0.441885i
\(366\) 6.22118 10.7754i 0.325186 0.563239i
\(367\) −6.01118 3.47055i −0.313781 0.181161i 0.334836 0.942276i \(-0.391319\pi\)
−0.648617 + 0.761115i \(0.724652\pi\)
\(368\) −13.2675 + 7.65998i −0.691615 + 0.399304i
\(369\) 16.2881 0.847922
\(370\) −4.34243 + 5.44855i −0.225752 + 0.283257i
\(371\) 0.943693 + 1.63452i 0.0489941 + 0.0848603i
\(372\) 86.4505i 4.48225i
\(373\) 2.00301 1.15644i 0.103712 0.0598781i −0.447247 0.894411i \(-0.647595\pi\)
0.550959 + 0.834532i \(0.314262\pi\)
\(374\) −0.989429 + 1.71374i −0.0511622 + 0.0886154i
\(375\) −13.5770 19.8759i −0.701116 1.02639i
\(376\) 38.9270 2.00751
\(377\) 5.22105 9.47315i 0.268898 0.487892i
\(378\) 21.9827i 1.13067i
\(379\) 2.58772 4.48207i 0.132922 0.230228i −0.791880 0.610677i \(-0.790897\pi\)
0.924802 + 0.380449i \(0.124231\pi\)
\(380\) 13.5234 + 2.03422i 0.693734 + 0.104353i
\(381\) −18.5493 32.1283i −0.950309 1.64598i
\(382\) 12.5854i 0.643923i
\(383\) −17.8929 + 10.3305i −0.914283 + 0.527861i −0.881807 0.471611i \(-0.843673\pi\)
−0.0324760 + 0.999473i \(0.510339\pi\)
\(384\) −12.5477 21.7332i −0.640320 1.10907i
\(385\) 3.88412 1.52574i 0.197953 0.0777587i
\(386\) 6.30890 + 10.9273i 0.321115 + 0.556187i
\(387\) 1.93613 + 1.11783i 0.0984193 + 0.0568224i
\(388\) −57.3682 33.1215i −2.91243 1.68149i
\(389\) −19.7477 −1.00125 −0.500624 0.865665i \(-0.666896\pi\)
−0.500624 + 0.865665i \(0.666896\pi\)
\(390\) −26.8479 + 35.0960i −1.35950 + 1.77715i
\(391\) −2.63509 −0.133262
\(392\) 8.94284 + 5.16315i 0.451681 + 0.260778i
\(393\) −18.6449 10.7646i −0.940510 0.543004i
\(394\) −8.58609 14.8715i −0.432561 0.749218i
\(395\) 0.848960 + 2.16123i 0.0427158 + 0.108743i
\(396\) 2.32648 + 4.02959i 0.116910 + 0.202494i
\(397\) 8.13113 4.69451i 0.408090 0.235611i −0.281879 0.959450i \(-0.590958\pi\)
0.689969 + 0.723839i \(0.257624\pi\)
\(398\) 13.1753i 0.660420i
\(399\) 4.31754 + 7.47821i 0.216148 + 0.374379i
\(400\) −7.93772 34.6826i −0.396886 1.73413i
\(401\) −12.2510 + 21.2193i −0.611784 + 1.05964i 0.379156 + 0.925333i \(0.376214\pi\)
−0.990940 + 0.134308i \(0.957119\pi\)
\(402\) 44.0109i 2.19506i
\(403\) −32.3050 + 0.642285i −1.60923 + 0.0319945i
\(404\) −59.2887 −2.94972
\(405\) −24.8356 3.73583i −1.23409 0.185635i
\(406\) −11.2212 + 19.4357i −0.556898 + 0.964575i
\(407\) −0.673180 + 0.388661i −0.0333683 + 0.0192652i
\(408\) 16.6417i 0.823889i
\(409\) 18.0582 + 31.2778i 0.892922 + 1.54659i 0.836355 + 0.548188i \(0.184682\pi\)
0.0565671 + 0.998399i \(0.481985\pi\)
\(410\) −44.3448 35.3423i −2.19003 1.74543i
\(411\) 18.6708 0.920965
\(412\) 42.5633 24.5739i 2.09694 1.21067i
\(413\) −19.3324 11.1616i −0.951288 0.549226i
\(414\) −4.48079 + 7.76095i −0.220219 + 0.381430i
\(415\) −24.6530 + 9.68401i −1.21017 + 0.475370i
\(416\) −16.9248 + 10.2254i −0.829805 + 0.501341i
\(417\) 30.8439i 1.51043i
\(418\) 1.91110 + 1.10337i 0.0934749 + 0.0539678i
\(419\) −3.43342 + 5.94686i −0.167734 + 0.290523i −0.937623 0.347655i \(-0.886978\pi\)
0.769889 + 0.638178i \(0.220311\pi\)
\(420\) 39.5066 49.5698i 1.92772 2.41876i
\(421\) 33.9795 1.65606 0.828029 0.560686i \(-0.189462\pi\)
0.828029 + 0.560686i \(0.189462\pi\)
\(422\) 30.9049 17.8429i 1.50443 0.868580i
\(423\) 8.72810 5.03917i 0.424375 0.245013i
\(424\) 4.05631 0.196992
\(425\) 1.80037 5.84897i 0.0873308 0.283717i
\(426\) −7.22118 + 12.5075i −0.349867 + 0.605988i
\(427\) −5.77729 3.33552i −0.279582 0.161417i
\(428\) 47.8261i 2.31176i
\(429\) −4.21955 + 2.54931i −0.203722 + 0.123082i
\(430\) −2.84570 7.24440i −0.137232 0.349356i
\(431\) 8.12482 14.0726i 0.391359 0.677853i −0.601270 0.799046i \(-0.705339\pi\)
0.992629 + 0.121193i \(0.0386719\pi\)
\(432\) −18.1089 10.4552i −0.871265 0.503025i
\(433\) 0.221929 0.128130i 0.0106652 0.00615756i −0.494658 0.869088i \(-0.664707\pi\)
0.505323 + 0.862930i \(0.331373\pi\)
\(434\) 67.0396 3.21800
\(435\) 11.2941 + 9.00126i 0.541510 + 0.431577i
\(436\) 7.32648 + 12.6898i 0.350875 + 0.607733i
\(437\) 2.93855i 0.140570i
\(438\) 49.0138 28.2981i 2.34197 1.35214i
\(439\) −3.79833 + 6.57890i −0.181284 + 0.313994i −0.942318 0.334718i \(-0.891359\pi\)
0.761034 + 0.648712i \(0.224692\pi\)
\(440\) 1.33407 8.86879i 0.0635991 0.422803i
\(441\) 2.67352 0.127310
\(442\) −11.2322 + 0.223318i −0.534263 + 0.0106221i
\(443\) 4.32246i 0.205366i 0.994714 + 0.102683i \(0.0327428\pi\)
−0.994714 + 0.102683i \(0.967257\pi\)
\(444\) −5.90364 + 10.2254i −0.280174 + 0.485276i
\(445\) 27.7687 + 4.17703i 1.31636 + 0.198010i
\(446\) −0.0105711 0.0183096i −0.000500554 0.000866986i
\(447\) 36.9332i 1.74688i
\(448\) −0.687565 + 0.396966i −0.0324844 + 0.0187549i
\(449\) 1.64403 + 2.84754i 0.0775865 + 0.134384i 0.902208 0.431301i \(-0.141945\pi\)
−0.824622 + 0.565685i \(0.808612\pi\)
\(450\) −14.1652 15.2483i −0.667753 0.718811i
\(451\) −3.16324 5.47890i −0.148951 0.257991i
\(452\) 21.4583 + 12.3889i 1.00931 + 0.582727i
\(453\) 39.8680 + 23.0178i 1.87316 + 1.08147i
\(454\) 28.6741 1.34574
\(455\) 18.8169 + 14.3946i 0.882149 + 0.674831i
\(456\) 18.5582 0.869069
\(457\) −13.3594 7.71304i −0.624925 0.360801i 0.153859 0.988093i \(-0.450830\pi\)
−0.778784 + 0.627292i \(0.784163\pi\)
\(458\) 36.4661 + 21.0537i 1.70395 + 0.983775i
\(459\) −1.79833 3.11480i −0.0839389 0.145386i
\(460\) 20.0774 7.88669i 0.936116 0.367719i
\(461\) −12.9424 22.4168i −0.602786 1.04406i −0.992397 0.123076i \(-0.960724\pi\)
0.389611 0.920979i \(-0.372609\pi\)
\(462\) 8.85812 5.11424i 0.412117 0.237936i
\(463\) 7.04045i 0.327197i 0.986527 + 0.163599i \(0.0523102\pi\)
−0.986527 + 0.163599i \(0.947690\pi\)
\(464\) 10.6738 + 18.4876i 0.495519 + 0.858265i
\(465\) 6.41730 42.6618i 0.297595 1.97840i
\(466\) 8.84570 15.3212i 0.409769 0.709741i
\(467\) 18.8113i 0.870482i −0.900314 0.435241i \(-0.856663\pi\)
0.900314 0.435241i \(-0.143337\pi\)
\(468\) −12.7507 + 23.1350i −0.589399 + 1.06941i
\(469\) 23.5967 1.08959
\(470\) −34.6967 5.21916i −1.60044 0.240742i
\(471\) −19.7688 + 34.2406i −0.910900 + 1.57773i
\(472\) −41.5486 + 23.9881i −1.91243 + 1.10414i
\(473\) 0.868356i 0.0399271i
\(474\) 2.84570 + 4.92889i 0.130707 + 0.226392i
\(475\) −6.52255 2.00771i −0.299275 0.0921199i
\(476\) 16.1159 0.738670
\(477\) 0.909493 0.525096i 0.0416428 0.0240425i
\(478\) −8.81870 5.09148i −0.403358 0.232879i
\(479\) −9.73876 + 16.8680i −0.444975 + 0.770720i −0.998051 0.0624114i \(-0.980121\pi\)
0.553075 + 0.833131i \(0.313454\pi\)
\(480\) −9.65297 24.5739i −0.440596 1.12164i
\(481\) −3.86491 2.13011i −0.176225 0.0971249i
\(482\) 50.3346i 2.29268i
\(483\) 11.7957 + 6.81023i 0.536721 + 0.309876i
\(484\) −23.7407 + 41.1201i −1.07912 + 1.86909i
\(485\) 25.8516 + 20.6034i 1.17386 + 0.935552i
\(486\) −39.1165 −1.77436
\(487\) 27.9935 16.1620i 1.26851 0.732372i 0.293800 0.955867i \(-0.405080\pi\)
0.974705 + 0.223495i \(0.0717467\pi\)
\(488\) −12.4163 + 7.16858i −0.562062 + 0.324506i
\(489\) −8.63509 −0.390492
\(490\) −7.27874 5.80107i −0.328820 0.262066i
\(491\) −14.3354 + 24.8297i −0.646949 + 1.12055i 0.336899 + 0.941541i \(0.390622\pi\)
−0.983848 + 0.179007i \(0.942711\pi\)
\(492\) −83.2227 48.0487i −3.75197 2.16620i
\(493\) 3.67187i 0.165373i
\(494\) 0.249036 + 12.5258i 0.0112046 + 0.563561i
\(495\) −0.848960 2.16123i −0.0381579 0.0971401i
\(496\) 31.8847 55.2260i 1.43167 2.47972i
\(497\) 6.70593 + 3.87167i 0.300802 + 0.173668i
\(498\) −56.2235 + 32.4606i −2.51943 + 1.45460i
\(499\) −28.9616 −1.29650 −0.648249 0.761428i \(-0.724498\pi\)
−0.648249 + 0.761428i \(0.724498\pi\)
\(500\) 3.78816 + 49.9533i 0.169412 + 2.23398i
\(501\) 3.16324 + 5.47890i 0.141323 + 0.244779i
\(502\) 9.35181i 0.417392i
\(503\) −24.3433 + 14.0546i −1.08542 + 0.626665i −0.932352 0.361551i \(-0.882247\pi\)
−0.153063 + 0.988216i \(0.548914\pi\)
\(504\) 15.1722 26.2790i 0.675823 1.17056i
\(505\) 29.2579 + 4.40105i 1.30196 + 0.195844i
\(506\) 3.48079 0.154740
\(507\) −24.7754 13.0195i −1.10032 0.578218i
\(508\) 77.2116i 3.42571i
\(509\) 10.5563 18.2841i 0.467900 0.810427i −0.531427 0.847104i \(-0.678344\pi\)
0.999327 + 0.0366773i \(0.0116774\pi\)
\(510\) 2.23125 14.8332i 0.0988015 0.656826i
\(511\) −15.1722 26.2790i −0.671178 1.16251i
\(512\) 50.8542i 2.24746i
\(513\) −3.47351 + 2.00543i −0.153359 + 0.0885420i
\(514\) 16.8844 + 29.2447i 0.744740 + 1.28993i
\(515\) −22.8284 + 8.96730i −1.00594 + 0.395147i
\(516\) −6.59503 11.4229i −0.290330 0.502866i
\(517\) −3.39010 1.95728i −0.149097 0.0860809i
\(518\) 7.92947 + 4.57808i 0.348401 + 0.201149i
\(519\) 2.94369 0.129214
\(520\) 47.0121 19.5544i 2.06162 0.857516i
\(521\) 0.673516 0.0295073 0.0147536 0.999891i \(-0.495304\pi\)
0.0147536 + 0.999891i \(0.495304\pi\)
\(522\) 10.8145 + 6.24376i 0.473339 + 0.273282i
\(523\) 25.8618 + 14.9313i 1.13086 + 0.652900i 0.944150 0.329516i \(-0.106886\pi\)
0.186706 + 0.982416i \(0.440219\pi\)
\(524\) 22.4039 + 38.8048i 0.978720 + 1.69519i
\(525\) −23.1754 + 21.5293i −1.01146 + 0.939614i
\(526\) −38.5304 66.7366i −1.68000 2.90985i
\(527\) 9.49907 5.48429i 0.413786 0.238899i
\(528\) 9.72953i 0.423423i
\(529\) −9.18246 15.9045i −0.399237 0.691499i
\(530\) −3.61549 0.543852i −0.157047 0.0236234i
\(531\) −6.21061 + 10.7571i −0.269517 + 0.466818i
\(532\) 17.9718i 0.779177i
\(533\) 17.3366 31.4558i 0.750933 1.36250i
\(534\) 68.8290 2.97852
\(535\) 3.55018 23.6014i 0.153488 1.02038i
\(536\) 25.3566 43.9189i 1.09524 1.89701i
\(537\) −14.5171 + 8.38148i −0.626461 + 0.361687i
\(538\) 56.6418i 2.44200i
\(539\) −0.519213 0.899304i −0.0223641 0.0387358i
\(540\) 23.0244 + 18.3502i 0.990813 + 0.789666i
\(541\) 6.28806 0.270345 0.135172 0.990822i \(-0.456841\pi\)
0.135172 + 0.990822i \(0.456841\pi\)
\(542\) 26.0778 15.0560i 1.12014 0.646712i
\(543\) 7.20968 + 4.16251i 0.309397 + 0.178630i
\(544\) 3.35627 5.81323i 0.143899 0.249240i
\(545\) −2.67352 6.80607i −0.114521 0.291540i
\(546\) 50.8569 + 28.0294i 2.17647 + 1.19955i
\(547\) 3.03789i 0.129891i 0.997889 + 0.0649454i \(0.0206873\pi\)
−0.997889 + 0.0649454i \(0.979313\pi\)
\(548\) −33.6527 19.4294i −1.43757 0.829983i
\(549\) −1.85597 + 3.21464i −0.0792109 + 0.137197i
\(550\) −2.37818 + 7.72612i −0.101406 + 0.329443i
\(551\) 4.09473 0.174442
\(552\) 25.3508 14.6363i 1.07900 0.622962i
\(553\) 2.64265 1.52574i 0.112377 0.0648809i
\(554\) −42.7304 −1.81544
\(555\) 3.67238 4.60783i 0.155884 0.195591i
\(556\) −32.0970 + 55.5936i −1.36121 + 2.35769i
\(557\) 17.9264 + 10.3498i 0.759566 + 0.438536i 0.829140 0.559041i \(-0.188831\pi\)
−0.0695738 + 0.997577i \(0.522164\pi\)
\(558\) 37.3026i 1.57915i
\(559\) 4.21955 2.54931i 0.178468 0.107824i
\(560\) −43.5198 + 17.0952i −1.83905 + 0.722402i
\(561\) 0.836758 1.44931i 0.0353279 0.0611898i
\(562\) −23.3622 13.4882i −0.985475 0.568964i
\(563\) 9.49188 5.48014i 0.400035 0.230960i −0.286464 0.958091i \(-0.592480\pi\)
0.686499 + 0.727131i \(0.259147\pi\)
\(564\) −59.4608 −2.50375
\(565\) −9.66965 7.70660i −0.406805 0.324219i
\(566\) 11.2212 + 19.4357i 0.471661 + 0.816941i
\(567\) 33.0051i 1.38608i
\(568\) 14.4122 8.32087i 0.604721 0.349136i
\(569\) 21.3566 36.9907i 0.895314 1.55073i 0.0618981 0.998082i \(-0.480285\pi\)
0.833416 0.552647i \(-0.186382\pi\)
\(570\) −16.5415 2.48821i −0.692845 0.104220i
\(571\) −23.6145 −0.988238 −0.494119 0.869394i \(-0.664509\pi\)
−0.494119 + 0.869394i \(0.664509\pi\)
\(572\) 10.2583 0.203954i 0.428920 0.00852774i
\(573\) 10.6434i 0.444635i
\(574\) −37.2602 + 64.5366i −1.55521 + 2.69370i
\(575\) −10.4933 + 2.40158i −0.437601 + 0.100153i
\(576\) 0.220882 + 0.382579i 0.00920343 + 0.0159408i
\(577\) 18.3646i 0.764530i 0.924053 + 0.382265i \(0.124856\pi\)
−0.924053 + 0.382265i \(0.875144\pi\)
\(578\) −34.1767 + 19.7319i −1.42156 + 0.820740i
\(579\) −5.33542 9.24123i −0.221733 0.384052i
\(580\) −10.9897 27.9770i −0.456324 1.16168i
\(581\) 17.4039 + 30.1445i 0.722037 + 1.25060i
\(582\) 70.1713 + 40.5134i 2.90869 + 1.67934i
\(583\) −0.353259 0.203954i −0.0146305 0.00844691i
\(584\) −65.2151 −2.69862
\(585\) 8.00956 10.4702i 0.331155 0.432890i
\(586\) −71.9237 −2.97114
\(587\) −0.608726 0.351448i −0.0251248 0.0145058i 0.487385 0.873187i \(-0.337951\pi\)
−0.512510 + 0.858681i \(0.671284\pi\)
\(588\) −13.6601 7.88669i −0.563335 0.325242i
\(589\) −6.11588 10.5930i −0.252000 0.436477i
\(590\) 40.2496 15.8106i 1.65705 0.650912i
\(591\) 7.26124 + 12.5768i 0.298687 + 0.517342i
\(592\) 7.54267 4.35476i 0.310002 0.178980i
\(593\) 37.1593i 1.52595i −0.646428 0.762975i \(-0.723738\pi\)
0.646428 0.762975i \(-0.276262\pi\)
\(594\) 2.37548 + 4.11446i 0.0974672 + 0.168818i
\(595\) −7.95291 1.19630i −0.326037 0.0490434i
\(596\) 38.4337 66.5692i 1.57431 2.72678i
\(597\) 11.1423i 0.456026i
\(598\) 10.2189 + 16.9140i 0.417880 + 0.691663i
\(599\) 15.6914 0.641133 0.320567 0.947226i \(-0.396127\pi\)
0.320567 + 0.947226i \(0.396127\pi\)
\(600\) 15.1670 + 66.2698i 0.619190 + 2.70546i
\(601\) −6.00193 + 10.3956i −0.244824 + 0.424047i −0.962082 0.272760i \(-0.912063\pi\)
0.717258 + 0.696807i \(0.245397\pi\)
\(602\) −8.85812 + 5.11424i −0.361030 + 0.208441i
\(603\) 13.1298i 0.534687i
\(604\) −47.9059 82.9754i −1.94926 3.37622i
\(605\) 14.7680 18.5298i 0.600405 0.753342i
\(606\) 72.5204 2.94594
\(607\) −33.5035 + 19.3433i −1.35987 + 0.785119i −0.989606 0.143809i \(-0.954065\pi\)
−0.370261 + 0.928928i \(0.620732\pi\)
\(608\) −6.48269 3.74278i −0.262908 0.151790i
\(609\) 9.48973 16.4367i 0.384543 0.666048i
\(610\) 12.0282 4.72482i 0.487006 0.191302i
\(611\) −0.441765 22.2195i −0.0178719 0.898903i
\(612\) 8.96730i 0.362482i
\(613\) 14.9684 + 8.64201i 0.604568 + 0.349047i 0.770836 0.637033i \(-0.219839\pi\)
−0.166269 + 0.986081i \(0.553172\pi\)
\(614\) 16.1933 28.0477i 0.653509 1.13191i
\(615\) 37.5023 + 29.8889i 1.51224 + 1.20524i
\(616\) −11.7861 −0.474877
\(617\) −22.9229 + 13.2345i −0.922841 + 0.532803i −0.884540 0.466464i \(-0.845528\pi\)
−0.0383009 + 0.999266i \(0.512195\pi\)
\(618\) −52.0624 + 30.0582i −2.09426 + 1.20912i
\(619\) 31.0039 1.24615 0.623075 0.782162i \(-0.285883\pi\)
0.623075 + 0.782162i \(0.285883\pi\)
\(620\) −55.9618 + 70.2165i −2.24748 + 2.81996i
\(621\) −3.16324 + 5.47890i −0.126937 + 0.219861i
\(622\) 61.5615 + 35.5425i 2.46839 + 1.42513i
\(623\) 36.9030i 1.47849i
\(624\) 47.2781 28.5639i 1.89264 1.14347i
\(625\) 1.83869 24.9323i 0.0735475 0.997292i
\(626\) −31.2881 + 54.1925i −1.25052 + 2.16597i
\(627\) −1.61621 0.933121i −0.0645453 0.0372653i
\(628\) 71.2635 41.1440i 2.84372 1.64182i
\(629\) 1.49807 0.0597320
\(630\) −17.0467 + 21.3889i −0.679159 + 0.852156i
\(631\) 10.3566 + 17.9381i 0.412288 + 0.714104i 0.995140 0.0984745i \(-0.0313963\pi\)
−0.582851 + 0.812579i \(0.698063\pi\)
\(632\) 6.55812i 0.260868i
\(633\) −26.1362 + 15.0897i −1.03882 + 0.599763i
\(634\) −0.298331 + 0.516725i −0.0118482 + 0.0205218i
\(635\) 5.73149 38.1026i 0.227447 1.51206i
\(636\) −6.19599 −0.245687
\(637\) 2.84563 5.16315i 0.112748 0.204571i
\(638\) 4.85031i 0.192026i
\(639\) 2.15430 3.73136i 0.0852229 0.147610i
\(640\) 3.87707 25.7745i 0.153254 1.01883i
\(641\) −10.5947 18.3506i −0.418467 0.724806i 0.577319 0.816519i \(-0.304099\pi\)
−0.995785 + 0.0917132i \(0.970766\pi\)
\(642\) 58.4997i 2.30880i
\(643\) −9.98843 + 5.76682i −0.393905 + 0.227421i −0.683851 0.729622i \(-0.739696\pi\)
0.289946 + 0.957043i \(0.406363\pi\)
\(644\) −14.1738 24.5498i −0.558526 0.967396i
\(645\) 2.40660 + 6.12658i 0.0947598 + 0.241234i
\(646\) −2.12645 3.68311i −0.0836639 0.144910i
\(647\) −30.1779 17.4232i −1.18641 0.684977i −0.228925 0.973444i \(-0.573521\pi\)
−0.957490 + 0.288467i \(0.906854\pi\)
\(648\) 61.4301 + 35.4667i 2.41320 + 1.39326i
\(649\) 4.82456 0.189380
\(650\) −44.5249 + 11.1262i −1.74641 + 0.436404i
\(651\) −56.6953 −2.22206
\(652\) 15.5641 + 8.98591i 0.609535 + 0.351915i
\(653\) −19.3324 11.1616i −0.756537 0.436787i 0.0715139 0.997440i \(-0.477217\pi\)
−0.828051 + 0.560653i \(0.810550\pi\)
\(654\) −8.96157 15.5219i −0.350425 0.606954i
\(655\) −8.17544 20.8125i −0.319441 0.813214i
\(656\) 35.4427 + 61.3885i 1.38380 + 2.39682i
\(657\) −14.6223 + 8.44221i −0.570471 + 0.329362i
\(658\) 46.1100i 1.79755i
\(659\) −0.433420 0.750705i −0.0168836 0.0292433i 0.857460 0.514550i \(-0.172041\pi\)
−0.874344 + 0.485307i \(0.838708\pi\)
\(660\) −2.03778 + 13.5470i −0.0793205 + 0.527318i
\(661\) −6.65430 + 11.5256i −0.258822 + 0.448293i −0.965927 0.258816i \(-0.916668\pi\)
0.707104 + 0.707109i \(0.250001\pi\)
\(662\) 46.6544i 1.81328i
\(663\) 9.49907 0.188859i 0.368913 0.00733469i
\(664\) 74.8079 2.90311
\(665\) −1.33407 + 8.86879i −0.0517328 + 0.343917i
\(666\) 2.54737 4.41217i 0.0987085 0.170968i
\(667\) 5.59346 3.22939i 0.216580 0.125042i
\(668\) 13.1670i 0.509448i
\(669\) 0.00893993 + 0.0154844i 0.000345637 + 0.000598662i
\(670\) −28.4894 + 35.7464i −1.10064 + 1.38100i
\(671\) 1.44176 0.0556587
\(672\) −30.0479 + 17.3481i −1.15912 + 0.669219i
\(673\) 4.77457 + 2.75660i 0.184046 + 0.106259i 0.589192 0.807993i \(-0.299446\pi\)
−0.405146 + 0.914252i \(0.632779\pi\)
\(674\) −27.1056 + 46.9483i −1.04407 + 1.80838i
\(675\) −10.0000 10.7646i −0.384900 0.414331i
\(676\) 31.1072 + 49.2486i 1.19643 + 1.89418i
\(677\) 4.80479i 0.184663i 0.995728 + 0.0923316i \(0.0294320\pi\)
−0.995728 + 0.0923316i \(0.970568\pi\)
\(678\) −26.2472 15.1539i −1.00802 0.581980i
\(679\) 21.7215 37.6227i 0.833594 1.44383i
\(680\) −10.7726 + 13.5167i −0.413112 + 0.518341i
\(681\) −24.2496 −0.929248
\(682\) −12.5477 + 7.24440i −0.480475 + 0.277403i
\(683\) 10.1866 5.88126i 0.389781 0.225040i −0.292284 0.956331i \(-0.594415\pi\)
0.682065 + 0.731291i \(0.261082\pi\)
\(684\) −10.0000 −0.382360
\(685\) 15.1648 + 12.0861i 0.579416 + 0.461788i
\(686\) 20.0669 34.7569i 0.766157 1.32702i
\(687\) −30.8393 17.8051i −1.17659 0.679306i
\(688\) 9.72953i 0.370935i
\(689\) −0.0460332 2.31533i −0.00175372 0.0882071i
\(690\) −24.5582 + 9.64680i −0.934916 + 0.367247i
\(691\) −2.43342 + 4.21481i −0.0925717 + 0.160339i −0.908593 0.417684i \(-0.862842\pi\)
0.816021 + 0.578022i \(0.196175\pi\)
\(692\) −5.30577 3.06329i −0.201695 0.116449i
\(693\) −2.64265 + 1.52574i −0.100386 + 0.0579579i
\(694\) 9.71254 0.368683
\(695\) 19.9661 25.0519i 0.757356 0.950272i
\(696\) −20.3950 35.3252i −0.773070 1.33900i
\(697\) 12.1925i 0.461825i
\(698\) 53.6320 30.9644i 2.03000 1.17202i
\(699\) −7.48079 + 12.9571i −0.282949 + 0.490083i
\(700\) 64.1758 14.6877i 2.42562 0.555145i
\(701\) 21.3828 0.807617 0.403808 0.914844i \(-0.367686\pi\)
0.403808 + 0.914844i \(0.367686\pi\)
\(702\) −13.0192 + 23.6222i −0.491378 + 0.891563i
\(703\) 1.67059i 0.0630076i
\(704\) 0.0857934 0.148599i 0.00323346 0.00560052i
\(705\) 29.3429 + 4.41383i 1.10512 + 0.166235i
\(706\) 34.4427 + 59.6564i 1.29627 + 2.24520i
\(707\) 38.8822i 1.46232i
\(708\) 63.4654 36.6417i 2.38517 1.37708i
\(709\) −13.0582 22.6175i −0.490412 0.849419i 0.509527 0.860455i \(-0.329820\pi\)
−0.999939 + 0.0110357i \(0.996487\pi\)
\(710\) −13.9616 + 5.48429i −0.523969 + 0.205822i
\(711\) −0.848960 1.47044i −0.0318385 0.0551459i
\(712\) −68.6851 39.6554i −2.57408 1.48615i
\(713\) −16.7087 9.64680i −0.625748 0.361276i
\(714\) −19.7125 −0.737723
\(715\) −5.07743 0.660834i −0.189885 0.0247138i
\(716\) 34.8880 1.30383
\(717\) 7.45795 + 4.30585i 0.278522 + 0.160805i
\(718\) −59.5347 34.3724i −2.22182 1.28277i
\(719\) 18.3387 + 31.7635i 0.683918 + 1.18458i 0.973776 + 0.227510i \(0.0730586\pi\)
−0.289858 + 0.957070i \(0.593608\pi\)
\(720\) 9.51220 + 24.2156i 0.354499 + 0.902462i
\(721\) 16.1159 + 27.9135i 0.600187 + 1.03955i
\(722\) 37.7815 21.8132i 1.40608 0.811803i
\(723\) 42.5679i 1.58312i
\(724\) −8.66324 15.0052i −0.321967 0.557663i
\(725\) 3.34648 + 14.6219i 0.124285 + 0.543045i
\(726\) 29.0390 50.2971i 1.07774 1.86670i
\(727\) 26.2596i 0.973916i 0.873425 + 0.486958i \(0.161893\pi\)
−0.873425 + 0.486958i \(0.838107\pi\)
\(728\) −34.6016 57.2716i −1.28242 2.12263i
\(729\) −0.614542 −0.0227608
\(730\) 58.1279 + 8.74375i 2.15141 + 0.323621i
\(731\) −0.836758 + 1.44931i −0.0309486 + 0.0536046i
\(732\) 18.9659 10.9500i 0.701000 0.404723i
\(733\) 31.7811i 1.17386i 0.809637 + 0.586931i \(0.199664\pi\)
−0.809637 + 0.586931i \(0.800336\pi\)
\(734\) −8.83513 15.3029i −0.326110 0.564840i
\(735\) 6.15561 + 4.90595i 0.227053 + 0.180959i
\(736\) −11.8073 −0.435222
\(737\) −4.41654 + 2.54989i −0.162685 + 0.0939265i
\(738\) 35.9099 + 20.7326i 1.32186 + 0.763176i
\(739\) −17.0685 + 29.5635i −0.627875 + 1.08751i 0.360102 + 0.932913i \(0.382742\pi\)
−0.987977 + 0.154599i \(0.950591\pi\)
\(740\) −11.4142 + 4.48365i −0.419595 + 0.164822i
\(741\) −0.210609 10.5930i −0.00773691 0.389144i
\(742\) 4.80479i 0.176390i
\(743\) −2.70254 1.56031i −0.0991465 0.0572423i 0.449607 0.893227i \(-0.351564\pi\)
−0.548753 + 0.835984i \(0.684897\pi\)
\(744\) −60.9237 + 105.523i −2.23357 + 3.86866i
\(745\) −23.9079 + 29.9978i −0.875917 + 1.09903i
\(746\) 5.88798 0.215574
\(747\) 16.7732 9.68401i 0.613699 0.354320i
\(748\) −3.01638 + 1.74151i −0.110290 + 0.0636758i
\(749\) −31.3649 −1.14605
\(750\) −4.63359 61.1016i −0.169195 2.23112i
\(751\) −0.742024 + 1.28522i −0.0270769 + 0.0468985i −0.879246 0.476367i \(-0.841953\pi\)
0.852169 + 0.523266i \(0.175287\pi\)
\(752\) 37.9845 + 21.9304i 1.38515 + 0.799718i
\(753\) 7.90881i 0.288213i
\(754\) 23.5688 14.2395i 0.858325 0.518572i
\(755\) 17.4814 + 44.5030i 0.636213 + 1.61963i
\(756\) 19.3460 33.5082i 0.703607 1.21868i
\(757\) 4.41654 + 2.54989i 0.160522 + 0.0926774i 0.578109 0.815960i \(-0.303791\pi\)
−0.417587 + 0.908637i \(0.637124\pi\)
\(758\) 11.4102 6.58767i 0.414436 0.239275i
\(759\) −2.94369 −0.106849
\(760\) 15.0733 + 12.0132i 0.546766 + 0.435766i
\(761\) 14.8931 + 25.7955i 0.539873 + 0.935088i 0.998910 + 0.0466707i \(0.0148611\pi\)
−0.459037 + 0.888417i \(0.651806\pi\)
\(762\) 94.4433i 3.42132i
\(763\) −8.32215 + 4.80479i −0.301282 + 0.173945i
\(764\) 11.0758 19.1839i 0.400709 0.694048i
\(765\) −0.665652 + 4.42521i −0.0240667 + 0.159994i
\(766\) −52.5973 −1.90042
\(767\) 14.1639 + 23.4437i 0.511428 + 0.846501i
\(768\) 62.7228i 2.26331i
\(769\) 9.54930 16.5399i 0.344356 0.596443i −0.640880 0.767641i \(-0.721430\pi\)
0.985237 + 0.171198i \(0.0547638\pi\)
\(770\) 10.5053 + 1.58023i 0.378584 + 0.0569476i
\(771\) −14.2791 24.7322i −0.514250 0.890707i
\(772\) 22.2088i 0.799311i
\(773\) 42.6350 24.6153i 1.53347 0.885351i 0.534275 0.845311i \(-0.320585\pi\)
0.999198 0.0400400i \(-0.0127485\pi\)
\(774\) 2.84570 + 4.92889i 0.102286 + 0.177165i