Properties

Label 65.2.n.a.9.5
Level $65$
Weight $2$
Character 65.9
Analytic conductor $0.519$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 65 = 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 65.n (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.519027613138\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Defining polynomial: \(x^{12} - 8 x^{10} + 54 x^{8} - 78 x^{6} + 92 x^{4} - 10 x^{2} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 9.5
Root \(1.02826 - 0.593667i\) of defining polynomial
Character \(\chi\) \(=\) 65.9
Dual form 65.2.n.a.29.5

$q$-expansion

\(f(q)\) \(=\) \(q+(1.02826 + 0.593667i) q^{2} +(-0.298874 - 0.172555i) q^{3} +(-0.295120 - 0.511162i) q^{4} +(1.44045 + 1.71029i) q^{5} +(-0.204880 - 0.354863i) q^{6} +(-1.75765 + 1.01478i) q^{7} -3.07548i q^{8} +(-1.44045 - 2.49493i) q^{9} +O(q^{10})\) \(q+(1.02826 + 0.593667i) q^{2} +(-0.298874 - 0.172555i) q^{3} +(-0.295120 - 0.511162i) q^{4} +(1.44045 + 1.71029i) q^{5} +(-0.204880 - 0.354863i) q^{6} +(-1.75765 + 1.01478i) q^{7} -3.07548i q^{8} +(-1.44045 - 2.49493i) q^{9} +(0.465813 + 2.61378i) q^{10} +(-1.94045 + 3.36096i) q^{11} +0.203698i q^{12} +(-2.96232 - 2.05540i) q^{13} -2.40976 q^{14} +(-0.135393 - 0.759719i) q^{15} +(1.23557 - 2.14007i) q^{16} +(4.71996 - 2.72507i) q^{17} -3.42059i q^{18} +(2.94045 + 5.09301i) q^{19} +(0.449133 - 1.24105i) q^{20} +0.700420 q^{21} +(-3.99058 + 2.30396i) q^{22} +(0.298874 + 0.172555i) q^{23} +(-0.530689 + 0.919180i) q^{24} +(-0.850210 + 4.92718i) q^{25} +(-1.82581 - 3.87212i) q^{26} +2.02956i q^{27} +(1.03743 + 0.598962i) q^{28} +(1.50000 - 2.59808i) q^{29} +(0.311800 - 0.861568i) q^{30} +1.18048 q^{31} +(-2.78591 + 1.60845i) q^{32} +(1.15990 - 0.669668i) q^{33} +6.47114 q^{34} +(-4.26737 - 1.54436i) q^{35} +(-0.850210 + 1.47261i) q^{36} +(4.71996 + 2.72507i) q^{37} +6.98259i q^{38} +(0.530689 + 1.12547i) q^{39} +(5.25997 - 4.43007i) q^{40} +(-0.0902394 + 0.156299i) q^{41} +(0.720215 + 0.415816i) q^{42} +(-1.15990 + 0.669668i) q^{43} +2.29066 q^{44} +(2.19217 - 6.05742i) q^{45} +(0.204880 + 0.354863i) q^{46} -12.2807i q^{47} +(-0.738559 + 0.426407i) q^{48} +(-1.44045 + 2.49493i) q^{49} +(-3.79934 + 4.56169i) q^{50} -1.88090 q^{51} +(-0.176407 + 2.12081i) q^{52} +2.42636i q^{53} +(-1.20488 + 2.08691i) q^{54} +(-8.54334 + 1.52255i) q^{55} +(3.12093 + 5.40561i) q^{56} -2.02956i q^{57} +(3.08478 - 1.78100i) q^{58} +(-3.53069 - 6.11533i) q^{59} +(-0.348383 + 0.293416i) q^{60} +(-3.38090 - 5.85589i) q^{61} +(1.21384 + 0.700811i) q^{62} +(5.06361 + 2.92347i) q^{63} -8.76180 q^{64} +(-0.751722 - 8.02714i) q^{65} +1.59024 q^{66} +(-3.81417 - 2.20211i) q^{67} +(-2.78591 - 1.60845i) q^{68} +(-0.0595504 - 0.103144i) q^{69} +(-3.47114 - 4.12140i) q^{70} +(0.940450 + 1.62891i) q^{71} +(-7.67311 + 4.43007i) q^{72} +8.86014i q^{73} +(3.23557 + 5.60417i) q^{74} +(1.10432 - 1.32590i) q^{75} +(1.73557 - 3.00609i) q^{76} -7.87651i q^{77} +(-0.122467 + 1.47233i) q^{78} -11.1805 q^{79} +(5.43992 - 0.969475i) q^{80} +(-3.97114 + 6.87821i) q^{81} +(-0.185579 + 0.107144i) q^{82} +7.83540i q^{83} +(-0.206708 - 0.358028i) q^{84} +(11.4595 + 4.14720i) q^{85} -1.59024 q^{86} +(-0.896622 + 0.517665i) q^{87} +(10.3365 + 5.96781i) q^{88} +(6.12093 - 10.6018i) q^{89} +(5.85021 - 4.92718i) q^{90} +(7.29249 + 0.606582i) q^{91} -0.203698i q^{92} +(-0.352814 - 0.203698i) q^{93} +(7.29066 - 12.6278i) q^{94} +(-4.47497 + 12.3653i) q^{95} +1.11018 q^{96} +(5.02801 - 2.90292i) q^{97} +(-2.96232 + 1.71029i) q^{98} +11.1805 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12q + 4q^{4} - 6q^{5} - 10q^{6} + 6q^{9} + O(q^{10}) \) \( 12q + 4q^{4} - 6q^{5} - 10q^{6} + 6q^{9} + 7q^{10} - 44q^{14} - 4q^{15} - 16q^{16} + 12q^{19} - q^{20} - 8q^{21} + 32q^{24} - 2q^{25} + 24q^{26} + 18q^{29} + 4q^{30} - 16q^{31} + 16q^{34} + 10q^{35} - 2q^{36} - 32q^{39} + 70q^{40} + 14q^{41} - 4q^{44} - 29q^{45} + 10q^{46} + 6q^{49} - 31q^{50} + 24q^{51} - 22q^{54} - 26q^{55} - 16q^{56} - 4q^{59} - 96q^{60} + 6q^{61} - 12q^{64} + 23q^{65} + 4q^{66} - 24q^{69} + 20q^{70} - 12q^{71} + 8q^{74} + 2q^{75} - 10q^{76} - 104q^{79} + 33q^{80} + 14q^{81} + 90q^{84} + 21q^{85} - 4q^{86} + 20q^{89} + 62q^{90} - 44q^{91} + 56q^{94} + 20q^{95} + 12q^{96} + 104q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/65\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(41\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.02826 + 0.593667i 0.727090 + 0.419786i 0.817357 0.576132i \(-0.195439\pi\)
−0.0902665 + 0.995918i \(0.528772\pi\)
\(3\) −0.298874 0.172555i −0.172555 0.0996247i 0.411235 0.911529i \(-0.365098\pi\)
−0.583790 + 0.811905i \(0.698431\pi\)
\(4\) −0.295120 0.511162i −0.147560 0.255581i
\(5\) 1.44045 + 1.71029i 0.644189 + 0.764867i
\(6\) −0.204880 0.354863i −0.0836420 0.144872i
\(7\) −1.75765 + 1.01478i −0.664328 + 0.383550i −0.793924 0.608017i \(-0.791965\pi\)
0.129596 + 0.991567i \(0.458632\pi\)
\(8\) 3.07548i 1.08735i
\(9\) −1.44045 2.49493i −0.480150 0.831644i
\(10\) 0.465813 + 2.61378i 0.147303 + 0.826548i
\(11\) −1.94045 + 3.36096i −0.585068 + 1.01337i 0.409799 + 0.912176i \(0.365599\pi\)
−0.994867 + 0.101191i \(0.967735\pi\)
\(12\) 0.203698i 0.0588024i
\(13\) −2.96232 2.05540i −0.821599 0.570066i
\(14\) −2.40976 −0.644036
\(15\) −0.135393 0.759719i −0.0349584 0.196159i
\(16\) 1.23557 2.14007i 0.308892 0.535017i
\(17\) 4.71996 2.72507i 1.14476 0.660927i 0.197155 0.980372i \(-0.436830\pi\)
0.947605 + 0.319445i \(0.103497\pi\)
\(18\) 3.42059i 0.806240i
\(19\) 2.94045 + 5.09301i 0.674585 + 1.16842i 0.976590 + 0.215110i \(0.0690109\pi\)
−0.302005 + 0.953306i \(0.597656\pi\)
\(20\) 0.449133 1.24105i 0.100429 0.277506i
\(21\) 0.700420 0.152844
\(22\) −3.99058 + 2.30396i −0.850794 + 0.491206i
\(23\) 0.298874 + 0.172555i 0.0623195 + 0.0359802i 0.530836 0.847475i \(-0.321878\pi\)
−0.468516 + 0.883455i \(0.655211\pi\)
\(24\) −0.530689 + 0.919180i −0.108326 + 0.187627i
\(25\) −0.850210 + 4.92718i −0.170042 + 0.985437i
\(26\) −1.82581 3.87212i −0.358071 0.759385i
\(27\) 2.02956i 0.390588i
\(28\) 1.03743 + 0.598962i 0.196056 + 0.113193i
\(29\) 1.50000 2.59808i 0.278543 0.482451i −0.692480 0.721437i \(-0.743482\pi\)
0.971023 + 0.238987i \(0.0768152\pi\)
\(30\) 0.311800 0.861568i 0.0569267 0.157300i
\(31\) 1.18048 0.212020 0.106010 0.994365i \(-0.466192\pi\)
0.106010 + 0.994365i \(0.466192\pi\)
\(32\) −2.78591 + 1.60845i −0.492484 + 0.284336i
\(33\) 1.15990 0.669668i 0.201913 0.116574i
\(34\) 6.47114 1.10979
\(35\) −4.26737 1.54436i −0.721318 0.261044i
\(36\) −0.850210 + 1.47261i −0.141702 + 0.245435i
\(37\) 4.71996 + 2.72507i 0.775957 + 0.447999i 0.834996 0.550257i \(-0.185470\pi\)
−0.0590384 + 0.998256i \(0.518803\pi\)
\(38\) 6.98259i 1.13273i
\(39\) 0.530689 + 1.12547i 0.0849782 + 0.180219i
\(40\) 5.25997 4.43007i 0.831674 0.700456i
\(41\) −0.0902394 + 0.156299i −0.0140930 + 0.0244098i −0.872986 0.487745i \(-0.837819\pi\)
0.858893 + 0.512155i \(0.171153\pi\)
\(42\) 0.720215 + 0.415816i 0.111132 + 0.0641618i
\(43\) −1.15990 + 0.669668i −0.176883 + 0.102123i −0.585827 0.810436i \(-0.699230\pi\)
0.408944 + 0.912559i \(0.365897\pi\)
\(44\) 2.29066 0.345330
\(45\) 2.19217 6.05742i 0.326790 0.902986i
\(46\) 0.204880 + 0.354863i 0.0302079 + 0.0523217i
\(47\) 12.2807i 1.79133i −0.444731 0.895664i \(-0.646701\pi\)
0.444731 0.895664i \(-0.353299\pi\)
\(48\) −0.738559 + 0.426407i −0.106602 + 0.0615466i
\(49\) −1.44045 + 2.49493i −0.205779 + 0.356419i
\(50\) −3.79934 + 4.56169i −0.537308 + 0.645120i
\(51\) −1.88090 −0.263379
\(52\) −0.176407 + 2.12081i −0.0244633 + 0.294104i
\(53\) 2.42636i 0.333286i 0.986017 + 0.166643i \(0.0532928\pi\)
−0.986017 + 0.166643i \(0.946707\pi\)
\(54\) −1.20488 + 2.08691i −0.163963 + 0.283993i
\(55\) −8.54334 + 1.52255i −1.15198 + 0.205301i
\(56\) 3.12093 + 5.40561i 0.417052 + 0.722355i
\(57\) 2.02956i 0.268821i
\(58\) 3.08478 1.78100i 0.405052 0.233857i
\(59\) −3.53069 6.11533i −0.459657 0.796149i 0.539286 0.842123i \(-0.318694\pi\)
−0.998943 + 0.0459741i \(0.985361\pi\)
\(60\) −0.348383 + 0.293416i −0.0449760 + 0.0378798i
\(61\) −3.38090 5.85589i −0.432880 0.749770i 0.564240 0.825611i \(-0.309169\pi\)
−0.997120 + 0.0758409i \(0.975836\pi\)
\(62\) 1.21384 + 0.700811i 0.154158 + 0.0890031i
\(63\) 5.06361 + 2.92347i 0.637954 + 0.368323i
\(64\) −8.76180 −1.09522
\(65\) −0.751722 8.02714i −0.0932396 0.995644i
\(66\) 1.59024 0.195745
\(67\) −3.81417 2.20211i −0.465975 0.269031i 0.248578 0.968612i \(-0.420037\pi\)
−0.714553 + 0.699581i \(0.753370\pi\)
\(68\) −2.78591 1.60845i −0.337841 0.195053i
\(69\) −0.0595504 0.103144i −0.00716903 0.0124171i
\(70\) −3.47114 4.12140i −0.414880 0.492601i
\(71\) 0.940450 + 1.62891i 0.111611 + 0.193316i 0.916420 0.400218i \(-0.131066\pi\)
−0.804809 + 0.593534i \(0.797732\pi\)
\(72\) −7.67311 + 4.43007i −0.904284 + 0.522089i
\(73\) 8.86014i 1.03700i 0.855077 + 0.518501i \(0.173510\pi\)
−0.855077 + 0.518501i \(0.826490\pi\)
\(74\) 3.23557 + 5.60417i 0.376127 + 0.651472i
\(75\) 1.10432 1.32590i 0.127515 0.153102i
\(76\) 1.73557 3.00609i 0.199083 0.344823i
\(77\) 7.87651i 0.897611i
\(78\) −0.122467 + 1.47233i −0.0138666 + 0.166708i
\(79\) −11.1805 −1.25790 −0.628951 0.777445i \(-0.716515\pi\)
−0.628951 + 0.777445i \(0.716515\pi\)
\(80\) 5.43992 0.969475i 0.608202 0.108391i
\(81\) −3.97114 + 6.87821i −0.441238 + 0.764246i
\(82\) −0.185579 + 0.107144i −0.0204938 + 0.0118321i
\(83\) 7.83540i 0.860047i 0.902818 + 0.430024i \(0.141495\pi\)
−0.902818 + 0.430024i \(0.858505\pi\)
\(84\) −0.206708 0.358028i −0.0225537 0.0390641i
\(85\) 11.4595 + 4.14720i 1.24296 + 0.449827i
\(86\) −1.59024 −0.171480
\(87\) −0.896622 + 0.517665i −0.0961280 + 0.0554995i
\(88\) 10.3365 + 5.96781i 1.10188 + 0.636171i
\(89\) 6.12093 10.6018i 0.648817 1.12378i −0.334589 0.942364i \(-0.608597\pi\)
0.983406 0.181420i \(-0.0580693\pi\)
\(90\) 5.85021 4.92718i 0.616666 0.519371i
\(91\) 7.29249 + 0.606582i 0.764460 + 0.0635870i
\(92\) 0.203698i 0.0212369i
\(93\) −0.352814 0.203698i −0.0365852 0.0211224i
\(94\) 7.29066 12.6278i 0.751974 1.30246i
\(95\) −4.47497 + 12.3653i −0.459122 + 1.26865i
\(96\) 1.11018 0.113307
\(97\) 5.02801 2.90292i 0.510517 0.294747i −0.222529 0.974926i \(-0.571431\pi\)
0.733046 + 0.680179i \(0.238098\pi\)
\(98\) −2.96232 + 1.71029i −0.299239 + 0.172766i
\(99\) 11.1805 1.12368
\(100\) 2.76950 1.01951i 0.276950 0.101951i
\(101\) 2.97114 5.14616i 0.295639 0.512062i −0.679494 0.733681i \(-0.737801\pi\)
0.975133 + 0.221619i \(0.0711340\pi\)
\(102\) −1.93405 1.11663i −0.191500 0.110563i
\(103\) 6.43378i 0.633939i −0.948436 0.316970i \(-0.897335\pi\)
0.948436 0.316970i \(-0.102665\pi\)
\(104\) −6.32135 + 9.11054i −0.619859 + 0.893362i
\(105\) 1.00892 + 1.19792i 0.0984605 + 0.116905i
\(106\) −1.44045 + 2.49493i −0.139909 + 0.242329i
\(107\) 15.3106 + 8.83959i 1.48013 + 0.854555i 0.999747 0.0225015i \(-0.00716305\pi\)
0.480387 + 0.877057i \(0.340496\pi\)
\(108\) 1.03743 0.598962i 0.0998270 0.0576352i
\(109\) −5.76180 −0.551880 −0.275940 0.961175i \(-0.588989\pi\)
−0.275940 + 0.961175i \(0.588989\pi\)
\(110\) −9.68867 3.50632i −0.923779 0.334314i
\(111\) −0.940450 1.62891i −0.0892635 0.154609i
\(112\) 5.01532i 0.473903i
\(113\) −4.12222 + 2.37996i −0.387785 + 0.223888i −0.681200 0.732097i \(-0.738542\pi\)
0.293415 + 0.955985i \(0.405208\pi\)
\(114\) 1.20488 2.08691i 0.112847 0.195457i
\(115\) 0.135393 + 0.759719i 0.0126255 + 0.0708442i
\(116\) −1.77072 −0.164407
\(117\) −0.861026 + 10.3515i −0.0796019 + 0.956995i
\(118\) 8.38421i 0.771829i
\(119\) −5.53069 + 9.57943i −0.506997 + 0.878145i
\(120\) −2.33650 + 0.416399i −0.213292 + 0.0380118i
\(121\) −2.03069 3.51726i −0.184608 0.319751i
\(122\) 8.02851i 0.726867i
\(123\) 0.0539404 0.0311425i 0.00486365 0.00280803i
\(124\) −0.348383 0.603416i −0.0312857 0.0541884i
\(125\) −9.65162 + 5.64325i −0.863267 + 0.504748i
\(126\) 3.47114 + 6.01219i 0.309234 + 0.535608i
\(127\) −14.4679 8.35307i −1.28382 0.741215i −0.306277 0.951942i \(-0.599083\pi\)
−0.977545 + 0.210728i \(0.932417\pi\)
\(128\) −3.43760 1.98470i −0.303844 0.175424i
\(129\) 0.462218 0.0406961
\(130\) 3.99248 8.70026i 0.350163 0.763063i
\(131\) 10.0000 0.873704 0.436852 0.899533i \(-0.356093\pi\)
0.436852 + 0.899533i \(0.356093\pi\)
\(132\) −0.684619 0.395265i −0.0595884 0.0344034i
\(133\) −10.3365 5.96781i −0.896292 0.517475i
\(134\) −2.61464 4.52869i −0.225871 0.391219i
\(135\) −3.47114 + 2.92347i −0.298748 + 0.251613i
\(136\) −8.38090 14.5161i −0.718656 1.24475i
\(137\) −1.71288 + 0.988931i −0.146341 + 0.0844901i −0.571383 0.820684i \(-0.693593\pi\)
0.425042 + 0.905174i \(0.360259\pi\)
\(138\) 0.141412i 0.0120378i
\(139\) 4.35021 + 7.53478i 0.368980 + 0.639092i 0.989406 0.145173i \(-0.0463737\pi\)
−0.620426 + 0.784265i \(0.713040\pi\)
\(140\) 0.469969 + 2.63709i 0.0397196 + 0.222875i
\(141\) −2.11910 + 3.67039i −0.178460 + 0.309103i
\(142\) 2.23325i 0.187411i
\(143\) 12.6563 5.96781i 1.05838 0.499053i
\(144\) −7.11910 −0.593258
\(145\) 6.60415 1.17696i 0.548445 0.0977410i
\(146\) −5.25997 + 9.11054i −0.435318 + 0.753993i
\(147\) 0.861026 0.497113i 0.0710162 0.0410012i
\(148\) 3.21689i 0.264427i
\(149\) 11.1516 + 19.3152i 0.913576 + 1.58236i 0.808973 + 0.587846i \(0.200024\pi\)
0.104603 + 0.994514i \(0.466643\pi\)
\(150\) 1.92267 0.707775i 0.156985 0.0577896i
\(151\) −19.1626 −1.55943 −0.779717 0.626132i \(-0.784637\pi\)
−0.779717 + 0.626132i \(0.784637\pi\)
\(152\) 15.6634 9.04329i 1.27047 0.733507i
\(153\) −13.5977 7.85066i −1.09931 0.634688i
\(154\) 4.67602 8.09910i 0.376804 0.652644i
\(155\) 1.70042 + 2.01897i 0.136581 + 0.162167i
\(156\) 0.418681 0.603416i 0.0335213 0.0483120i
\(157\) 6.20265i 0.495025i 0.968885 + 0.247513i \(0.0796132\pi\)
−0.968885 + 0.247513i \(0.920387\pi\)
\(158\) −11.4964 6.63748i −0.914608 0.528049i
\(159\) 0.418681 0.725176i 0.0332035 0.0575102i
\(160\) −6.76387 2.44784i −0.534731 0.193519i
\(161\) −0.700420 −0.0552008
\(162\) −8.16673 + 4.71507i −0.641639 + 0.370451i
\(163\) 10.3365 5.96781i 0.809621 0.467435i −0.0372032 0.999308i \(-0.511845\pi\)
0.846824 + 0.531873i \(0.178512\pi\)
\(164\) 0.106526 0.00831826
\(165\) 2.81611 + 1.01915i 0.219234 + 0.0793404i
\(166\) −4.65162 + 8.05684i −0.361036 + 0.625332i
\(167\) −1.75765 1.01478i −0.136011 0.0785259i 0.430451 0.902614i \(-0.358355\pi\)
−0.566461 + 0.824088i \(0.691688\pi\)
\(168\) 2.15413i 0.166195i
\(169\) 4.55063 + 12.1775i 0.350048 + 0.936732i
\(170\) 9.32135 + 11.0675i 0.714915 + 0.848842i
\(171\) 8.47114 14.6724i 0.647804 1.12203i
\(172\) 0.684619 + 0.395265i 0.0522017 + 0.0301387i
\(173\) 1.15990 0.669668i 0.0881855 0.0509139i −0.455259 0.890359i \(-0.650453\pi\)
0.543444 + 0.839445i \(0.317120\pi\)
\(174\) −1.22928 −0.0931916
\(175\) −3.50563 9.52303i −0.265001 0.719873i
\(176\) 4.79512 + 8.30539i 0.361446 + 0.626042i
\(177\) 2.43695i 0.183173i
\(178\) 12.5878 7.26758i 0.943497 0.544728i
\(179\) 10.1120 17.5145i 0.755807 1.30910i −0.189165 0.981945i \(-0.560578\pi\)
0.944972 0.327151i \(-0.106089\pi\)
\(180\) −3.74328 + 0.667107i −0.279007 + 0.0497232i
\(181\) 19.8232 1.47345 0.736723 0.676195i \(-0.236372\pi\)
0.736723 + 0.676195i \(0.236372\pi\)
\(182\) 7.13847 + 4.95303i 0.529139 + 0.367143i
\(183\) 2.33356i 0.172502i
\(184\) 0.530689 0.919180i 0.0391229 0.0677629i
\(185\) 2.13820 + 11.9979i 0.157203 + 0.882100i
\(186\) −0.241857 0.418908i −0.0177338 0.0307159i
\(187\) 21.1515i 1.54675i
\(188\) −6.27745 + 3.62429i −0.457830 + 0.264328i
\(189\) −2.05955 3.56725i −0.149810 0.259479i
\(190\) −11.9423 + 10.0581i −0.866384 + 0.729689i
\(191\) −0.768891 1.33176i −0.0556350 0.0963626i 0.836867 0.547407i \(-0.184385\pi\)
−0.892502 + 0.451044i \(0.851052\pi\)
\(192\) 2.61867 + 1.51189i 0.188986 + 0.109111i
\(193\) −18.3625 10.6016i −1.32176 0.763118i −0.337750 0.941236i \(-0.609666\pi\)
−0.984009 + 0.178117i \(0.942999\pi\)
\(194\) 6.89347 0.494923
\(195\) −1.16045 + 2.52882i −0.0831017 + 0.181092i
\(196\) 1.70042 0.121459
\(197\) −8.01675 4.62847i −0.571170 0.329765i 0.186447 0.982465i \(-0.440303\pi\)
−0.757616 + 0.652700i \(0.773636\pi\)
\(198\) 11.4964 + 6.63748i 0.817017 + 0.471705i
\(199\) −8.70225 15.0727i −0.616886 1.06848i −0.990050 0.140713i \(-0.955061\pi\)
0.373164 0.927765i \(-0.378273\pi\)
\(200\) 15.1534 + 2.61480i 1.07151 + 0.184894i
\(201\) 0.759971 + 1.31631i 0.0536042 + 0.0928452i
\(202\) 6.11021 3.52773i 0.429913 0.248210i
\(203\) 6.08867i 0.427341i
\(204\) 0.555090 + 0.961445i 0.0388641 + 0.0673146i
\(205\) −0.397303 + 0.0708053i −0.0277488 + 0.00494526i
\(206\) 3.81952 6.61560i 0.266119 0.460931i
\(207\) 0.994227i 0.0691036i
\(208\) −8.05885 + 3.79997i −0.558781 + 0.263480i
\(209\) −22.8232 −1.57871
\(210\) 0.326265 + 1.83074i 0.0225144 + 0.126333i
\(211\) 3.64087 6.30617i 0.250648 0.434135i −0.713057 0.701107i \(-0.752690\pi\)
0.963704 + 0.266972i \(0.0860231\pi\)
\(212\) 1.24026 0.716067i 0.0851817 0.0491797i
\(213\) 0.649117i 0.0444768i
\(214\) 10.4955 + 18.1788i 0.717460 + 1.24268i
\(215\) −2.81611 1.01915i −0.192057 0.0695052i
\(216\) 6.24186 0.424705
\(217\) −2.07487 + 1.19792i −0.140851 + 0.0813204i
\(218\) −5.92463 3.42059i −0.401267 0.231671i
\(219\) 1.52886 2.64807i 0.103311 0.178940i
\(220\) 3.29958 + 3.91770i 0.222458 + 0.264131i
\(221\) −19.5831 1.62891i −1.31731 0.109572i
\(222\) 2.23325i 0.149886i
\(223\) 16.8589 + 9.73351i 1.12896 + 0.651804i 0.943672 0.330881i \(-0.107346\pi\)
0.185285 + 0.982685i \(0.440679\pi\)
\(224\) 3.26443 5.65416i 0.218114 0.377784i
\(225\) 13.5177 4.97614i 0.901178 0.331743i
\(226\) −5.65162 −0.375940
\(227\) −4.16698 + 2.40581i −0.276572 + 0.159679i −0.631871 0.775074i \(-0.717713\pi\)
0.355298 + 0.934753i \(0.384379\pi\)
\(228\) −1.03743 + 0.598962i −0.0687057 + 0.0396672i
\(229\) −1.52360 −0.100682 −0.0503410 0.998732i \(-0.516031\pi\)
−0.0503410 + 0.998732i \(0.516031\pi\)
\(230\) −0.311800 + 0.861568i −0.0205595 + 0.0568101i
\(231\) −1.35913 + 2.35408i −0.0894242 + 0.154887i
\(232\) −7.99033 4.61322i −0.524591 0.302873i
\(233\) 13.9652i 0.914889i −0.889238 0.457445i \(-0.848765\pi\)
0.889238 0.457445i \(-0.151235\pi\)
\(234\) −7.03069 + 10.1329i −0.459611 + 0.662406i
\(235\) 21.0037 17.6898i 1.37013 1.15395i
\(236\) −2.08395 + 3.60951i −0.135654 + 0.234959i
\(237\) 3.34155 + 1.92925i 0.217057 + 0.125318i
\(238\) −11.3740 + 6.56677i −0.737266 + 0.425661i
\(239\) −4.00000 −0.258738 −0.129369 0.991596i \(-0.541295\pi\)
−0.129369 + 0.991596i \(0.541295\pi\)
\(240\) −1.79314 0.648935i −0.115747 0.0418886i
\(241\) 8.73294 + 15.1259i 0.562538 + 0.974344i 0.997274 + 0.0737864i \(0.0235083\pi\)
−0.434736 + 0.900558i \(0.643158\pi\)
\(242\) 4.82221i 0.309983i
\(243\) 7.64668 4.41481i 0.490535 0.283210i
\(244\) −1.99554 + 3.45638i −0.127751 + 0.221272i
\(245\) −6.34196 + 1.13023i −0.405173 + 0.0722078i
\(246\) 0.0739531 0.00471508
\(247\) 1.75765 21.1309i 0.111836 1.34453i
\(248\) 3.63054i 0.230539i
\(249\) 1.35204 2.34180i 0.0856819 0.148405i
\(250\) −13.2746 + 0.0728904i −0.839559 + 0.00460999i
\(251\) −4.64979 8.05367i −0.293492 0.508343i 0.681141 0.732152i \(-0.261484\pi\)
−0.974633 + 0.223809i \(0.928151\pi\)
\(252\) 3.45110i 0.217399i
\(253\) −1.15990 + 0.669668i −0.0729223 + 0.0421017i
\(254\) −9.91788 17.1783i −0.622303 1.07786i
\(255\) −2.70934 3.21689i −0.169665 0.201449i
\(256\) 6.40530 + 11.0943i 0.400331 + 0.693394i
\(257\) 9.43076 + 5.44485i 0.588274 + 0.339640i 0.764415 0.644725i \(-0.223028\pi\)
−0.176141 + 0.984365i \(0.556361\pi\)
\(258\) 0.475281 + 0.274404i 0.0295897 + 0.0170836i
\(259\) −11.0614 −0.687321
\(260\) −3.88132 + 2.75322i −0.240709 + 0.170747i
\(261\) −8.64270 −0.534970
\(262\) 10.2826 + 5.93667i 0.635262 + 0.366769i
\(263\) 11.6399 + 6.72031i 0.717749 + 0.414392i 0.813923 0.580972i \(-0.197327\pi\)
−0.0961749 + 0.995364i \(0.530661\pi\)
\(264\) −2.05955 3.56725i −0.126757 0.219549i
\(265\) −4.14979 + 3.49505i −0.254920 + 0.214699i
\(266\) −7.08578 12.2729i −0.434457 0.752502i
\(267\) −3.65877 + 2.11239i −0.223913 + 0.129276i
\(268\) 2.59955i 0.158793i
\(269\) 1.83027 + 3.17012i 0.111593 + 0.193286i 0.916413 0.400234i \(-0.131071\pi\)
−0.804819 + 0.593520i \(0.797738\pi\)
\(270\) −5.30481 + 0.945395i −0.322840 + 0.0575349i
\(271\) −11.0018 + 19.0557i −0.668313 + 1.15755i 0.310062 + 0.950716i \(0.399650\pi\)
−0.978376 + 0.206837i \(0.933683\pi\)
\(272\) 13.4681i 0.816621i
\(273\) −2.07487 1.43965i −0.125577 0.0871314i
\(274\) −2.34838 −0.141871
\(275\) −14.9103 12.4185i −0.899123 0.748862i
\(276\) −0.0351490 + 0.0608799i −0.00211572 + 0.00366454i
\(277\) −8.56973 + 4.94774i −0.514905 + 0.297281i −0.734848 0.678232i \(-0.762746\pi\)
0.219943 + 0.975513i \(0.429413\pi\)
\(278\) 10.3303i 0.619570i
\(279\) −1.70042 2.94521i −0.101801 0.176325i
\(280\) −4.74964 + 13.1242i −0.283845 + 0.784321i
\(281\) 4.06138 0.242281 0.121141 0.992635i \(-0.461345\pi\)
0.121141 + 0.992635i \(0.461345\pi\)
\(282\) −4.35798 + 2.51608i −0.259514 + 0.149830i
\(283\) 5.27294 + 3.04434i 0.313444 + 0.180967i 0.648467 0.761243i \(-0.275411\pi\)
−0.335023 + 0.942210i \(0.608744\pi\)
\(284\) 0.555090 0.961445i 0.0329386 0.0570513i
\(285\) 3.47114 2.92347i 0.205613 0.173172i
\(286\) 16.5569 + 1.37719i 0.979031 + 0.0814348i
\(287\) 0.366292i 0.0216215i
\(288\) 8.02592 + 4.63377i 0.472932 + 0.273047i
\(289\) 6.35204 11.0021i 0.373649 0.647180i
\(290\) 7.48951 + 2.71044i 0.439799 + 0.159163i
\(291\) −2.00366 −0.117456
\(292\) 4.52897 2.61480i 0.265038 0.153020i
\(293\) −8.48019 + 4.89604i −0.495418 + 0.286030i −0.726819 0.686829i \(-0.759002\pi\)
0.231401 + 0.972858i \(0.425669\pi\)
\(294\) 1.18048 0.0688469
\(295\) 5.37324 14.8473i 0.312842 0.864446i
\(296\) 8.38090 14.5161i 0.487130 0.843734i
\(297\) −6.82125 3.93825i −0.395809 0.228521i
\(298\) 26.4814i 1.53402i
\(299\) −0.530689 1.12547i −0.0306905 0.0650876i
\(300\) −1.00366 0.173186i −0.0579461 0.00999888i
\(301\) 1.35913 2.35408i 0.0783390 0.135687i
\(302\) −19.7042 11.3762i −1.13385 0.654628i
\(303\) −1.77599 + 1.02537i −0.102028 + 0.0589059i
\(304\) 14.5325 0.833497
\(305\) 5.14528 14.2174i 0.294618 0.814088i
\(306\) −9.32135 16.1450i −0.532866 0.922951i
\(307\) 22.1046i 1.26158i 0.775955 + 0.630788i \(0.217268\pi\)
−0.775955 + 0.630788i \(0.782732\pi\)
\(308\) −4.02617 + 2.32451i −0.229412 + 0.132451i
\(309\) −1.11018 + 1.92289i −0.0631560 + 0.109389i
\(310\) 0.549883 + 3.08551i 0.0312313 + 0.175245i
\(311\) 7.63904 0.433170 0.216585 0.976264i \(-0.430508\pi\)
0.216585 + 0.976264i \(0.430508\pi\)
\(312\) 3.46136 1.63212i 0.195961 0.0924007i
\(313\) 26.1425i 1.47766i 0.673891 + 0.738831i \(0.264622\pi\)
−0.673891 + 0.738831i \(0.735378\pi\)
\(314\) −3.68231 + 6.37794i −0.207805 + 0.359928i
\(315\) 2.29387 + 12.8714i 0.129245 + 0.725220i
\(316\) 3.29958 + 5.71504i 0.185616 + 0.321496i
\(317\) 11.8428i 0.665159i −0.943075 0.332580i \(-0.892081\pi\)
0.943075 0.332580i \(-0.107919\pi\)
\(318\) 0.861026 0.497113i 0.0482839 0.0278767i
\(319\) 5.82135 + 10.0829i 0.325933 + 0.564532i
\(320\) −12.6209 14.9852i −0.705531 0.837701i
\(321\) −3.05063 5.28385i −0.170270 0.294916i
\(322\) −0.720215 0.415816i −0.0401360 0.0231725i
\(323\) 27.7576 + 16.0259i 1.54448 + 0.891704i
\(324\) 4.68785 0.260436
\(325\) 12.6459 12.8484i 0.701471 0.712698i
\(326\) 14.1716 0.784890
\(327\) 1.72205 + 0.994227i 0.0952297 + 0.0549809i
\(328\) 0.480695 + 0.277529i 0.0265419 + 0.0153240i
\(329\) 12.4622 + 21.5852i 0.687064 + 1.19003i
\(330\) 2.29066 + 2.71978i 0.126097 + 0.149719i
\(331\) 6.35021 + 10.9989i 0.349039 + 0.604553i 0.986079 0.166277i \(-0.0531747\pi\)
−0.637040 + 0.770831i \(0.719841\pi\)
\(332\) 4.00516 2.31238i 0.219812 0.126908i
\(333\) 15.7013i 0.860427i
\(334\) −1.20488 2.08691i −0.0659281 0.114191i
\(335\) −1.72786 9.69538i −0.0944031 0.529715i
\(336\) 0.865418 1.49895i 0.0472124 0.0817743i
\(337\) 15.2939i 0.833113i 0.909110 + 0.416556i \(0.136763\pi\)
−0.909110 + 0.416556i \(0.863237\pi\)
\(338\) −2.55015 + 15.2232i −0.138710 + 0.828034i
\(339\) 1.64270 0.0892191
\(340\) −1.26205 7.08161i −0.0684441 0.384054i
\(341\) −2.29066 + 3.96754i −0.124046 + 0.214854i
\(342\) 17.4211 10.0581i 0.942024 0.543878i
\(343\) 20.0538i 1.08281i
\(344\) 2.05955 + 3.56725i 0.111044 + 0.192333i
\(345\) 0.0906278 0.250423i 0.00487924 0.0134823i
\(346\) 1.59024 0.0854918
\(347\) −10.5998 + 6.11981i −0.569029 + 0.328529i −0.756761 0.653691i \(-0.773219\pi\)
0.187733 + 0.982220i \(0.439886\pi\)
\(348\) 0.529222 + 0.305546i 0.0283693 + 0.0163790i
\(349\) 9.35021 16.1950i 0.500505 0.866901i −0.499495 0.866317i \(-0.666481\pi\)
1.00000 0.000583538i \(-0.000185746\pi\)
\(350\) 2.04880 11.8733i 0.109513 0.634656i
\(351\) 4.17156 6.01219i 0.222661 0.320907i
\(352\) 12.4844i 0.665422i
\(353\) −1.13348 0.654413i −0.0603288 0.0348309i 0.469532 0.882915i \(-0.344423\pi\)
−0.529861 + 0.848084i \(0.677756\pi\)
\(354\) −1.44674 + 2.50582i −0.0768932 + 0.133183i
\(355\) −1.43124 + 3.95480i −0.0759623 + 0.209899i
\(356\) −7.22563 −0.382957
\(357\) 3.30596 1.90870i 0.174970 0.101019i
\(358\) 20.7956 12.0063i 1.09908 0.634554i
\(359\) 29.4082 1.55210 0.776051 0.630670i \(-0.217220\pi\)
0.776051 + 0.630670i \(0.217220\pi\)
\(360\) −18.6294 6.74198i −0.981858 0.355333i
\(361\) −7.79249 + 13.4970i −0.410131 + 0.710368i
\(362\) 20.3834 + 11.7684i 1.07133 + 0.618531i
\(363\) 1.40162i 0.0735661i
\(364\) −1.84210 3.90666i −0.0965520 0.204765i
\(365\) −15.1534 + 12.7626i −0.793168 + 0.668024i
\(366\) −1.38536 + 2.39951i −0.0724139 + 0.125425i
\(367\) −28.9531 16.7161i −1.51134 0.872573i −0.999912 0.0132473i \(-0.995783\pi\)
−0.511429 0.859326i \(-0.670884\pi\)
\(368\) 0.738559 0.426407i 0.0385001 0.0222280i
\(369\) 0.519941 0.0270671
\(370\) −4.92410 + 13.6063i −0.255992 + 0.707358i
\(371\) −2.46222 4.26469i −0.127832 0.221412i
\(372\) 0.240461i 0.0124673i
\(373\) −29.8589 + 17.2391i −1.54604 + 0.892604i −0.547598 + 0.836742i \(0.684458\pi\)
−0.998438 + 0.0558628i \(0.982209\pi\)
\(374\) −12.5569 + 21.7492i −0.649303 + 1.12463i
\(375\) 3.85839 0.0211863i 0.199246 0.00109406i
\(376\) −37.7691 −1.94779
\(377\) −9.78357 + 4.61322i −0.503879 + 0.237593i
\(378\) 4.89075i 0.251553i
\(379\) −8.70225 + 15.0727i −0.447004 + 0.774234i −0.998189 0.0601487i \(-0.980843\pi\)
0.551185 + 0.834383i \(0.314176\pi\)
\(380\) 7.64130 1.36179i 0.391991 0.0698585i
\(381\) 2.88273 + 4.99303i 0.147687 + 0.255801i
\(382\) 1.82586i 0.0934191i
\(383\) 1.51271 0.873366i 0.0772961 0.0446269i −0.460854 0.887476i \(-0.652457\pi\)
0.538150 + 0.842849i \(0.319123\pi\)
\(384\) 0.684939 + 1.18635i 0.0349531 + 0.0605406i
\(385\) 13.4711 11.3457i 0.686553 0.578231i
\(386\) −12.5876 21.8024i −0.640692 1.10971i
\(387\) 3.34155 + 1.92925i 0.169861 + 0.0980692i
\(388\) −2.96773 1.71342i −0.150664 0.0869857i
\(389\) −22.0435 −1.11765 −0.558826 0.829285i \(-0.688748\pi\)
−0.558826 + 0.829285i \(0.688748\pi\)
\(390\) −2.69452 + 1.91136i −0.136442 + 0.0967855i
\(391\) 1.88090 0.0951212
\(392\) 7.67311 + 4.43007i 0.387550 + 0.223752i
\(393\) −2.98874 1.72555i −0.150762 0.0870425i
\(394\) −5.49554 9.51855i −0.276861 0.479538i
\(395\) −16.1049 19.1219i −0.810326 0.962127i
\(396\) −3.29958 5.71504i −0.165810 0.287192i
\(397\) 19.5132 11.2660i 0.979339 0.565422i 0.0772687 0.997010i \(-0.475380\pi\)
0.902071 + 0.431588i \(0.142047\pi\)
\(398\) 20.6649i 1.03584i
\(399\) 2.05955 + 3.56725i 0.103106 + 0.178586i
\(400\) 9.49402 + 7.90739i 0.474701 + 0.395369i
\(401\) 1.85204 3.20782i 0.0924863 0.160191i −0.816070 0.577953i \(-0.803852\pi\)
0.908557 + 0.417761i \(0.137185\pi\)
\(402\) 1.80468i 0.0900091i
\(403\) −3.49695 2.42636i −0.174196 0.120866i
\(404\) −3.50737 −0.174498
\(405\) −17.4840 + 3.11591i −0.868787 + 0.154831i
\(406\) −3.61464 + 6.26074i −0.179392 + 0.310715i
\(407\) −18.3177 + 10.5757i −0.907975 + 0.524220i
\(408\) 5.78466i 0.286384i
\(409\) −6.74186 11.6772i −0.333363 0.577402i 0.649806 0.760100i \(-0.274850\pi\)
−0.983169 + 0.182698i \(0.941517\pi\)
\(410\) −0.450566 0.163059i −0.0222519 0.00805292i
\(411\) 0.682580 0.0336692
\(412\) −3.28871 + 1.89874i −0.162023 + 0.0935440i
\(413\) 12.4114 + 7.16573i 0.610726 + 0.352603i
\(414\) 0.590239 1.02232i 0.0290087 0.0502445i
\(415\) −13.4008 + 11.2865i −0.657821 + 0.554033i
\(416\) 11.5587 + 0.961445i 0.566714 + 0.0471387i
\(417\) 3.00260i 0.147038i
\(418\) −23.4682 13.5494i −1.14787 0.662721i
\(419\) 8.41159 14.5693i 0.410933 0.711757i −0.584059 0.811711i \(-0.698536\pi\)
0.994992 + 0.0999544i \(0.0318697\pi\)
\(420\) 0.314582 0.869253i 0.0153500 0.0424152i
\(421\) 17.1013 0.833464 0.416732 0.909029i \(-0.363175\pi\)
0.416732 + 0.909029i \(0.363175\pi\)
\(422\) 7.48753 4.32293i 0.364487 0.210437i
\(423\) −30.6396 + 17.6898i −1.48975 + 0.860106i
\(424\) 7.46222 0.362397
\(425\) 9.41397 + 25.5730i 0.456645 + 1.24047i
\(426\) 0.385359 0.667462i 0.0186707 0.0323386i
\(427\) 11.8849 + 6.86173i 0.575149 + 0.332062i
\(428\) 10.4349i 0.504392i
\(429\) −4.81243 0.400293i −0.232346 0.0193263i
\(430\) −2.29066 2.71978i −0.110465 0.131159i
\(431\) −4.83027 + 8.36627i −0.232666 + 0.402989i −0.958592 0.284784i \(-0.908078\pi\)
0.725926 + 0.687773i \(0.241412\pi\)
\(432\) 4.34339 + 2.50766i 0.208972 + 0.120650i
\(433\) 21.4538 12.3863i 1.03100 0.595249i 0.113730 0.993512i \(-0.463720\pi\)
0.917272 + 0.398262i \(0.130387\pi\)
\(434\) −2.84467 −0.136549
\(435\) −2.17690 0.787817i −0.104374 0.0377729i
\(436\) 1.70042 + 2.94521i 0.0814354 + 0.141050i
\(437\) 2.02956i 0.0970869i
\(438\) 3.14414 1.81527i 0.150233 0.0867369i
\(439\) 3.53069 6.11533i 0.168511 0.291869i −0.769386 0.638784i \(-0.779438\pi\)
0.937896 + 0.346915i \(0.112771\pi\)
\(440\) 4.68257 + 26.2749i 0.223233 + 1.25261i
\(441\) 8.29958 0.395218
\(442\) −19.1696 13.3008i −0.911803 0.632655i
\(443\) 38.2438i 1.81702i −0.417865 0.908509i \(-0.637222\pi\)
0.417865 0.908509i \(-0.362778\pi\)
\(444\) −0.555090 + 0.961445i −0.0263434 + 0.0456282i
\(445\) 26.9490 4.80271i 1.27751 0.227670i
\(446\) 11.5569 + 20.0172i 0.547236 + 0.947840i
\(447\) 7.69707i 0.364059i
\(448\) 15.4002 8.89128i 0.727589 0.420074i
\(449\) −6.24003 10.8080i −0.294485 0.510063i 0.680380 0.732860i \(-0.261815\pi\)
−0.974865 + 0.222796i \(0.928481\pi\)
\(450\) 16.8539 + 2.90822i 0.794499 + 0.137095i
\(451\) −0.350210 0.606582i −0.0164908 0.0285628i
\(452\) 2.43309 + 1.40475i 0.114443 + 0.0660738i
\(453\) 5.72721 + 3.30661i 0.269088 + 0.155358i
\(454\) −5.71300 −0.268124
\(455\) 9.46703 + 13.3460i 0.443821 + 0.625672i
\(456\) −6.24186 −0.292302
\(457\) 7.12930 + 4.11610i 0.333495 + 0.192543i 0.657392 0.753549i \(-0.271660\pi\)
−0.323897 + 0.946092i \(0.604993\pi\)
\(458\) −1.56665 0.904508i −0.0732050 0.0422649i
\(459\) 5.53069 + 9.57943i 0.258150 + 0.447130i
\(460\) 0.348383 0.293416i 0.0162434 0.0136806i
\(461\) 2.27072 + 3.93300i 0.105758 + 0.183178i 0.914048 0.405607i \(-0.132940\pi\)
−0.808290 + 0.588785i \(0.799606\pi\)
\(462\) −2.79508 + 1.61374i −0.130039 + 0.0750780i
\(463\) 1.98845i 0.0924113i −0.998932 0.0462056i \(-0.985287\pi\)
0.998932 0.0462056i \(-0.0147130\pi\)
\(464\) −3.70671 6.42021i −0.172080 0.298051i
\(465\) −0.159829 0.896832i −0.00741188 0.0415896i
\(466\) 8.29066 14.3598i 0.384057 0.665207i
\(467\) 32.8043i 1.51800i 0.651091 + 0.759000i \(0.274312\pi\)
−0.651091 + 0.759000i \(0.725688\pi\)
\(468\) 5.54539 2.61480i 0.256336 0.120869i
\(469\) 8.93862 0.412747
\(470\) 32.0991 5.72053i 1.48062 0.263868i
\(471\) 1.07030 1.85381i 0.0493167 0.0854191i
\(472\) −18.8076 + 10.8586i −0.865689 + 0.499806i
\(473\) 5.19783i 0.238997i
\(474\) 2.29066 + 3.96754i 0.105213 + 0.182235i
\(475\) −27.5942 + 10.1580i −1.26611 + 0.466081i
\(476\) 6.52886 0.299250
\(477\) 6.05360 3.49505i 0.277176 0.160027i
\(478\) −4.11304 2.37467i −0.188126 0.108615i
\(479\) −15.4027 + 26.6782i −0.703766 + 1.21896i 0.263369 + 0.964695i \(0.415166\pi\)
−0.967135 + 0.254263i \(0.918167\pi\)
\(480\) 1.59916 + 1.89874i 0.0729913 + 0.0866650i
\(481\) −8.38090 17.7740i −0.382136 0.810423i
\(482\) 20.7378i 0.944582i
\(483\) 0.209337 + 0.120861i 0.00952518 + 0.00549937i
\(484\) −1.19859 + 2.07602i −0.0544815 + 0.0943647i
\(485\) 12.2074 + 4.41786i 0.554312 + 0.200605i
\(486\) 10.4837 0.475551
\(487\) 19.3341 11.1626i 0.876113 0.505824i 0.00673807 0.999977i \(-0.497855\pi\)
0.869375 + 0.494153i \(0.164522\pi\)
\(488\) −18.0097 + 10.3979i −0.815259 + 0.470690i
\(489\) −4.11910 −0.186272
\(490\) −7.19217 2.60284i −0.324909 0.117584i
\(491\) −5.34129 + 9.25139i −0.241049 + 0.417509i −0.961013 0.276502i \(-0.910825\pi\)
0.719964 + 0.694011i \(0.244158\pi\)
\(492\) −0.0318378 0.0183815i −0.00143536 0.000828704i
\(493\) 16.3504i 0.736386i
\(494\) 14.3520 20.6846i 0.645729 0.930646i
\(495\) 16.1049 + 19.1219i 0.723862 + 0.859466i
\(496\) 1.45856 2.52631i 0.0654914 0.113434i
\(497\) −3.30596 1.90870i −0.148292 0.0856167i
\(498\) 2.78049 1.60532i 0.124597 0.0719361i
\(499\) −18.8195 −0.842477 −0.421239 0.906950i \(-0.638405\pi\)
−0.421239 + 0.906950i \(0.638405\pi\)
\(500\) 5.73300 + 3.26811i 0.256388 + 0.146154i
\(501\) 0.350210 + 0.606582i 0.0156462 + 0.0271001i
\(502\) 11.0417i 0.492815i
\(503\) −4.92013 + 2.84064i −0.219378 + 0.126658i −0.605662 0.795722i \(-0.707092\pi\)
0.386284 + 0.922380i \(0.373758\pi\)
\(504\) 8.99108 15.5730i 0.400495 0.693677i
\(505\) 13.0812 2.33127i 0.582107 0.103740i
\(506\) −1.59024 −0.0706948
\(507\) 0.741225 4.42478i 0.0329190 0.196511i
\(508\) 9.86062i 0.437494i
\(509\) 13.9622 24.1833i 0.618864 1.07190i −0.370829 0.928701i \(-0.620926\pi\)
0.989693 0.143203i \(-0.0457403\pi\)
\(510\) −0.876148 4.91625i −0.0387965 0.217695i
\(511\) −8.99108 15.5730i −0.397742 0.688909i
\(512\) 23.1492i 1.02306i
\(513\) −10.3365 + 5.96781i −0.456370 + 0.263485i
\(514\) 6.46485 + 11.1975i 0.285152 + 0.493898i
\(515\) 11.0037 9.26754i 0.484879 0.408376i
\(516\) −0.136410 0.236269i −0.00600511 0.0104011i
\(517\) 41.2750 + 23.8301i 1.81527 + 1.04805i
\(518\) −11.3740 6.56677i −0.499744 0.288527i
\(519\) −0.462218 −0.0202891
\(520\) −24.6873 + 2.31190i −1.08261 + 0.101384i
\(521\) 6.29958 0.275990 0.137995 0.990433i \(-0.455934\pi\)
0.137995 + 0.990433i \(0.455934\pi\)
\(522\) −8.88695 5.13088i −0.388971 0.224573i
\(523\) −19.7948 11.4285i −0.865567 0.499735i 0.000305526 1.00000i \(-0.499903\pi\)
−0.865873 + 0.500265i \(0.833236\pi\)
\(524\) −2.95120 5.11162i −0.128924 0.223302i
\(525\) −0.595504 + 3.45110i −0.0259899 + 0.150618i
\(526\) 7.97925 + 13.8205i 0.347912 + 0.602601i
\(527\) 5.57182 3.21689i 0.242712 0.140130i
\(528\) 3.30969i 0.144036i
\(529\) −11.4404 19.8154i −0.497411 0.861541i
\(530\) −6.34196 + 1.13023i −0.275477 + 0.0490941i
\(531\) −10.1716 + 17.6177i −0.441408 + 0.764541i
\(532\) 7.04487i 0.305434i
\(533\) 0.588576 0.277529i 0.0254940 0.0120211i
\(534\) −5.01623 −0.217074
\(535\) 6.93588 + 38.9186i 0.299864 + 1.68260i
\(536\) −6.77255 + 11.7304i −0.292529 + 0.506676i
\(537\) −6.04443 + 3.48975i −0.260837 + 0.150594i
\(538\) 4.34628i 0.187381i
\(539\) −5.59024 9.68258i −0.240789 0.417058i
\(540\) 2.51877 + 0.911540i 0.108391 + 0.0392265i
\(541\) −9.48006 −0.407580 −0.203790 0.979015i \(-0.565326\pi\)
−0.203790 + 0.979015i \(0.565326\pi\)
\(542\) −22.6255 + 13.0628i −0.971848 + 0.561097i
\(543\) −5.92463 3.42059i −0.254250 0.146791i
\(544\) −8.76626 + 15.1836i −0.375850 + 0.650992i
\(545\) −8.29958 9.85437i −0.355515 0.422115i
\(546\) −1.27883 2.71211i −0.0547290 0.116068i
\(547\) 33.3911i 1.42770i −0.700299 0.713850i \(-0.746950\pi\)
0.700299 0.713850i \(-0.253050\pi\)
\(548\) 1.01101 + 0.583706i 0.0431882 + 0.0249347i
\(549\) −9.74003 + 16.8702i −0.415694 + 0.720004i
\(550\) −7.95921 21.6212i −0.339382 0.921929i
\(551\) 17.6427 0.751604
\(552\) −0.317218 + 0.183146i −0.0135017 + 0.00779521i
\(553\) 19.6513 11.3457i 0.835660 0.482469i
\(554\) −11.7492 −0.499177
\(555\) 1.43124 3.95480i 0.0607527 0.167872i
\(556\) 2.56767 4.44733i 0.108893 0.188609i
\(557\) −32.7053 18.8824i −1.38577 0.800073i −0.392932 0.919567i \(-0.628539\pi\)
−0.992835 + 0.119495i \(0.961873\pi\)
\(558\) 4.03793i 0.170939i
\(559\) 4.81243 + 0.400293i 0.203544 + 0.0169306i
\(560\) −8.57766 + 7.22431i −0.362472 + 0.305283i
\(561\) 3.64979 6.32162i 0.154094 0.266899i
\(562\) 4.17616 + 2.41110i 0.176161 + 0.101706i
\(563\) 22.4307 12.9504i 0.945343 0.545794i 0.0537120 0.998556i \(-0.482895\pi\)
0.891631 + 0.452762i \(0.149561\pi\)
\(564\) 2.50155 0.105334
\(565\) −10.0083 3.62198i −0.421051 0.152378i
\(566\) 3.61464 + 6.26074i 0.151935 + 0.263159i
\(567\) 16.1193i 0.676947i
\(568\) 5.00967 2.89233i 0.210201 0.121360i
\(569\) −10.7725 + 18.6586i −0.451609 + 0.782209i −0.998486 0.0550035i \(-0.982483\pi\)
0.546878 + 0.837213i \(0.315816\pi\)
\(570\) 5.30481 0.945395i 0.222194 0.0395982i
\(571\) −2.22036 −0.0929192 −0.0464596 0.998920i \(-0.514794\pi\)
−0.0464596 + 0.998920i \(0.514794\pi\)
\(572\) −6.78566 4.70823i −0.283723 0.196861i
\(573\) 0.530704i 0.0221705i
\(574\) 0.217455 0.376644i 0.00907641 0.0157208i
\(575\) −1.10432 + 1.32590i −0.0460532 + 0.0552938i
\(576\) 12.6209 + 21.8601i 0.525872 + 0.910837i
\(577\) 6.20265i 0.258220i −0.991630 0.129110i \(-0.958788\pi\)
0.991630 0.129110i \(-0.0412120\pi\)
\(578\) 13.0631 7.54199i 0.543353 0.313705i
\(579\) 3.65871 + 6.33707i 0.152051 + 0.263360i
\(580\) −2.55063 3.02845i −0.105909 0.125749i
\(581\) −7.95120 13.7719i −0.329871 0.571354i
\(582\) −2.06028 1.18950i −0.0854014 0.0493065i
\(583\) −8.15489 4.70823i −0.337741 0.194995i
\(584\) 27.2492 1.12758
\(585\) −18.9443 + 13.4382i −0.783252 + 0.555600i
\(586\) −11.6265 −0.480285
\(587\) 1.58391 + 0.914469i 0.0653748 + 0.0377442i 0.532331 0.846536i \(-0.321316\pi\)
−0.466956 + 0.884280i \(0.654649\pi\)
\(588\) −0.508211 0.293416i −0.0209583 0.0121003i
\(589\) 3.47114 + 6.01219i 0.143026 + 0.247728i
\(590\) 14.3395 12.0770i 0.590346 0.497204i
\(591\) 1.59733 + 2.76666i 0.0657055 + 0.113805i
\(592\) 11.6637 6.73403i 0.479374 0.276767i
\(593\) 0.0728761i 0.00299266i 0.999999 + 0.00149633i \(0.000476297\pi\)
−0.999999 + 0.00149633i \(0.999524\pi\)
\(594\) −4.67602 8.09910i −0.191859 0.332310i
\(595\) −24.3503 + 4.33959i −0.998266 + 0.177906i
\(596\) 6.58212 11.4006i 0.269614 0.466986i
\(597\) 6.00646i 0.245828i
\(598\) 0.122467 1.47233i 0.00500804 0.0602080i
\(599\) 14.5813 0.595777 0.297888 0.954601i \(-0.403718\pi\)
0.297888 + 0.954601i \(0.403718\pi\)
\(600\) −4.07777 3.39630i −0.166474 0.138653i
\(601\) 22.2041 38.4586i 0.905723 1.56876i 0.0857795 0.996314i \(-0.472662\pi\)
0.819944 0.572444i \(-0.194005\pi\)
\(602\) 2.79508 1.61374i 0.113919 0.0657712i
\(603\) 12.6881i 0.516700i
\(604\) 5.65527 + 9.79522i 0.230110 + 0.398562i
\(605\) 3.09044 8.53951i 0.125644 0.347180i
\(606\) −2.43491 −0.0989115
\(607\) 31.3808 18.1177i 1.27371 0.735375i 0.298024 0.954558i \(-0.403672\pi\)
0.975684 + 0.219183i \(0.0703392\pi\)
\(608\) −16.3836 9.45910i −0.664445 0.383617i
\(609\) 1.05063 1.81975i 0.0425737 0.0737398i
\(610\) 13.7311 11.5647i 0.555956 0.468239i
\(611\) −25.2419 + 36.3794i −1.02118 + 1.47175i
\(612\) 9.26754i 0.374618i
\(613\) 2.90838 + 1.67915i 0.117468 + 0.0678203i 0.557583 0.830121i \(-0.311729\pi\)
−0.440115 + 0.897942i \(0.645062\pi\)
\(614\) −13.1228 + 22.7293i −0.529591 + 0.917279i
\(615\) 0.130961 + 0.0473948i 0.00528087 + 0.00191114i
\(616\) −24.2240 −0.976013
\(617\) −18.3441 + 10.5910i −0.738507 + 0.426377i −0.821526 0.570171i \(-0.806877\pi\)
0.0830194 + 0.996548i \(0.473544\pi\)
\(618\) −2.28311 + 1.31815i −0.0918402 + 0.0530240i
\(619\) −25.4082 −1.02124 −0.510620 0.859807i \(-0.670584\pi\)
−0.510620 + 0.859807i \(0.670584\pi\)
\(620\) 0.530192 1.46503i 0.0212930 0.0588369i
\(621\) −0.350210 + 0.606582i −0.0140534 + 0.0243413i
\(622\) 7.85493 + 4.53504i 0.314954 + 0.181839i
\(623\) 24.8455i 0.995416i
\(624\) 3.06428 + 0.254884i 0.122670 + 0.0102035i
\(625\) −23.5543 8.37828i −0.942171 0.335131i
\(626\) −15.5199 + 26.8813i −0.620302 + 1.07439i
\(627\) 6.82125 + 3.93825i 0.272415 + 0.157279i
\(628\) 3.17056 1.83052i 0.126519 0.0730459i
\(629\) 29.7041 1.18438
\(630\) −5.28261 + 14.5969i −0.210464 + 0.581555i
\(631\) −21.7725 37.7112i −0.866751 1.50126i −0.865298 0.501258i \(-0.832871\pi\)
−0.00145375 0.999999i \(-0.500463\pi\)
\(632\) 34.3853i 1.36777i
\(633\) −2.17632 + 1.25650i −0.0865011 + 0.0499414i
\(634\) 7.03069 12.1775i 0.279224 0.483631i
\(635\) −6.55413 36.7766i −0.260093 1.45943i
\(636\) −0.494244 −0.0195980
\(637\) 9.39516 4.43007i 0.372250 0.175526i
\(638\) 13.8238i 0.547288i
\(639\) 2.70934 4.69272i 0.107180 0.185641i
\(640\) −1.55727 8.73816i −0.0615565 0.345406i
\(641\) −24.1427 41.8164i −0.953579 1.65165i −0.737586 0.675253i \(-0.764035\pi\)
−0.215993 0.976395i \(-0.569299\pi\)
\(642\) 7.24423i 0.285907i
\(643\) −36.6710 + 21.1720i −1.44616 + 0.834943i −0.998250 0.0591344i \(-0.981166\pi\)
−0.447913 + 0.894077i \(0.647833\pi\)
\(644\) 0.206708 + 0.358028i 0.00814543 + 0.0141083i
\(645\) 0.665802 + 0.790529i 0.0262159 + 0.0311271i
\(646\) 19.0281 + 32.9576i 0.748649 + 1.29670i
\(647\) −29.7958 17.2026i −1.17139 0.676305i −0.217386 0.976086i \(-0.569753\pi\)
−0.954008 + 0.299781i \(0.903086\pi\)
\(648\) 21.1538 + 12.2131i 0.830999 + 0.479778i
\(649\) 27.4045 1.07572
\(650\) 20.6310 5.70398i 0.809213 0.223729i
\(651\) 0.826831 0.0324061
\(652\) −6.10104 3.52244i −0.238935 0.137949i
\(653\) 12.4114 + 7.16573i 0.485696 + 0.280417i 0.722787 0.691071i \(-0.242861\pi\)
−0.237091 + 0.971487i \(0.576194\pi\)
\(654\) 1.18048 + 2.04465i 0.0461604 + 0.0799521i
\(655\) 14.4045 + 17.1029i 0.562830 + 0.668267i
\(656\) 0.222994 + 0.386237i 0.00870646 + 0.0150800i
\(657\) 22.1054 12.7626i 0.862416 0.497916i
\(658\) 29.5936i 1.15368i
\(659\) 11.4116 + 19.7655i 0.444532 + 0.769953i 0.998020 0.0629051i \(-0.0200365\pi\)
−0.553487 + 0.832858i \(0.686703\pi\)
\(660\) −0.310140 1.74026i −0.0120722 0.0677394i
\(661\) −7.20934 + 12.4869i −0.280411 + 0.485686i −0.971486 0.237097i \(-0.923804\pi\)
0.691075 + 0.722783i \(0.257137\pi\)
\(662\) 15.0796i 0.586087i
\(663\) 5.57182 + 3.86601i 0.216391 + 0.150143i
\(664\) 24.0976 0.935168
\(665\) −4.68257 26.2749i −0.181582 1.01890i
\(666\) 9.32135 16.1450i 0.361195 0.625608i
\(667\) 0.896622 0.517665i 0.0347173 0.0200441i
\(668\) 1.19792i 0.0463491i
\(669\) −3.35913 5.81818i −0.129871 0.224944i
\(670\) 3.97913 10.9952i 0.153727 0.424780i
\(671\) 26.2419 1.01306
\(672\) −1.95131 + 1.12659i −0.0752733 + 0.0434591i
\(673\) 29.5956 + 17.0871i 1.14083 + 0.658657i 0.946636 0.322306i \(-0.104458\pi\)
0.194193 + 0.980963i \(0.437791\pi\)
\(674\) −9.07949 + 15.7261i −0.349729 + 0.605748i
\(675\) −10.0000 1.72555i −0.384900 0.0664164i
\(676\) 4.88170 5.91993i 0.187758 0.227690i
\(677\) 5.84695i 0.224716i −0.993668 0.112358i \(-0.964160\pi\)
0.993668 0.112358i \(-0.0358404\pi\)
\(678\) 1.68912 + 0.975215i 0.0648703 + 0.0374529i
\(679\) −5.89165 + 10.2046i −0.226101 + 0.391618i
\(680\) 12.7546 35.2436i 0.489117 1.35153i
\(681\) 1.66054 0.0636319
\(682\) −4.71079 + 2.71978i −0.180386 + 0.104146i
\(683\) −9.82834 + 5.67439i −0.376071 + 0.217125i −0.676107 0.736803i \(-0.736334\pi\)
0.300036 + 0.953928i \(0.403001\pi\)
\(684\) −10.0000 −0.382360
\(685\) −4.15868 1.50502i −0.158895 0.0575039i
\(686\) 11.9053 20.6206i 0.454546 0.787298i
\(687\) 0.455363 + 0.262904i 0.0173732 + 0.0100304i
\(688\) 3.30969i 0.126181i
\(689\) 4.98715 7.18765i 0.189995 0.273828i
\(690\) 0.241857 0.203698i 0.00920733 0.00775463i
\(691\) 9.41159 16.3013i 0.358034 0.620133i −0.629599 0.776921i \(-0.716781\pi\)
0.987632 + 0.156788i \(0.0501140\pi\)
\(692\) −0.684619 0.395265i −0.0260253 0.0150257i
\(693\) −19.6513 + 11.3457i −0.746493 + 0.430988i
\(694\) −14.5325 −0.551647
\(695\) −6.62044 + 18.2936i −0.251128 + 0.693916i
\(696\) 1.59207 + 2.75754i 0.0603471 + 0.104524i
\(697\) 0.983636i 0.0372579i
\(698\) 19.2289 11.1018i 0.727825 0.420210i
\(699\) −2.40976 + 4.17383i −0.0911455 + 0.157869i
\(700\) −3.83323 + 4.60238i −0.144883 + 0.173954i
\(701\) 19.1626 0.723763 0.361881 0.932224i \(-0.382135\pi\)
0.361881 + 0.932224i \(0.382135\pi\)
\(702\) 7.85869 3.70558i 0.296607 0.139858i
\(703\) 32.0518i 1.20885i
\(704\) 17.0018 29.4480i 0.640780 1.10986i
\(705\) −9.32990 + 1.66273i −0.351385 + 0.0626219i
\(706\) −0.777006 1.34581i −0.0292430 0.0506504i
\(707\) 12.0602i 0.453570i
\(708\) 1.24568 0.719193i 0.0468154 0.0270289i
\(709\) 11.7419 + 20.3375i 0.440975 + 0.763791i 0.997762 0.0668645i \(-0.0212995\pi\)
−0.556787 + 0.830655i \(0.687966\pi\)
\(710\) −3.81952 + 3.21689i −0.143344 + 0.120728i
\(711\) 16.1049 + 27.8945i 0.603982 + 1.04613i
\(712\) −32.6055 18.8248i −1.22194 0.705488i
\(713\) 0.352814 + 0.203698i 0.0132130 + 0.00762853i
\(714\) 4.53252 0.169625
\(715\) 28.4375 + 13.0497i 1.06350 + 0.488033i
\(716\) −11.9370 −0.446107
\(717\) 1.19550 + 0.690220i 0.0446466 + 0.0257767i
\(718\) 30.2393 + 17.4586i 1.12852 + 0.651551i
\(719\) −7.05429 12.2184i −0.263080 0.455669i 0.703978 0.710221i \(-0.251405\pi\)
−0.967059 + 0.254553i \(0.918072\pi\)
\(720\) −10.2547 12.1758i −0.382170 0.453764i
\(721\) 6.52886 + 11.3083i 0.243148 + 0.421144i
\(722\) −16.0254 + 9.25228i −0.596404 + 0.344334i
\(723\) 6.02765i 0.224171i
\(724\) −5.85021 10.1329i −0.217421 0.376585i
\(725\) 11.5259 + 9.59969i 0.428061 + 0.356523i
\(726\) −0.832096 + 1.44123i −0.0308820 + 0.0534892i
\(727\) 25.3762i 0.941153i −0.882359 0.470576i \(-0.844046\pi\)
0.882359 0.470576i \(-0.155954\pi\)
\(728\) 1.86553 22.4279i 0.0691411 0.831233i
\(729\) 20.7796 0.769616
\(730\) −23.1584 + 4.12717i −0.857131 + 0.152754i
\(731\) −3.64979 + 6.32162i −0.134992 + 0.233814i
\(732\) 1.19283 0.688681i 0.0440883 0.0254544i
\(733\) 10.6692i 0.394074i −0.980396 0.197037i \(-0.936868\pi\)
0.980396 0.197037i \(-0.0631320\pi\)
\(734\) −19.8476 34.3770i −0.732587 1.26888i
\(735\) 2.09047 + 0.756540i 0.0771083 + 0.0279054i
\(736\) −1.11018 −0.0409218
\(737\) 14.8024 8.54617i 0.545254 0.314802i
\(738\) 0.534635 + 0.308672i 0.0196802 + 0.0113624i
\(739\) −0.707513 + 1.22545i −0.0260263 + 0.0450788i −0.878745 0.477291i \(-0.841619\pi\)
0.852719 + 0.522370i \(0.174952\pi\)
\(740\) 5.50183 4.63377i 0.202251 0.170341i
\(741\) −4.17156 + 6.01219i −0.153246 + 0.220863i
\(742\) 5.84695i 0.214648i
\(743\) 25.8748 + 14.9389i 0.949256 + 0.548053i 0.892850 0.450355i \(-0.148702\pi\)
0.0564064 + 0.998408i \(0.482036\pi\)
\(744\) −0.626467 + 1.08507i −0.0229674 + 0.0397807i
\(745\) −16.9713 + 46.8951i −0.621779 + 1.71810i
\(746\) −40.9370 −1.49881
\(747\) 19.5488 11.2865i 0.715253 0.412952i
\(748\) 10.8118 6.24221i 0.395320 0.228238i
\(749\) −35.8809 −1.31106
\(750\) 3.98001 + 2.26881i 0.145329 + 0.0828453i
\(751\) 9.99291 17.3082i 0.364646 0.631586i −0.624073 0.781366i \(-0.714523\pi\)
0.988719 + 0.149780i \(0.0478565\pi\)
\(752\) −26.2816 15.1737i −0.958391 0.553328i
\(753\) 3.20938i 0.116956i
\(754\) −12.7988 1.06459i −0.466104 0.0387701i
\(755\) −27.6028 32.7737i −1.00457 1.19276i
\(756\) −1.21563 + 2.10553i −0.0442120 + 0.0765774i
\(757\) −14.8024 8.54617i −0.538003 0.310616i 0.206266 0.978496i \(-0.433869\pi\)
−0.744269 + 0.667880i \(0.767202\pi\)
\(758\) −17.8964 + 10.3325i −0.650025 + 0.375292i
\(759\) 0.462218 0.0167775
\(760\) 38.0291 + 13.7627i 1.37946 + 0.499225i
\(761\) 21.1120 + 36.5671i 0.765310 + 1.32556i 0.940083 + 0.340947i \(0.110748\pi\)
−0.174773 + 0.984609i \(0.555919\pi\)
\(762\) 6.84552i 0.247987i
\(763\) 10.1272 5.84695i 0.366630 0.211674i
\(764\) −0.453830 + 0.786056i −0.0164190 + 0.0284385i
\(765\) −6.15992 34.5646i −0.222713 1.24969i
\(766\) 2.07395 0.0749350
\(767\) −2.11046 + 25.3725i −0.0762044 + 0.916149i
\(768\) 4.42107i 0.159531i
\(769\) −11.8827 + 20.5815i −0.428502 + 0.742187i −0.996740 0.0806767i \(-0.974292\pi\)
0.568238 + 0.822864i \(0.307625\pi\)
\(770\) 20.5874 3.66898i 0.741919 0.132221i
\(771\) −1.87907 3.25465i −0.0676731 0.117213i
\(772\) 12.5149i 0.450422i
\(773\) −0.246026 + 0.142043i −0.00884894 + 0.00510894i −0.504418 0.863460i \(-0.668293\pi\)
0.495569 + 0.868569i \(0.334960\pi\)
\(774\) 2.29066 +