# Properties

 Label 65.2.n.a.29.6 Level $65$ Weight $2$ Character 65.29 Analytic conductor $0.519$ Analytic rank $0$ Dimension $12$ CM no Inner twists $4$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$65 = 5 \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 65.n (of order $$6$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$0.519027613138$$ Analytic rank: $$0$$ Dimension: $$12$$ Relative dimension: $$6$$ over $$\Q(\zeta_{6})$$ Coefficient field: $$\mathbb{Q}[x]/(x^{12} - \cdots)$$ Defining polynomial: $$x^{12} - 8 x^{10} + 54 x^{8} - 78 x^{6} + 92 x^{4} - 10 x^{2} + 1$$ Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

## Embedding invariants

 Embedding label 29.6 Root $$2.20467 + 1.27287i$$ of defining polynomial Character $$\chi$$ $$=$$ 65.29 Dual form 65.2.n.a.9.6

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(2.20467 - 1.27287i) q^{2} +(-1.86449 + 1.07646i) q^{3} +(2.24039 - 3.88048i) q^{4} +(-0.817544 + 2.08125i) q^{5} +(-2.74039 + 4.74650i) q^{6} +(-2.54486 - 1.46928i) q^{7} -6.31544i q^{8} +(0.817544 - 1.41603i) q^{9} +O(q^{10})$$ $$q+(2.20467 - 1.27287i) q^{2} +(-1.86449 + 1.07646i) q^{3} +(2.24039 - 3.88048i) q^{4} +(-0.817544 + 2.08125i) q^{5} +(-2.74039 + 4.74650i) q^{6} +(-2.54486 - 1.46928i) q^{7} -6.31544i q^{8} +(0.817544 - 1.41603i) q^{9} +(0.846746 + 5.62912i) q^{10} +(0.317544 + 0.550003i) q^{11} +9.64680i q^{12} +(3.60484 + 0.0716710i) q^{13} -7.48079 q^{14} +(-0.716091 - 4.76053i) q^{15} +(-3.55794 - 6.16253i) q^{16} +(-1.05998 - 0.611979i) q^{17} -4.16251i q^{18} +(0.682456 - 1.18205i) q^{19} +(6.24464 + 7.83529i) q^{20} +6.32648 q^{21} +(1.40016 + 0.808385i) q^{22} +(1.86449 - 1.07646i) q^{23} +(6.79833 + 11.7751i) q^{24} +(-3.66324 - 3.40304i) q^{25} +(8.03872 - 4.43048i) q^{26} -2.93855i q^{27} +(-11.4030 + 6.58351i) q^{28} +(1.50000 + 2.59808i) q^{29} +(-7.63828 - 9.58393i) q^{30} -8.96157 q^{31} +(-4.74954 - 2.74215i) q^{32} +(-1.18412 - 0.683650i) q^{33} -3.11588 q^{34} +(5.13847 - 4.09531i) q^{35} +(-3.66324 - 6.34492i) q^{36} +(-1.05998 + 0.611979i) q^{37} -3.47471i q^{38} +(-6.79833 + 3.74685i) q^{39} +(13.1440 + 5.16315i) q^{40} +(4.98079 + 8.62698i) q^{41} +(13.9478 - 8.05279i) q^{42} +(1.18412 + 0.683650i) q^{43} +2.84570 q^{44} +(2.27874 + 2.85918i) q^{45} +(2.74039 - 4.74650i) q^{46} +6.16379i q^{47} +(13.2675 + 7.65998i) q^{48} +(0.817544 + 1.41603i) q^{49} +(-12.4079 - 2.83976i) q^{50} +2.63509 q^{51} +(8.35437 - 13.8279i) q^{52} +0.642285i q^{53} +(-3.74039 - 6.47855i) q^{54} +(-1.40430 + 0.211239i) q^{55} +(-9.27912 + 16.0719i) q^{56} +2.93855i q^{57} +(6.61402 + 3.81861i) q^{58} +(3.79833 - 6.57890i) q^{59} +(-20.0774 - 7.88669i) q^{60} +(1.13509 - 1.96603i) q^{61} +(-19.7574 + 11.4069i) q^{62} +(-4.16107 + 2.40240i) q^{63} +0.270178 q^{64} +(-3.09628 + 7.44399i) q^{65} -3.48079 q^{66} +(-6.95421 + 4.01502i) q^{67} +(-4.74954 + 2.74215i) q^{68} +(-2.31754 + 4.01410i) q^{69} +(6.11588 - 15.5694i) q^{70} +(-1.31754 + 2.28205i) q^{71} +(-8.94284 - 5.16315i) q^{72} -10.3263i q^{73} +(-1.55794 + 2.69843i) q^{74} +(10.4933 + 2.40158i) q^{75} +(-3.05794 - 5.29650i) q^{76} -1.86624i q^{77} +(-10.2189 + 16.9140i) q^{78} -1.03843 q^{79} +(15.7346 - 2.36683i) q^{80} +(5.61588 + 9.72698i) q^{81} +(21.9620 + 12.6798i) q^{82} +11.8452i q^{83} +(14.1738 - 24.5498i) q^{84} +(2.14026 - 1.70576i) q^{85} +3.48079 q^{86} +(-5.59346 - 3.22939i) q^{87} +(3.47351 - 2.00543i) q^{88} +(-6.27912 - 10.8758i) q^{89} +(8.66324 + 3.40304i) q^{90} +(-9.06851 - 5.47890i) q^{91} -9.64680i q^{92} +(16.7087 - 9.64680i) q^{93} +(7.84570 + 13.5891i) q^{94} +(1.90220 + 2.38674i) q^{95} +11.8073 q^{96} +(-12.8031 - 7.39190i) q^{97} +(3.60484 + 2.08125i) q^{98} +1.03843 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$12 q + 4 q^{4} - 6 q^{5} - 10 q^{6} + 6 q^{9} + O(q^{10})$$ $$12 q + 4 q^{4} - 6 q^{5} - 10 q^{6} + 6 q^{9} + 7 q^{10} - 44 q^{14} - 4 q^{15} - 16 q^{16} + 12 q^{19} - q^{20} - 8 q^{21} + 32 q^{24} - 2 q^{25} + 24 q^{26} + 18 q^{29} + 4 q^{30} - 16 q^{31} + 16 q^{34} + 10 q^{35} - 2 q^{36} - 32 q^{39} + 70 q^{40} + 14 q^{41} - 4 q^{44} - 29 q^{45} + 10 q^{46} + 6 q^{49} - 31 q^{50} + 24 q^{51} - 22 q^{54} - 26 q^{55} - 16 q^{56} - 4 q^{59} - 96 q^{60} + 6 q^{61} - 12 q^{64} + 23 q^{65} + 4 q^{66} - 24 q^{69} + 20 q^{70} - 12 q^{71} + 8 q^{74} + 2 q^{75} - 10 q^{76} - 104 q^{79} + 33 q^{80} + 14 q^{81} + 90 q^{84} + 21 q^{85} - 4 q^{86} + 20 q^{89} + 62 q^{90} - 44 q^{91} + 56 q^{94} + 20 q^{95} + 12 q^{96} + 104 q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/65\mathbb{Z}\right)^\times$$.

 $$n$$ $$27$$ $$41$$ $$\chi(n)$$ $$-1$$ $$e\left(\frac{1}{3}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 2.20467 1.27287i 1.55894 0.900055i 0.561582 0.827421i $$-0.310193\pi$$
0.997359 0.0726333i $$-0.0231403\pi$$
$$3$$ −1.86449 + 1.07646i −1.07646 + 0.621496i −0.929940 0.367711i $$-0.880142\pi$$
−0.146523 + 0.989207i $$0.546808\pi$$
$$4$$ 2.24039 3.88048i 1.12020 1.94024i
$$5$$ −0.817544 + 2.08125i −0.365617 + 0.930765i
$$6$$ −2.74039 + 4.74650i −1.11876 + 1.93775i
$$7$$ −2.54486 1.46928i −0.961867 0.555334i −0.0651198 0.997877i $$-0.520743\pi$$
−0.896747 + 0.442543i $$0.854076\pi$$
$$8$$ 6.31544i 2.23284i
$$9$$ 0.817544 1.41603i 0.272515 0.472010i
$$10$$ 0.846746 + 5.62912i 0.267765 + 1.78008i
$$11$$ 0.317544 + 0.550003i 0.0957433 + 0.165832i 0.909919 0.414787i $$-0.136144\pi$$
−0.814175 + 0.580619i $$0.802811\pi$$
$$12$$ 9.64680i 2.78479i
$$13$$ 3.60484 + 0.0716710i 0.999802 + 0.0198779i
$$14$$ −7.48079 −1.99932
$$15$$ −0.716091 4.76053i −0.184894 1.22916i
$$16$$ −3.55794 6.16253i −0.889484 1.54063i
$$17$$ −1.05998 0.611979i −0.257082 0.148427i 0.365920 0.930646i $$-0.380754\pi$$
−0.623003 + 0.782220i $$0.714088\pi$$
$$18$$ 4.16251i 0.981113i
$$19$$ 0.682456 1.18205i 0.156566 0.271180i −0.777062 0.629424i $$-0.783291\pi$$
0.933628 + 0.358244i $$0.116624\pi$$
$$20$$ 6.24464 + 7.83529i 1.39634 + 1.75202i
$$21$$ 6.32648 1.38055
$$22$$ 1.40016 + 0.808385i 0.298516 + 0.172348i
$$23$$ 1.86449 1.07646i 0.388773 0.224458i −0.292856 0.956157i $$-0.594606\pi$$
0.681628 + 0.731699i $$0.261272\pi$$
$$24$$ 6.79833 + 11.7751i 1.38770 + 2.40357i
$$25$$ −3.66324 3.40304i −0.732648 0.680607i
$$26$$ 8.03872 4.43048i 1.57652 0.868888i
$$27$$ 2.93855i 0.565525i
$$28$$ −11.4030 + 6.58351i −2.15496 + 1.24417i
$$29$$ 1.50000 + 2.59808i 0.278543 + 0.482451i 0.971023 0.238987i $$-0.0768152\pi$$
−0.692480 + 0.721437i $$0.743482\pi$$
$$30$$ −7.63828 9.58393i −1.39455 1.74978i
$$31$$ −8.96157 −1.60955 −0.804773 0.593583i $$-0.797713\pi$$
−0.804773 + 0.593583i $$0.797713\pi$$
$$32$$ −4.74954 2.74215i −0.839607 0.484747i
$$33$$ −1.18412 0.683650i −0.206128 0.119008i
$$34$$ −3.11588 −0.534368
$$35$$ 5.13847 4.09531i 0.868561 0.692233i
$$36$$ −3.66324 6.34492i −0.610540 1.05749i
$$37$$ −1.05998 + 0.611979i −0.174259 + 0.100609i −0.584593 0.811327i $$-0.698746\pi$$
0.410333 + 0.911936i $$0.365412\pi$$
$$38$$ 3.47471i 0.563672i
$$39$$ −6.79833 + 3.74685i −1.08860 + 0.599975i
$$40$$ 13.1440 + 5.16315i 2.07825 + 0.816366i
$$41$$ 4.98079 + 8.62698i 0.777868 + 1.34731i 0.933168 + 0.359440i $$0.117032\pi$$
−0.155300 + 0.987867i $$0.549634\pi$$
$$42$$ 13.9478 8.05279i 2.15220 1.24257i
$$43$$ 1.18412 + 0.683650i 0.180576 + 0.104256i 0.587563 0.809178i $$-0.300087\pi$$
−0.406987 + 0.913434i $$0.633421\pi$$
$$44$$ 2.84570 0.429005
$$45$$ 2.27874 + 2.85918i 0.339694 + 0.426222i
$$46$$ 2.74039 4.74650i 0.404049 0.699833i
$$47$$ 6.16379i 0.899081i 0.893260 + 0.449540i $$0.148412\pi$$
−0.893260 + 0.449540i $$0.851588\pi$$
$$48$$ 13.2675 + 7.65998i 1.91499 + 1.10562i
$$49$$ 0.817544 + 1.41603i 0.116792 + 0.202290i
$$50$$ −12.4079 2.83976i −1.75474 0.401603i
$$51$$ 2.63509 0.368986
$$52$$ 8.35437 13.8279i 1.15854 1.91759i
$$53$$ 0.642285i 0.0882246i 0.999027 + 0.0441123i $$0.0140459\pi$$
−0.999027 + 0.0441123i $$0.985954\pi$$
$$54$$ −3.74039 6.47855i −0.509003 0.881619i
$$55$$ −1.40430 + 0.211239i −0.189356 + 0.0284834i
$$56$$ −9.27912 + 16.0719i −1.23997 + 2.14770i
$$57$$ 2.93855i 0.389221i
$$58$$ 6.61402 + 3.81861i 0.868464 + 0.501408i
$$59$$ 3.79833 6.57890i 0.494501 0.856500i −0.505479 0.862839i $$-0.668684\pi$$
0.999980 + 0.00633858i $$0.00201765\pi$$
$$60$$ −20.0774 7.88669i −2.59199 1.01817i
$$61$$ 1.13509 1.96603i 0.145333 0.251725i −0.784164 0.620554i $$-0.786908\pi$$
0.929497 + 0.368829i $$0.120241\pi$$
$$62$$ −19.7574 + 11.4069i −2.50919 + 1.44868i
$$63$$ −4.16107 + 2.40240i −0.524246 + 0.302674i
$$64$$ 0.270178 0.0337722
$$65$$ −3.09628 + 7.44399i −0.384046 + 0.923314i
$$66$$ −3.48079 −0.428455
$$67$$ −6.95421 + 4.01502i −0.849592 + 0.490512i −0.860513 0.509428i $$-0.829857\pi$$
0.0109212 + 0.999940i $$0.496524\pi$$
$$68$$ −4.74954 + 2.74215i −0.575966 + 0.332534i
$$69$$ −2.31754 + 4.01410i −0.279000 + 0.483241i
$$70$$ 6.11588 15.5694i 0.730987 1.86090i
$$71$$ −1.31754 + 2.28205i −0.156364 + 0.270830i −0.933555 0.358435i $$-0.883311\pi$$
0.777191 + 0.629265i $$0.216644\pi$$
$$72$$ −8.94284 5.16315i −1.05392 0.608483i
$$73$$ 10.3263i 1.20860i −0.796756 0.604301i $$-0.793453\pi$$
0.796756 0.604301i $$-0.206547\pi$$
$$74$$ −1.55794 + 2.69843i −0.181107 + 0.313686i
$$75$$ 10.4933 + 2.40158i 1.21166 + 0.277310i
$$76$$ −3.05794 5.29650i −0.350770 0.607551i
$$77$$ 1.86624i 0.212678i
$$78$$ −10.2189 + 16.9140i −1.15706 + 1.91513i
$$79$$ −1.03843 −0.116832 −0.0584161 0.998292i $$-0.518605\pi$$
−0.0584161 + 0.998292i $$0.518605\pi$$
$$80$$ 15.7346 2.36683i 1.75918 0.264620i
$$81$$ 5.61588 + 9.72698i 0.623986 + 1.08078i
$$82$$ 21.9620 + 12.6798i 2.42530 + 1.40025i
$$83$$ 11.8452i 1.30018i 0.759855 + 0.650092i $$0.225270\pi$$
−0.759855 + 0.650092i $$0.774730\pi$$
$$84$$ 14.1738 24.5498i 1.54649 2.67860i
$$85$$ 2.14026 1.70576i 0.232144 0.185016i
$$86$$ 3.48079 0.375343
$$87$$ −5.59346 3.22939i −0.599682 0.346227i
$$88$$ 3.47351 2.00543i 0.370277 0.213780i
$$89$$ −6.27912 10.8758i −0.665585 1.15283i −0.979126 0.203253i $$-0.934849\pi$$
0.313541 0.949575i $$-0.398485\pi$$
$$90$$ 8.66324 + 3.40304i 0.913186 + 0.358712i
$$91$$ −9.06851 5.47890i −0.950638 0.574344i
$$92$$ 9.64680i 1.00575i
$$93$$ 16.7087 9.64680i 1.73262 1.00033i
$$94$$ 7.84570 + 13.5891i 0.809222 + 1.40161i
$$95$$ 1.90220 + 2.38674i 0.195162 + 0.244874i
$$96$$ 11.8073 1.20507
$$97$$ −12.8031 7.39190i −1.29996 0.750534i −0.319565 0.947564i $$-0.603537\pi$$
−0.980397 + 0.197031i $$0.936870\pi$$
$$98$$ 3.60484 + 2.08125i 0.364144 + 0.210238i
$$99$$ 1.03843 0.104366
$$100$$ −21.4125 + 6.59098i −2.14125 + 0.659098i
$$101$$ −6.61588 11.4590i −0.658304 1.14022i −0.981054 0.193732i $$-0.937941\pi$$
0.322750 0.946484i $$-0.395393\pi$$
$$102$$ 5.80951 3.35412i 0.575228 0.332108i
$$103$$ 10.9686i 1.08077i 0.841419 + 0.540383i $$0.181721\pi$$
−0.841419 + 0.540383i $$0.818279\pi$$
$$104$$ 0.452633 22.7661i 0.0443843 2.23240i
$$105$$ −5.17218 + 13.1670i −0.504753 + 1.28497i
$$106$$ 0.817544 + 1.41603i 0.0794069 + 0.137537i
$$107$$ 9.24360 5.33680i 0.893613 0.515928i 0.0184903 0.999829i $$-0.494114\pi$$
0.875123 + 0.483901i $$0.160781\pi$$
$$108$$ −11.4030 6.58351i −1.09725 0.633499i
$$109$$ 3.27018 0.313226 0.156613 0.987660i $$-0.449942\pi$$
0.156613 + 0.987660i $$0.449942\pi$$
$$110$$ −2.82715 + 2.25321i −0.269558 + 0.214835i
$$111$$ 1.31754 2.28205i 0.125056 0.216603i
$$112$$ 20.9104i 1.97584i
$$113$$ 4.78895 + 2.76490i 0.450507 + 0.260100i 0.708044 0.706168i $$-0.249578\pi$$
−0.257537 + 0.966268i $$0.582911\pi$$
$$114$$ 3.74039 + 6.47855i 0.350320 + 0.606772i
$$115$$ 0.716091 + 4.76053i 0.0667759 + 0.443922i
$$116$$ 13.4424 1.24809
$$117$$ 3.04860 5.04596i 0.281844 0.466499i
$$118$$ 19.3391i 1.78031i
$$119$$ 1.79833 + 3.11480i 0.164853 + 0.285533i
$$120$$ −30.0648 + 4.52243i −2.74453 + 0.412839i
$$121$$ 5.29833 9.17698i 0.481666 0.834271i
$$122$$ 5.77928i 0.523231i
$$123$$ −18.5732 10.7233i −1.67469 0.966884i
$$124$$ −20.0774 + 34.7752i −1.80301 + 3.12290i
$$125$$ 10.0774 4.84201i 0.901354 0.433082i
$$126$$ −6.11588 + 10.5930i −0.544845 + 0.943700i
$$127$$ 14.9231 8.61586i 1.32421 0.764534i 0.339813 0.940493i $$-0.389636\pi$$
0.984397 + 0.175959i $$0.0563027\pi$$
$$128$$ 10.0947 5.82819i 0.892256 0.515144i
$$129$$ −2.94369 −0.259178
$$130$$ 2.64894 + 20.3527i 0.232327 + 1.78505i
$$131$$ 10.0000 0.873704 0.436852 0.899533i $$-0.356093\pi$$
0.436852 + 0.899533i $$0.356093\pi$$
$$132$$ −5.30577 + 3.06329i −0.461808 + 0.266625i
$$133$$ −3.47351 + 2.00543i −0.301191 + 0.173893i
$$134$$ −10.2212 + 17.7036i −0.882975 + 1.52936i
$$135$$ 6.11588 + 2.40240i 0.526371 + 0.206765i
$$136$$ −3.86491 + 6.69422i −0.331413 + 0.574025i
$$137$$ −7.51044 4.33616i −0.641661 0.370463i 0.143593 0.989637i $$-0.454134\pi$$
−0.785254 + 0.619174i $$0.787468\pi$$
$$138$$ 11.7997i 1.00446i
$$139$$ 7.16324 12.4071i 0.607578 1.05236i −0.384060 0.923308i $$-0.625474\pi$$
0.991638 0.129048i $$-0.0411922\pi$$
$$140$$ −4.37953 29.1148i −0.370137 2.46065i
$$141$$ −6.63509 11.4923i −0.558775 0.967827i
$$142$$ 6.70825i 0.562944i
$$143$$ 1.10528 + 2.00543i 0.0924279 + 0.167703i
$$144$$ −11.6351 −0.969591
$$145$$ −6.63357 + 0.997839i −0.550888 + 0.0828660i
$$146$$ −13.1440 22.7661i −1.08781 1.88414i
$$147$$ −3.04860 1.76011i −0.251445 0.145172i
$$148$$ 5.48429i 0.450806i
$$149$$ −8.57745 + 14.8566i −0.702692 + 1.21710i 0.264826 + 0.964296i $$0.414685\pi$$
−0.967518 + 0.252802i $$0.918648\pi$$
$$150$$ 26.1912 8.06192i 2.13851 0.658253i
$$151$$ −21.3828 −1.74011 −0.870053 0.492957i $$-0.835916\pi$$
−0.870053 + 0.492957i $$0.835916\pi$$
$$152$$ −7.46515 4.31000i −0.605503 0.349587i
$$153$$ −1.73316 + 1.00064i −0.140118 + 0.0808969i
$$154$$ −2.37548 4.11446i −0.191422 0.331552i
$$155$$ 7.32648 18.6513i 0.588477 1.49811i
$$156$$ −0.691395 + 34.7752i −0.0553559 + 2.78424i
$$157$$ 18.3646i 1.46566i 0.680413 + 0.732829i $$0.261800\pi$$
−0.680413 + 0.732829i $$0.738200\pi$$
$$158$$ −2.28939 + 1.32178i −0.182134 + 0.105155i
$$159$$ −0.691395 1.19753i −0.0548312 0.0949705i
$$160$$ 9.59006 7.64317i 0.758161 0.604245i
$$161$$ −6.32648 −0.498597
$$162$$ 24.7624 + 14.2966i 1.94551 + 1.12324i
$$163$$ 3.47351 + 2.00543i 0.272066 + 0.157078i 0.629826 0.776736i $$-0.283126\pi$$
−0.357760 + 0.933814i $$0.616459\pi$$
$$164$$ 44.6357 3.48546
$$165$$ 2.39092 1.90553i 0.186133 0.148346i
$$166$$ 15.0774 + 26.1149i 1.17024 + 2.02691i
$$167$$ −2.54486 + 1.46928i −0.196927 + 0.113696i −0.595221 0.803562i $$-0.702936\pi$$
0.398294 + 0.917258i $$0.369602\pi$$
$$168$$ 39.9545i 3.08256i
$$169$$ 12.9897 + 0.516725i 0.999210 + 0.0397480i
$$170$$ 2.54737 6.48493i 0.195374 0.497371i
$$171$$ −1.11588 1.93275i −0.0853331 0.147801i
$$172$$ 5.30577 3.06329i 0.404561 0.233574i
$$173$$ −1.18412 0.683650i −0.0900267 0.0519769i 0.454311 0.890843i $$-0.349886\pi$$
−0.544337 + 0.838866i $$0.683219\pi$$
$$174$$ −16.4424 −1.24649
$$175$$ 4.32244 + 14.0426i 0.326746 + 1.06152i
$$176$$ 2.25961 3.91375i 0.170324 0.295010i
$$177$$ 16.3550i 1.22932i
$$178$$ −27.6868 15.9850i −2.07522 1.19813i
$$179$$ 3.89306 + 6.74299i 0.290981 + 0.503994i 0.974042 0.226367i $$-0.0726849\pi$$
−0.683061 + 0.730362i $$0.739352\pi$$
$$180$$ 16.2003 2.43688i 1.20750 0.181635i
$$181$$ −3.86684 −0.287420 −0.143710 0.989620i $$-0.545903\pi$$
−0.143710 + 0.989620i $$0.545903\pi$$
$$182$$ −26.9670 0.536155i −1.99893 0.0397425i
$$183$$ 4.88752i 0.361296i
$$184$$ −6.79833 11.7751i −0.501180 0.868069i
$$185$$ −0.407104 2.70640i −0.0299309 0.198979i
$$186$$ 24.5582 42.5361i 1.80070 3.11890i
$$187$$ 0.777322i 0.0568434i
$$188$$ 23.9184 + 13.8093i 1.74443 + 1.00715i
$$189$$ −4.31754 + 7.47821i −0.314055 + 0.543959i
$$190$$ 7.23175 + 2.84073i 0.524646 + 0.206088i
$$191$$ −2.47185 + 4.28136i −0.178857 + 0.309789i −0.941489 0.337043i $$-0.890573\pi$$
0.762633 + 0.646832i $$0.223906\pi$$
$$192$$ −0.503743 + 0.290836i −0.0363545 + 0.0209893i
$$193$$ 4.29240 2.47822i 0.308974 0.178386i −0.337493 0.941328i $$-0.609579\pi$$
0.646467 + 0.762942i $$0.276246\pi$$
$$194$$ −37.6357 −2.70208
$$195$$ −2.24020 17.2123i −0.160424 1.23260i
$$196$$ 7.32648 0.523320
$$197$$ −5.84174 + 3.37273i −0.416207 + 0.240297i −0.693453 0.720502i $$-0.743912\pi$$
0.277246 + 0.960799i $$0.410578\pi$$
$$198$$ 2.28939 1.32178i 0.162700 0.0939349i
$$199$$ 2.58772 4.48207i 0.183439 0.317725i −0.759611 0.650378i $$-0.774610\pi$$
0.943049 + 0.332653i $$0.107944\pi$$
$$200$$ −21.4917 + 23.1350i −1.51969 + 1.63589i
$$201$$ 8.64403 14.9719i 0.609703 1.05604i
$$202$$ −29.1717 16.8423i −2.05251 1.18502i
$$203$$ 8.81566i 0.618738i
$$204$$ 5.90364 10.2254i 0.413337 0.715921i
$$205$$ −22.0269 + 3.31335i −1.53843 + 0.231414i
$$206$$ 13.9616 + 24.1822i 0.972749 + 1.68485i
$$207$$ 3.52022i 0.244673i
$$208$$ −12.3841 22.4699i −0.858684 1.55801i
$$209$$ 0.866840 0.0599606
$$210$$ 5.35693 + 35.6125i 0.369663 + 2.45750i
$$211$$ 7.00894 + 12.1398i 0.482515 + 0.835741i 0.999799 0.0200732i $$-0.00638994\pi$$
−0.517283 + 0.855814i $$0.673057\pi$$
$$212$$ 2.49237 + 1.43897i 0.171177 + 0.0988289i
$$213$$ 5.67315i 0.388718i
$$214$$ 13.5861 23.5318i 0.928726 1.60860i
$$215$$ −2.39092 + 1.90553i −0.163059 + 0.129956i
$$216$$ −18.5582 −1.26273
$$217$$ 22.8060 + 13.1670i 1.54817 + 0.893836i
$$218$$ 7.20968 4.16251i 0.488301 0.281921i
$$219$$ 11.1159 + 19.2533i 0.751141 + 1.30101i
$$220$$ −2.32648 + 5.92262i −0.156852 + 0.399303i
$$221$$ −3.77719 2.28205i −0.254081 0.153508i
$$222$$ 6.70825i 0.450228i
$$223$$ −0.00719226 + 0.00415245i −0.000481629 + 0.000278069i −0.500241 0.865886i $$-0.666755\pi$$
0.499759 + 0.866164i $$0.333422\pi$$
$$224$$ 8.05794 + 13.9568i 0.538394 + 0.932525i
$$225$$ −7.81366 + 2.40512i −0.520911 + 0.160341i
$$226$$ 14.0774 0.936418
$$227$$ 9.75454 + 5.63179i 0.647431 + 0.373795i 0.787471 0.616351i $$-0.211390\pi$$
−0.140040 + 0.990146i $$0.544723\pi$$
$$228$$ 11.4030 + 6.58351i 0.755181 + 0.436004i
$$229$$ 16.5404 1.09302 0.546509 0.837453i $$-0.315957\pi$$
0.546509 + 0.837453i $$0.315957\pi$$
$$230$$ 7.63828 + 9.58393i 0.503653 + 0.631946i
$$231$$ 2.00894 + 3.47959i 0.132179 + 0.228940i
$$232$$ 16.4080 9.47315i 1.07724 0.621943i
$$233$$ 6.94941i 0.455271i 0.973746 + 0.227636i $$0.0730995\pi$$
−0.973746 + 0.227636i $$0.926900\pi$$
$$234$$ 0.298331 15.0052i 0.0195025 0.980919i
$$235$$ −12.8284 5.03917i −0.836833 0.328719i
$$236$$ −17.0195 29.4787i −1.10788 1.91890i
$$237$$ 1.93613 1.11783i 0.125765 0.0726107i
$$238$$ 7.92947 + 4.57808i 0.513991 + 0.296753i
$$239$$ −4.00000 −0.258738 −0.129369 0.991596i $$-0.541295\pi$$
−0.129369 + 0.991596i $$0.541295\pi$$
$$240$$ −26.7891 + 21.3506i −1.72923 + 1.37818i
$$241$$ −9.88605 + 17.1231i −0.636817 + 1.10300i 0.349310 + 0.937007i $$0.386416\pi$$
−0.986127 + 0.165992i $$0.946917\pi$$
$$242$$ 26.9763i 1.73410i
$$243$$ −13.3069 7.68273i −0.853637 0.492848i
$$244$$ −5.08609 8.80937i −0.325604 0.563962i
$$245$$ −3.61549 + 0.543852i −0.230985 + 0.0347454i
$$246$$ −54.5973 −3.48099
$$247$$ 2.54486 4.21218i 0.161926 0.268015i
$$248$$ 56.5962i 3.59386i
$$249$$ −12.7510 22.0853i −0.808060 1.39960i
$$250$$ 16.0543 23.5023i 1.01536 1.48642i
$$251$$ −1.83676 + 3.18136i −0.115935 + 0.200806i −0.918153 0.396226i $$-0.870320\pi$$
0.802218 + 0.597031i $$0.203653\pi$$
$$252$$ 21.5293i 1.35622i
$$253$$ 1.18412 + 0.683650i 0.0744447 + 0.0429807i
$$254$$ 21.9337 37.9903i 1.37624 2.38372i
$$255$$ −2.15430 + 5.48429i −0.134908 + 0.343440i
$$256$$ 14.5669 25.2306i 0.910430 1.57691i
$$257$$ 11.4877 6.63242i 0.716583 0.413719i −0.0969108 0.995293i $$-0.530896\pi$$
0.813494 + 0.581574i $$0.197563\pi$$
$$258$$ −6.48989 + 3.74694i −0.404043 + 0.233274i
$$259$$ 3.59666 0.223486
$$260$$ 21.9493 + 28.6925i 1.36124 + 1.77943i
$$261$$ 4.90527 0.303628
$$262$$ 22.0467 12.7287i 1.36205 0.786381i
$$263$$ −26.2150 + 15.1352i −1.61649 + 0.933279i −0.628667 + 0.777674i $$0.716399\pi$$
−0.987819 + 0.155605i $$0.950267\pi$$
$$264$$ −4.31754 + 7.47821i −0.265726 + 0.460252i
$$265$$ −1.33676 0.525096i −0.0821164 0.0322564i
$$266$$ −5.10530 + 8.84265i −0.313026 + 0.542177i
$$267$$ 23.4147 + 13.5185i 1.43296 + 0.827317i
$$268$$ 35.9809i 2.19788i
$$269$$ −11.1248 + 19.2687i −0.678292 + 1.17484i 0.297203 + 0.954814i $$0.403946\pi$$
−0.975495 + 0.220022i $$0.929387\pi$$
$$270$$ 16.5415 2.48821i 1.00668 0.151427i
$$271$$ 5.91421 + 10.2437i 0.359262 + 0.622261i 0.987838 0.155488i $$-0.0496950\pi$$
−0.628575 + 0.777749i $$0.716362\pi$$
$$272$$ 8.70953i 0.528093i
$$273$$ 22.8060 + 0.453425i 1.38028 + 0.0274425i
$$274$$ −22.0774 −1.33375
$$275$$ 0.708438 3.09541i 0.0427204 0.186660i
$$276$$ 10.3844 + 17.9863i 0.625069 + 1.08265i
$$277$$ −14.5363 8.39254i −0.873402 0.504259i −0.00492452 0.999988i $$-0.501568\pi$$
−0.868477 + 0.495729i $$0.834901\pi$$
$$278$$ 36.4715i 2.18741i
$$279$$ −7.32648 + 12.6898i −0.438625 + 0.759721i
$$280$$ −25.8636 32.4517i −1.54565 1.93936i
$$281$$ −10.5967 −0.632144 −0.316072 0.948735i $$-0.602364\pi$$
−0.316072 + 0.948735i $$0.602364\pi$$
$$282$$ −29.2564 16.8912i −1.74219 1.00586i
$$283$$ 7.63458 4.40783i 0.453829 0.262018i −0.255617 0.966778i $$-0.582279\pi$$
0.709446 + 0.704760i $$0.248945\pi$$
$$284$$ 5.90364 + 10.2254i 0.350316 + 0.606766i
$$285$$ −6.11588 2.40240i −0.362273 0.142306i
$$286$$ 4.98943 + 3.01445i 0.295031 + 0.178248i
$$287$$ 29.2726i 1.72791i
$$288$$ −7.76591 + 4.48365i −0.457611 + 0.264202i
$$289$$ −7.75096 13.4251i −0.455939 0.789710i
$$290$$ −13.3548 + 10.6436i −0.784218 + 0.625013i
$$291$$ 31.8284 1.86581
$$292$$ −40.0709 23.1350i −2.34497 1.35387i
$$293$$ −24.4675 14.1263i −1.42940 0.825267i −0.432331 0.901715i $$-0.642309\pi$$
−0.997074 + 0.0764476i $$0.975642\pi$$
$$294$$ −8.96157 −0.522650
$$295$$ 10.5871 + 13.2838i 0.616403 + 0.773415i
$$296$$ 3.86491 + 6.69422i 0.224643 + 0.389094i
$$297$$ 1.61621 0.933121i 0.0937822 0.0541452i
$$298$$ 43.6719i 2.52984i
$$299$$ 6.79833 3.74685i 0.393158 0.216686i
$$300$$ 32.8284 35.3386i 1.89535 2.04027i
$$301$$ −2.00894 3.47959i −0.115793 0.200560i
$$302$$ −47.1421 + 27.2175i −2.71272 + 1.56619i
$$303$$ 24.6704 + 14.2435i 1.41728 + 0.818267i
$$304$$ −9.71254 −0.557052
$$305$$ 3.16383 + 3.96973i 0.181160 + 0.227306i
$$306$$ −2.54737 + 4.41217i −0.145623 + 0.252227i
$$307$$ 12.7219i 0.726077i 0.931774 + 0.363039i $$0.118261\pi$$
−0.931774 + 0.363039i $$0.881739\pi$$
$$308$$ −7.24190 4.18112i −0.412646 0.238241i
$$309$$ −11.8073 20.4508i −0.671692 1.16340i
$$310$$ −7.58818 50.4457i −0.430980 2.86513i
$$311$$ 27.9231 1.58338 0.791688 0.610925i $$-0.209202\pi$$
0.791688 + 0.610925i $$0.209202\pi$$
$$312$$ 23.6630 + 42.9344i 1.33965 + 2.43068i
$$313$$ 24.5807i 1.38938i −0.719307 0.694692i $$-0.755540\pi$$
0.719307 0.694692i $$-0.244460\pi$$
$$314$$ 23.3758 + 40.4880i 1.31917 + 2.28487i
$$315$$ −1.59814 10.6243i −0.0900448 0.598613i
$$316$$ −2.32648 + 4.02959i −0.130875 + 0.226682i
$$317$$ 0.234377i 0.0131639i −0.999978 0.00658196i $$-0.997905\pi$$
0.999978 0.00658196i $$-0.00209512\pi$$
$$318$$ −3.04860 1.76011i −0.170957 0.0987022i
$$319$$ −0.952633 + 1.65001i −0.0533372 + 0.0923828i
$$320$$ −0.220882 + 0.562309i −0.0123477 + 0.0314340i
$$321$$ −11.4897 + 19.9008i −0.641294 + 1.11075i
$$322$$ −13.9478 + 8.05279i −0.777283 + 0.448764i
$$323$$ −1.44678 + 0.835296i −0.0805008 + 0.0464771i
$$324$$ 50.3271 2.79595
$$325$$ −12.9615 12.5299i −0.718975 0.695036i
$$326$$ 10.2106 0.565513
$$327$$ −6.09721 + 3.52022i −0.337176 + 0.194669i
$$328$$ 54.4831 31.4558i 3.00833 1.73686i
$$329$$ 9.05631 15.6860i 0.499290 0.864796i
$$330$$ 2.84570 7.24440i 0.156651 0.398791i
$$331$$ 9.16324 15.8712i 0.503657 0.872360i −0.496334 0.868132i $$-0.665321\pi$$
0.999991 0.00422829i $$-0.00134591\pi$$
$$332$$ 45.9652 + 26.5380i 2.52267 + 1.45646i
$$333$$ 2.00128i 0.109669i
$$334$$ −3.74039 + 6.47855i −0.204665 + 0.354491i
$$335$$ −2.67089 17.7559i −0.145926 0.970110i
$$336$$ −22.5092 38.9871i −1.22798 2.12692i
$$337$$ 21.2949i 1.16001i −0.814614 0.580003i $$-0.803051\pi$$
0.814614 0.580003i $$-0.196949\pi$$
$$338$$ 29.2958 15.3950i 1.59348 0.837379i
$$339$$ −11.9053 −0.646605
$$340$$ −1.82415 12.1268i −0.0989283 0.657669i
$$341$$ −2.84570 4.92889i −0.154103 0.266915i
$$342$$ −4.92028 2.84073i −0.266059 0.153609i
$$343$$ 15.7651i 0.851234i
$$344$$ 4.31754 7.47821i 0.232786 0.403198i
$$345$$ −6.45968 8.10511i −0.347777 0.436364i
$$346$$ −3.48079 −0.187128
$$347$$ 3.30407 + 1.90761i 0.177372 + 0.102406i 0.586057 0.810270i $$-0.300679\pi$$
−0.408685 + 0.912675i $$0.634013\pi$$
$$348$$ −25.0631 + 14.4702i −1.34352 + 0.775684i
$$349$$ 12.1632 + 21.0674i 0.651083 + 1.12771i 0.982860 + 0.184352i $$0.0590185\pi$$
−0.331777 + 0.943358i $$0.607648\pi$$
$$350$$ 27.4039 + 25.4574i 1.46480 + 1.36075i
$$351$$ 0.210609 10.5930i 0.0112415 0.565413i
$$352$$ 3.48301i 0.185645i
$$353$$ 23.4338 13.5295i 1.24726 0.720104i 0.276696 0.960958i $$-0.410761\pi$$
0.970562 + 0.240853i $$0.0774272\pi$$
$$354$$ 20.8178 + 36.0576i 1.10646 + 1.91644i
$$355$$ −3.67238 4.60783i −0.194910 0.244558i
$$356$$ −56.2708 −2.98235
$$357$$ −6.70593 3.87167i −0.354916 0.204911i
$$358$$ 17.1659 + 9.91073i 0.907245 + 0.523798i
$$359$$ −27.0039 −1.42521 −0.712605 0.701566i $$-0.752485\pi$$
−0.712605 + 0.701566i $$0.752485\pi$$
$$360$$ 18.0570 14.3912i 0.951687 0.758484i
$$361$$ 8.56851 + 14.8411i 0.450974 + 0.781110i
$$362$$ −8.52512 + 4.92198i −0.448071 + 0.258694i
$$363$$ 22.8138i 1.19742i
$$364$$ −41.5777 + 22.9152i −2.17927 + 1.20108i
$$365$$ 21.4917 + 8.44221i 1.12492 + 0.441885i
$$366$$ 6.22118 + 10.7754i 0.325186 + 0.563239i
$$367$$ −6.01118 + 3.47055i −0.313781 + 0.181161i −0.648617 0.761115i $$-0.724652\pi$$
0.334836 + 0.942276i $$0.391319\pi$$
$$368$$ −13.2675 7.65998i −0.691615 0.399304i
$$369$$ 16.2881 0.847922
$$370$$ −4.34243 5.44855i −0.225752 0.283257i
$$371$$ 0.943693 1.63452i 0.0489941 0.0848603i
$$372$$ 86.4505i 4.48225i
$$373$$ 2.00301 + 1.15644i 0.103712 + 0.0598781i 0.550959 0.834532i $$-0.314262\pi$$
−0.447247 + 0.894411i $$0.647595\pi$$
$$374$$ −0.989429 1.71374i −0.0511622 0.0886154i
$$375$$ −13.5770 + 19.8759i −0.701116 + 1.02639i
$$376$$ 38.9270 2.00751
$$377$$ 5.22105 + 9.47315i 0.268898 + 0.487892i
$$378$$ 21.9827i 1.13067i
$$379$$ 2.58772 + 4.48207i 0.132922 + 0.230228i 0.924802 0.380449i $$-0.124231\pi$$
−0.791880 + 0.610677i $$0.790897\pi$$
$$380$$ 13.5234 2.03422i 0.693734 0.104353i
$$381$$ −18.5493 + 32.1283i −0.950309 + 1.64598i
$$382$$ 12.5854i 0.643923i
$$383$$ −17.8929 10.3305i −0.914283 0.527861i −0.0324760 0.999473i $$-0.510339\pi$$
−0.881807 + 0.471611i $$0.843673\pi$$
$$384$$ −12.5477 + 21.7332i −0.640320 + 1.10907i
$$385$$ 3.88412 + 1.52574i 0.197953 + 0.0777587i
$$386$$ 6.30890 10.9273i 0.321115 0.556187i
$$387$$ 1.93613 1.11783i 0.0984193 0.0568224i
$$388$$ −57.3682 + 33.1215i −2.91243 + 1.68149i
$$389$$ −19.7477 −1.00125 −0.500624 0.865665i $$-0.666896\pi$$
−0.500624 + 0.865665i $$0.666896\pi$$
$$390$$ −26.8479 35.0960i −1.35950 1.77715i
$$391$$ −2.63509 −0.133262
$$392$$ 8.94284 5.16315i 0.451681 0.260778i
$$393$$ −18.6449 + 10.7646i −0.940510 + 0.543004i
$$394$$ −8.58609 + 14.8715i −0.432561 + 0.749218i
$$395$$ 0.848960 2.16123i 0.0427158 0.108743i
$$396$$ 2.32648 4.02959i 0.116910 0.202494i
$$397$$ 8.13113 + 4.69451i 0.408090 + 0.235611i 0.689969 0.723839i $$-0.257624\pi$$
−0.281879 + 0.959450i $$0.590958\pi$$
$$398$$ 13.1753i 0.660420i
$$399$$ 4.31754 7.47821i 0.216148 0.374379i
$$400$$ −7.93772 + 34.6826i −0.396886 + 1.73413i
$$401$$ −12.2510 21.2193i −0.611784 1.05964i −0.990940 0.134308i $$-0.957119\pi$$
0.379156 0.925333i $$-0.376214\pi$$
$$402$$ 44.0109i 2.19506i
$$403$$ −32.3050 0.642285i −1.60923 0.0319945i
$$404$$ −59.2887 −2.94972
$$405$$ −24.8356 + 3.73583i −1.23409 + 0.185635i
$$406$$ −11.2212 19.4357i −0.556898 0.964575i
$$407$$ −0.673180 0.388661i −0.0333683 0.0192652i
$$408$$ 16.6417i 0.823889i
$$409$$ 18.0582 31.2778i 0.892922 1.54659i 0.0565671 0.998399i $$-0.481985\pi$$
0.836355 0.548188i $$-0.184682\pi$$
$$410$$ −44.3448 + 35.3423i −2.19003 + 1.74543i
$$411$$ 18.6708 0.920965
$$412$$ 42.5633 + 24.5739i 2.09694 + 1.21067i
$$413$$ −19.3324 + 11.1616i −0.951288 + 0.549226i
$$414$$ −4.48079 7.76095i −0.220219 0.381430i
$$415$$ −24.6530 9.68401i −1.21017 0.475370i
$$416$$ −16.9248 10.2254i −0.829805 0.501341i
$$417$$ 30.8439i 1.51043i
$$418$$ 1.91110 1.10337i 0.0934749 0.0539678i
$$419$$ −3.43342 5.94686i −0.167734 0.290523i 0.769889 0.638178i $$-0.220311\pi$$
−0.937623 + 0.347655i $$0.886978\pi$$
$$420$$ 39.5066 + 49.5698i 1.92772 + 2.41876i
$$421$$ 33.9795 1.65606 0.828029 0.560686i $$-0.189462\pi$$
0.828029 + 0.560686i $$0.189462\pi$$
$$422$$ 30.9049 + 17.8429i 1.50443 + 0.868580i
$$423$$ 8.72810 + 5.03917i 0.424375 + 0.245013i
$$424$$ 4.05631 0.196992
$$425$$ 1.80037 + 5.84897i 0.0873308 + 0.283717i
$$426$$ −7.22118 12.5075i −0.349867 0.605988i
$$427$$ −5.77729 + 3.33552i −0.279582 + 0.161417i
$$428$$ 47.8261i 2.31176i
$$429$$ −4.21955 2.54931i −0.203722 0.123082i
$$430$$ −2.84570 + 7.24440i −0.137232 + 0.349356i
$$431$$ 8.12482 + 14.0726i 0.391359 + 0.677853i 0.992629 0.121193i $$-0.0386719\pi$$
−0.601270 + 0.799046i $$0.705339\pi$$
$$432$$ −18.1089 + 10.4552i −0.871265 + 0.503025i
$$433$$ 0.221929 + 0.128130i 0.0106652 + 0.00615756i 0.505323 0.862930i $$-0.331373\pi$$
−0.494658 + 0.869088i $$0.664707\pi$$
$$434$$ 67.0396 3.21800
$$435$$ 11.2941 9.00126i 0.541510 0.431577i
$$436$$ 7.32648 12.6898i 0.350875 0.607733i
$$437$$ 2.93855i 0.140570i
$$438$$ 49.0138 + 28.2981i 2.34197 + 1.35214i
$$439$$ −3.79833 6.57890i −0.181284 0.313994i 0.761034 0.648712i $$-0.224692\pi$$
−0.942318 + 0.334718i $$0.891359\pi$$
$$440$$ 1.33407 + 8.86879i 0.0635991 + 0.422803i
$$441$$ 2.67352 0.127310
$$442$$ −11.2322 0.223318i −0.534263 0.0106221i
$$443$$ 4.32246i 0.205366i −0.994714 0.102683i $$-0.967257\pi$$
0.994714 0.102683i $$-0.0327428\pi$$
$$444$$ −5.90364 10.2254i −0.280174 0.485276i
$$445$$ 27.7687 4.17703i 1.31636 0.198010i
$$446$$ −0.0105711 + 0.0183096i −0.000500554 + 0.000866986i
$$447$$ 36.9332i 1.74688i
$$448$$ −0.687565 0.396966i −0.0324844 0.0187549i
$$449$$ 1.64403 2.84754i 0.0775865 0.134384i −0.824622 0.565685i $$-0.808612\pi$$
0.902208 + 0.431301i $$0.141945\pi$$
$$450$$ −14.1652 + 15.2483i −0.667753 + 0.718811i
$$451$$ −3.16324 + 5.47890i −0.148951 + 0.257991i
$$452$$ 21.4583 12.3889i 1.00931 0.582727i
$$453$$ 39.8680 23.0178i 1.87316 1.08147i
$$454$$ 28.6741 1.34574
$$455$$ 18.8169 14.3946i 0.882149 0.674831i
$$456$$ 18.5582 0.869069
$$457$$ −13.3594 + 7.71304i −0.624925 + 0.360801i −0.778784 0.627292i $$-0.784163\pi$$
0.153859 + 0.988093i $$0.450830\pi$$
$$458$$ 36.4661 21.0537i 1.70395 0.983775i
$$459$$ −1.79833 + 3.11480i −0.0839389 + 0.145386i
$$460$$ 20.0774 + 7.88669i 0.936116 + 0.367719i
$$461$$ −12.9424 + 22.4168i −0.602786 + 1.04406i 0.389611 + 0.920979i $$0.372609\pi$$
−0.992397 + 0.123076i $$0.960724\pi$$
$$462$$ 8.85812 + 5.11424i 0.412117 + 0.237936i
$$463$$ 7.04045i 0.327197i −0.986527 0.163599i $$-0.947690\pi$$
0.986527 0.163599i $$-0.0523102\pi$$
$$464$$ 10.6738 18.4876i 0.495519 0.858265i
$$465$$ 6.41730 + 42.6618i 0.297595 + 1.97840i
$$466$$ 8.84570 + 15.3212i 0.409769 + 0.709741i
$$467$$ 18.8113i 0.870482i 0.900314 + 0.435241i $$0.143337\pi$$
−0.900314 + 0.435241i $$0.856663\pi$$
$$468$$ −12.7507 23.1350i −0.589399 1.06941i
$$469$$ 23.5967 1.08959
$$470$$ −34.6967 + 5.21916i −1.60044 + 0.240742i
$$471$$ −19.7688 34.2406i −0.910900 1.57773i
$$472$$ −41.5486 23.9881i −1.91243 1.10414i
$$473$$ 0.868356i 0.0399271i
$$474$$ 2.84570 4.92889i 0.130707 0.226392i
$$475$$ −6.52255 + 2.00771i −0.299275 + 0.0921199i
$$476$$ 16.1159 0.738670
$$477$$ 0.909493 + 0.525096i 0.0416428 + 0.0240425i
$$478$$ −8.81870 + 5.09148i −0.403358 + 0.232879i
$$479$$ −9.73876 16.8680i −0.444975 0.770720i 0.553075 0.833131i $$-0.313454\pi$$
−0.998051 + 0.0624114i $$0.980121\pi$$
$$480$$ −9.65297 + 24.5739i −0.440596 + 1.12164i
$$481$$ −3.86491 + 2.13011i −0.176225 + 0.0971249i
$$482$$ 50.3346i 2.29268i
$$483$$ 11.7957 6.81023i 0.536721 0.309876i
$$484$$ −23.7407 41.1201i −1.07912 1.86909i
$$485$$ 25.8516 20.6034i 1.17386 0.935552i
$$486$$ −39.1165 −1.77436
$$487$$ 27.9935 + 16.1620i 1.26851 + 0.732372i 0.974705 0.223495i $$-0.0717467\pi$$
0.293800 + 0.955867i $$0.405080\pi$$
$$488$$ −12.4163 7.16858i −0.562062 0.324506i
$$489$$ −8.63509 −0.390492
$$490$$ −7.27874 + 5.80107i −0.328820 + 0.262066i
$$491$$ −14.3354 24.8297i −0.646949 1.12055i −0.983848 0.179007i $$-0.942711\pi$$
0.336899 0.941541i $$-0.390622\pi$$
$$492$$ −83.2227 + 48.0487i −3.75197 + 2.16620i
$$493$$ 3.67187i 0.165373i
$$494$$ 0.249036 12.5258i 0.0112046 0.563561i
$$495$$ −0.848960 + 2.16123i −0.0381579 + 0.0971401i
$$496$$ 31.8847 + 55.2260i 1.43167 + 2.47972i
$$497$$ 6.70593 3.87167i 0.300802 0.173668i
$$498$$ −56.2235 32.4606i −2.51943 1.45460i
$$499$$ −28.9616 −1.29650 −0.648249 0.761428i $$-0.724498\pi$$
−0.648249 + 0.761428i $$0.724498\pi$$
$$500$$ 3.78816 49.9533i 0.169412 2.23398i
$$501$$ 3.16324 5.47890i 0.141323 0.244779i
$$502$$ 9.35181i 0.417392i
$$503$$ −24.3433 14.0546i −1.08542 0.626665i −0.153063 0.988216i $$-0.548914\pi$$
−0.932352 + 0.361551i $$0.882247\pi$$
$$504$$ 15.1722 + 26.2790i 0.675823 + 1.17056i
$$505$$ 29.2579 4.40105i 1.30196 0.195844i
$$506$$ 3.48079 0.154740
$$507$$ −24.7754 + 13.0195i −1.10032 + 0.578218i
$$508$$ 77.2116i 3.42571i
$$509$$ 10.5563 + 18.2841i 0.467900 + 0.810427i 0.999327 0.0366773i $$-0.0116774\pi$$
−0.531427 + 0.847104i $$0.678344\pi$$
$$510$$ 2.23125 + 14.8332i 0.0988015 + 0.656826i
$$511$$ −15.1722 + 26.2790i −0.671178 + 1.16251i
$$512$$ 50.8542i 2.24746i
$$513$$ −3.47351 2.00543i −0.153359 0.0885420i
$$514$$ 16.8844 29.2447i 0.744740 1.28993i
$$515$$ −22.8284 8.96730i −1.00594 0.395147i
$$516$$ −6.59503 + 11.4229i −0.290330 + 0.502866i
$$517$$ −3.39010 + 1.95728i −0.149097 + 0.0860809i
$$518$$ 7.92947 4.57808i 0.348401 0.201149i
$$519$$ 2.94369 0.129214
$$520$$ 47.0121 + 19.5544i 2.06162 + 0.857516i
$$521$$ 0.673516 0.0295073 0.0147536 0.999891i $$-0.495304\pi$$
0.0147536 + 0.999891i $$0.495304\pi$$
$$522$$ 10.8145 6.24376i 0.473339 0.273282i
$$523$$ 25.8618 14.9313i 1.13086 0.652900i 0.186706 0.982416i $$-0.440219\pi$$
0.944150 + 0.329516i $$0.106886\pi$$
$$524$$ 22.4039 38.8048i 0.978720 1.69519i
$$525$$ −23.1754 21.5293i −1.01146 0.939614i
$$526$$ −38.5304 + 66.7366i −1.68000 + 2.90985i
$$527$$ 9.49907 + 5.48429i 0.413786 + 0.238899i
$$528$$ 9.72953i 0.423423i
$$529$$ −9.18246 + 15.9045i −0.399237 + 0.691499i
$$530$$ −3.61549 + 0.543852i −0.157047 + 0.0236234i
$$531$$ −6.21061 10.7571i −0.269517 0.466818i
$$532$$ 17.9718i 0.779177i
$$533$$ 17.3366 + 31.4558i 0.750933 + 1.36250i
$$534$$ 68.8290 2.97852
$$535$$ 3.55018 + 23.6014i 0.153488 + 1.02038i
$$536$$ 25.3566 + 43.9189i 1.09524 + 1.89701i
$$537$$ −14.5171 8.38148i −0.626461 0.361687i
$$538$$ 56.6418i 2.44200i
$$539$$ −0.519213 + 0.899304i −0.0223641 + 0.0387358i
$$540$$ 23.0244 18.3502i 0.990813 0.789666i
$$541$$ 6.28806 0.270345 0.135172 0.990822i $$-0.456841\pi$$
0.135172 + 0.990822i $$0.456841\pi$$
$$542$$ 26.0778 + 15.0560i 1.12014 + 0.646712i
$$543$$ 7.20968 4.16251i 0.309397 0.178630i
$$544$$ 3.35627 + 5.81323i 0.143899 + 0.249240i
$$545$$ −2.67352 + 6.80607i −0.114521 + 0.291540i
$$546$$ 50.8569 28.0294i 2.17647 1.19955i
$$547$$ 3.03789i 0.129891i −0.997889 0.0649454i $$-0.979313\pi$$
0.997889 0.0649454i $$-0.0206873\pi$$
$$548$$ −33.6527 + 19.4294i −1.43757 + 0.829983i
$$549$$ −1.85597 3.21464i −0.0792109 0.137197i
$$550$$ −2.37818 7.72612i −0.101406 0.329443i
$$551$$ 4.09473 0.174442
$$552$$ 25.3508 + 14.6363i 1.07900 + 0.622962i
$$553$$ 2.64265 + 1.52574i 0.112377 + 0.0648809i
$$554$$ −42.7304 −1.81544
$$555$$ 3.67238 + 4.60783i 0.155884 + 0.195591i
$$556$$ −32.0970 55.5936i −1.36121 2.35769i
$$557$$ 17.9264 10.3498i 0.759566 0.438536i −0.0695738 0.997577i $$-0.522164\pi$$
0.829140 + 0.559041i $$0.188831\pi$$
$$558$$ 37.3026i 1.57915i
$$559$$ 4.21955 + 2.54931i 0.178468 + 0.107824i
$$560$$ −43.5198 17.0952i −1.83905 0.722402i
$$561$$ 0.836758 + 1.44931i 0.0353279 + 0.0611898i
$$562$$ −23.3622 + 13.4882i −0.985475 + 0.568964i
$$563$$ 9.49188 + 5.48014i 0.400035 + 0.230960i 0.686499 0.727131i $$-0.259147\pi$$
−0.286464 + 0.958091i $$0.592480\pi$$
$$564$$ −59.4608 −2.50375
$$565$$ −9.66965 + 7.70660i −0.406805 + 0.324219i
$$566$$ 11.2212 19.4357i 0.471661 0.816941i
$$567$$ 33.0051i 1.38608i
$$568$$ 14.4122 + 8.32087i 0.604721 + 0.349136i
$$569$$ 21.3566 + 36.9907i 0.895314 + 1.55073i 0.833416 + 0.552647i $$0.186382\pi$$
0.0618981 + 0.998082i $$0.480285\pi$$
$$570$$ −16.5415 + 2.48821i −0.692845 + 0.104220i
$$571$$ −23.6145 −0.988238 −0.494119 0.869394i $$-0.664509\pi$$
−0.494119 + 0.869394i $$0.664509\pi$$
$$572$$ 10.2583 + 0.203954i 0.428920 + 0.00852774i
$$573$$ 10.6434i 0.444635i
$$574$$ −37.2602 64.5366i −1.55521 2.69370i
$$575$$ −10.4933 2.40158i −0.437601 0.100153i
$$576$$ 0.220882 0.382579i 0.00920343 0.0159408i
$$577$$ 18.3646i 0.764530i −0.924053 0.382265i $$-0.875144\pi$$
0.924053 0.382265i $$-0.124856\pi$$
$$578$$ −34.1767 19.7319i −1.42156 0.820740i
$$579$$ −5.33542 + 9.24123i −0.221733 + 0.384052i
$$580$$ −10.9897 + 27.9770i −0.456324 + 1.16168i
$$581$$ 17.4039 30.1445i 0.722037 1.25060i
$$582$$ 70.1713 40.5134i 2.90869 1.67934i
$$583$$ −0.353259 + 0.203954i −0.0146305 + 0.00844691i
$$584$$ −65.2151 −2.69862
$$585$$ 8.00956 + 10.4702i 0.331155 + 0.432890i
$$586$$ −71.9237 −2.97114
$$587$$ −0.608726 + 0.351448i −0.0251248 + 0.0145058i −0.512510 0.858681i $$-0.671284\pi$$
0.487385 + 0.873187i $$0.337951\pi$$
$$588$$ −13.6601 + 7.88669i −0.563335 + 0.325242i
$$589$$ −6.11588 + 10.5930i −0.252000 + 0.436477i
$$590$$ 40.2496 + 15.8106i 1.65705 + 0.650912i
$$591$$ 7.26124 12.5768i 0.298687 0.517342i
$$592$$ 7.54267 + 4.35476i 0.310002 + 0.178980i
$$593$$ 37.1593i 1.52595i 0.646428 + 0.762975i $$0.276262\pi$$
−0.646428 + 0.762975i $$0.723738\pi$$
$$594$$ 2.37548 4.11446i 0.0974672 0.168818i
$$595$$ −7.95291 + 1.19630i −0.326037 + 0.0490434i
$$596$$ 38.4337 + 66.5692i 1.57431 + 2.72678i
$$597$$ 11.1423i 0.456026i
$$598$$ 10.2189 16.9140i 0.417880 0.691663i
$$599$$ 15.6914 0.641133 0.320567 0.947226i $$-0.396127\pi$$
0.320567 + 0.947226i $$0.396127\pi$$
$$600$$ 15.1670 66.2698i 0.619190 2.70546i
$$601$$ −6.00193 10.3956i −0.244824 0.424047i 0.717258 0.696807i $$-0.245397\pi$$
−0.962082 + 0.272760i $$0.912063\pi$$
$$602$$ −8.85812 5.11424i −0.361030 0.208441i
$$603$$ 13.1298i 0.534687i
$$604$$ −47.9059 + 82.9754i −1.94926 + 3.37622i
$$605$$ 14.7680 + 18.5298i 0.600405 + 0.753342i
$$606$$ 72.5204 2.94594
$$607$$ −33.5035 19.3433i −1.35987 0.785119i −0.370261 0.928928i $$-0.620732\pi$$
−0.989606 + 0.143809i $$0.954065\pi$$
$$608$$ −6.48269 + 3.74278i −0.262908 + 0.151790i
$$609$$ 9.48973 + 16.4367i 0.384543 + 0.666048i
$$610$$ 12.0282 + 4.72482i 0.487006 + 0.191302i
$$611$$ −0.441765 + 22.2195i −0.0178719 + 0.898903i
$$612$$ 8.96730i 0.362482i
$$613$$ 14.9684 8.64201i 0.604568 0.349047i −0.166269 0.986081i $$-0.553172\pi$$
0.770836 + 0.637033i $$0.219839\pi$$
$$614$$ 16.1933 + 28.0477i 0.653509 + 1.13191i
$$615$$ 37.5023 29.8889i 1.51224 1.20524i
$$616$$ −11.7861 −0.474877
$$617$$ −22.9229 13.2345i −0.922841 0.532803i −0.0383009 0.999266i $$-0.512195\pi$$
−0.884540 + 0.466464i $$0.845528\pi$$
$$618$$ −52.0624 30.0582i −2.09426 1.20912i
$$619$$ 31.0039 1.24615 0.623075 0.782162i $$-0.285883\pi$$
0.623075 + 0.782162i $$0.285883\pi$$
$$620$$ −55.9618 70.2165i −2.24748 2.81996i
$$621$$ −3.16324 5.47890i −0.126937 0.219861i
$$622$$ 61.5615 35.5425i 2.46839 1.42513i
$$623$$ 36.9030i 1.47849i
$$624$$ 47.2781 + 28.5639i 1.89264 + 1.14347i
$$625$$ 1.83869 + 24.9323i 0.0735475 + 0.997292i
$$626$$ −31.2881 54.1925i −1.25052 2.16597i
$$627$$ −1.61621 + 0.933121i −0.0645453 + 0.0372653i
$$628$$ 71.2635 + 41.1440i 2.84372 + 1.64182i
$$629$$ 1.49807 0.0597320
$$630$$ −17.0467 21.3889i −0.679159 0.852156i
$$631$$ 10.3566 17.9381i 0.412288 0.714104i −0.582851 0.812579i $$-0.698063\pi$$
0.995140 + 0.0984745i $$0.0313963\pi$$
$$632$$ 6.55812i 0.260868i
$$633$$ −26.1362 15.0897i −1.03882 0.599763i
$$634$$ −0.298331 0.516725i −0.0118482 0.0205218i
$$635$$ 5.73149 + 38.1026i 0.227447 + 1.51206i
$$636$$ −6.19599 −0.245687
$$637$$ 2.84563 + 5.16315i 0.112748 + 0.204571i
$$638$$ 4.85031i 0.192026i
$$639$$ 2.15430 + 3.73136i 0.0852229 + 0.147610i
$$640$$ 3.87707 + 25.7745i 0.153254 + 1.01883i
$$641$$ −10.5947 + 18.3506i −0.418467 + 0.724806i −0.995785 0.0917132i $$-0.970766\pi$$
0.577319 + 0.816519i $$0.304099\pi$$
$$642$$ 58.4997i 2.30880i
$$643$$ −9.98843 5.76682i −0.393905 0.227421i 0.289946 0.957043i $$-0.406363\pi$$
−0.683851 + 0.729622i $$0.739696\pi$$
$$644$$ −14.1738 + 24.5498i −0.558526 + 0.967396i
$$645$$ 2.40660 6.12658i 0.0947598 0.241234i
$$646$$ −2.12645 + 3.68311i −0.0836639 + 0.144910i
$$647$$ −30.1779 + 17.4232i −1.18641 + 0.684977i −0.957490 0.288467i $$-0.906854\pi$$
−0.228925 + 0.973444i $$0.573521\pi$$
$$648$$ 61.4301 35.4667i 2.41320 1.39326i
$$649$$ 4.82456 0.189380
$$650$$ −44.5249 11.1262i −1.74641 0.436404i
$$651$$ −56.6953 −2.22206
$$652$$ 15.5641 8.98591i 0.609535 0.351915i
$$653$$ −19.3324 + 11.1616i −0.756537 + 0.436787i −0.828051 0.560653i $$-0.810550\pi$$
0.0715139 + 0.997440i $$0.477217\pi$$
$$654$$ −8.96157 + 15.5219i −0.350425 + 0.606954i
$$655$$ −8.17544 + 20.8125i −0.319441 + 0.813214i
$$656$$ 35.4427 61.3885i 1.38380 2.39682i
$$657$$ −14.6223 8.44221i −0.570471 0.329362i
$$658$$ 46.1100i 1.79755i
$$659$$ −0.433420 + 0.750705i −0.0168836 + 0.0292433i −0.874344 0.485307i $$-0.838708\pi$$
0.857460 + 0.514550i $$0.172041\pi$$
$$660$$ −2.03778 13.5470i −0.0793205 0.527318i
$$661$$ −6.65430 11.5256i −0.258822 0.448293i 0.707104 0.707109i $$-0.250001\pi$$
−0.965927 + 0.258816i $$0.916668\pi$$
$$662$$ 46.6544i 1.81328i
$$663$$ 9.49907 + 0.188859i 0.368913 + 0.00733469i
$$664$$ 74.8079 2.90311
$$665$$ −1.33407 8.86879i −0.0517328 0.343917i
$$666$$ 2.54737 + 4.41217i 0.0987085 + 0.170968i
$$667$$ 5.59346 + 3.22939i 0.216580 + 0.125042i
$$668$$ 13.1670i 0.509448i
$$669$$ 0.00893993 0.0154844i 0.000345637 0.000598662i
$$670$$ −28.4894 35.7464i −1.10064 1.38100i
$$671$$ 1.44176 0.0556587
$$672$$ −30.0479 17.3481i −1.15912 0.669219i
$$673$$ 4.77457 2.75660i 0.184046 0.106259i −0.405146 0.914252i $$-0.632779\pi$$
0.589192 + 0.807993i $$0.299446\pi$$
$$674$$ −27.1056 46.9483i −1.04407 1.80838i
$$675$$ −10.0000 + 10.7646i −0.384900 + 0.414331i
$$676$$ 31.1072 49.2486i 1.19643 1.89418i
$$677$$ 4.80479i 0.184663i −0.995728 0.0923316i $$-0.970568\pi$$
0.995728 0.0923316i $$-0.0294320\pi$$
$$678$$ −26.2472 + 15.1539i −1.00802 + 0.581980i
$$679$$ 21.7215 + 37.6227i 0.833594 + 1.44383i
$$680$$ −10.7726 13.5167i −0.413112 0.518341i
$$681$$ −24.2496 −0.929248
$$682$$ −12.5477 7.24440i −0.480475 0.277403i
$$683$$ 10.1866 + 5.88126i 0.389781 + 0.225040i 0.682065 0.731291i $$-0.261082\pi$$
−0.292284 + 0.956331i $$0.594415\pi$$
$$684$$ −10.0000 −0.382360
$$685$$ 15.1648 12.0861i 0.579416 0.461788i
$$686$$ 20.0669 + 34.7569i 0.766157 + 1.32702i
$$687$$ −30.8393 + 17.8051i −1.17659 + 0.679306i
$$688$$ 9.72953i 0.370935i
$$689$$ −0.0460332 + 2.31533i −0.00175372 + 0.0882071i
$$690$$ −24.5582 9.64680i −0.934916 0.367247i
$$691$$ −2.43342 4.21481i −0.0925717 0.160339i 0.816021 0.578022i $$-0.196175\pi$$
−0.908593 + 0.417684i $$0.862842\pi$$
$$692$$ −5.30577 + 3.06329i −0.201695 + 0.116449i
$$693$$ −2.64265 1.52574i −0.100386 0.0579579i
$$694$$ 9.71254 0.368683
$$695$$ 19.9661 + 25.0519i 0.757356 + 0.950272i
$$696$$ −20.3950 + 35.3252i −0.773070 + 1.33900i
$$697$$ 12.1925i 0.461825i
$$698$$ 53.6320 + 30.9644i 2.03000 + 1.17202i
$$699$$ −7.48079 12.9571i −0.282949 0.490083i
$$700$$ 64.1758 + 14.6877i 2.42562 + 0.555145i
$$701$$ 21.3828 0.807617 0.403808 0.914844i $$-0.367686\pi$$
0.403808 + 0.914844i $$0.367686\pi$$
$$702$$ −13.0192 23.6222i −0.491378 0.891563i
$$703$$ 1.67059i 0.0630076i
$$704$$ 0.0857934 + 0.148599i 0.00323346 + 0.00560052i
$$705$$ 29.3429 4.41383i 1.10512 0.166235i
$$706$$ 34.4427 59.6564i 1.29627 2.24520i
$$707$$ 38.8822i 1.46232i
$$708$$ 63.4654 + 36.6417i 2.38517 + 1.37708i
$$709$$ −13.0582 + 22.6175i −0.490412 + 0.849419i −0.999939 0.0110357i $$-0.996487\pi$$
0.509527 + 0.860455i $$0.329820\pi$$
$$710$$ −13.9616 5.48429i −0.523969 0.205822i
$$711$$ −0.848960 + 1.47044i −0.0318385 + 0.0551459i
$$712$$ −68.6851 + 39.6554i −2.57408 + 1.48615i
$$713$$ −16.7087 + 9.64680i −0.625748 + 0.361276i
$$714$$ −19.7125 −0.737723
$$715$$ −5.07743 + 0.660834i −0.189885 + 0.0247138i
$$716$$ 34.8880 1.30383
$$717$$ 7.45795 4.30585i 0.278522 0.160805i
$$718$$ −59.5347 + 34.3724i −2.22182 + 1.28277i
$$719$$ 18.3387 31.7635i 0.683918 1.18458i −0.289858 0.957070i $$-0.593608\pi$$
0.973776 0.227510i $$-0.0730586\pi$$
$$720$$ 9.51220 24.2156i 0.354499 0.902462i
$$721$$ 16.1159 27.9135i 0.600187 1.03955i
$$722$$ 37.7815 + 21.8132i 1.40608 + 0.811803i
$$723$$ 42.5679i 1.58312i
$$724$$ −8.66324 + 15.0052i −0.321967 + 0.557663i
$$725$$ 3.34648 14.6219i 0.124285 0.543045i
$$726$$ 29.0390 + 50.2971i 1.07774 + 1.86670i
$$727$$ 26.2596i 0.973916i −0.873425 0.486958i $$-0.838107\pi$$
0.873425 0.486958i $$-0.161893\pi$$
$$728$$ −34.6016 + 57.2716i −1.28242 + 2.12263i
$$729$$ −0.614542 −0.0227608
$$730$$ 58.1279 8.74375i 2.15141 0.323621i
$$731$$ −0.836758 1.44931i −0.0309486 0.0536046i
$$732$$ 18.9659 + 10.9500i 0.701000 + 0.404723i
$$733$$ 31.7811i 1.17386i −0.809637 0.586931i $$-0.800336\pi$$
0.809637 0.586931i $$-0.199664\pi$$
$$734$$ −8.83513 + 15.3029i −0.326110 + 0.564840i
$$735$$ 6.15561 4.90595i 0.227053 0.180959i
$$736$$ −11.8073 −0.435222
$$737$$ −4.41654 2.54989i −0.162685 0.0939265i
$$738$$ 35.9099 20.7326i 1.32186 0.763176i
$$739$$ −17.0685 29.5635i −0.627875 1.08751i −0.987977 0.154599i $$-0.950591\pi$$
0.360102 0.932913i $$-0.382742\pi$$
$$740$$ −11.4142 4.48365i −0.419595 0.164822i
$$741$$ −0.210609 + 10.5930i −0.00773691 + 0.389144i
$$742$$ 4.80479i 0.176390i
$$743$$ −2.70254 + 1.56031i −0.0991465 + 0.0572423i −0.548753 0.835984i $$-0.684897\pi$$
0.449607 + 0.893227i $$0.351564\pi$$
$$744$$ −60.9237 105.523i −2.23357 3.86866i
$$745$$ −23.9079 29.9978i −0.875917 1.09903i
$$746$$ 5.88798 0.215574
$$747$$ 16.7732 + 9.68401i 0.613699 + 0.354320i
$$748$$ −3.01638 1.74151i −0.110290 0.0636758i
$$749$$ −31.3649 −1.14605
$$750$$ −4.63359 + 61.1016i −0.169195 + 2.23112i
$$751$$ −0.742024 1.28522i −0.0270769 0.0468985i 0.852169 0.523266i $$-0.175287\pi$$
−0.879246 + 0.476367i $$0.841953\pi$$
$$752$$ 37.9845 21.9304i 1.38515 0.799718i
$$753$$ 7.90881i 0.288213i
$$754$$ 23.5688 + 14.2395i 0.858325 + 0.518572i
$$755$$ 17.4814 44.5030i 0.636213 1.61963i
$$756$$ 19.3460 + 33.5082i 0.703607 + 1.21868i
$$757$$ 4.41654 2.54989i 0.160522 0.0926774i −0.417587 0.908637i $$-0.637124\pi$$
0.578109 + 0.815960i $$0.303791\pi$$
$$758$$ 11.4102 + 6.58767i 0.414436 + 0.239275i
$$759$$ −2.94369 −0.106849
$$760$$ 15.0733 12.0132i 0.546766 0.435766i
$$761$$ 14.8931 25.7955i 0.539873 0.935088i −0.459037 0.888417i $$-0.651806\pi$$
0.998910 0.0466707i $$-0.0148611\pi$$
$$762$$ 94.4433i 3.42132i
$$763$$ −8.32215 4.80479i −0.301282 0.173945i
$$764$$ 11.0758 + 19.1839i 0.400709 + 0.694048i
$$765$$ −0.665652 4.42521i −0.0240667 0.159994i
$$766$$ −52.5973 −1.90042
$$767$$ 14.1639 23.4437i 0.511428 0.846501i
$$768$$ 62.7228i 2.26331i
$$769$$ 9.54930 + 16.5399i 0.344356 + 0.596443i 0.985237 0.171198i $$-0.0547638\pi$$
−0.640880 + 0.767641i $$0.721430\pi$$
$$770$$ 10.5053 1.58023i 0.378584 0.0569476i
$$771$$ −14.2791 + 24.7322i −0.514250 + 0.890707i
$$772$$ 22.2088i 0.799311i
$$773$$ 42.6350 + 24.6153i 1.53347 + 0.885351i 0.999198 + 0.0400400i $$0.0127485\pi$$
0.534275 + 0.845311i $$0.320585\pi$$
$$774$$ 2.84570 4.92889i