Properties

Label 65.2.n.a.29.4
Level $65$
Weight $2$
Character 65.29
Analytic conductor $0.519$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 65 = 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 65.n (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.519027613138\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Defining polynomial: \(x^{12} - 8 x^{10} + 54 x^{8} - 78 x^{6} + 92 x^{4} - 10 x^{2} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 29.4
Root \(0.286513 + 0.165418i\) of defining polynomial
Character \(\chi\) \(=\) 65.29
Dual form 65.2.n.a.9.4

$q$-expansion

\(f(q)\) \(=\) \(q+(0.286513 - 0.165418i) q^{2} +(2.33117 - 1.34590i) q^{3} +(-0.945274 + 1.63726i) q^{4} +(-2.12291 + 0.702335i) q^{5} +(0.445274 - 0.771236i) q^{6} +(-2.90420 - 1.67674i) q^{7} +1.28714i q^{8} +(2.12291 - 3.67698i) q^{9} +O(q^{10})\) \(q+(0.286513 - 0.165418i) q^{2} +(2.33117 - 1.34590i) q^{3} +(-0.945274 + 1.63726i) q^{4} +(-2.12291 + 0.702335i) q^{5} +(0.445274 - 0.771236i) q^{6} +(-2.90420 - 1.67674i) q^{7} +1.28714i q^{8} +(2.12291 - 3.67698i) q^{9} +(-0.492061 + 0.552395i) q^{10} +(1.62291 + 2.81095i) q^{11} +5.08898i q^{12} +(1.21648 - 3.39414i) q^{13} -1.10945 q^{14} +(-4.00358 + 4.49448i) q^{15} +(-1.67763 - 2.90574i) q^{16} +(1.68772 + 0.974404i) q^{17} -1.40467i q^{18} +(-0.622905 + 1.07890i) q^{19} +(0.856821 - 4.13965i) q^{20} -9.02690 q^{21} +(0.929966 + 0.536916i) q^{22} +(-2.33117 + 1.34590i) q^{23} +(1.73236 + 3.00053i) q^{24} +(4.01345 - 2.98198i) q^{25} +(-0.212916 - 1.17369i) q^{26} -3.35348i q^{27} +(5.49052 - 3.16995i) q^{28} +(1.50000 + 2.59808i) q^{29} +(-0.403608 + 1.94999i) q^{30} +3.78109 q^{31} +(-3.19071 - 1.84216i) q^{32} +(7.56654 + 4.36854i) q^{33} +0.644737 q^{34} +(7.34297 + 1.51984i) q^{35} +(4.01345 + 6.95150i) q^{36} +(1.68772 - 0.974404i) q^{37} +0.412160i q^{38} +(-1.73236 - 9.54958i) q^{39} +(-0.904000 - 2.73247i) q^{40} +(-1.39055 - 2.40850i) q^{41} +(-2.58632 + 1.49321i) q^{42} +(-7.56654 - 4.36854i) q^{43} -6.13636 q^{44} +(-1.92426 + 9.29687i) q^{45} +(-0.445274 + 0.771236i) q^{46} -6.86960i q^{47} +(-7.82169 - 4.51586i) q^{48} +(2.12291 + 3.67698i) q^{49} +(0.656632 - 1.51827i) q^{50} +5.24581 q^{51} +(4.40719 + 5.20008i) q^{52} +12.8336i q^{53} +(-0.554726 - 0.960814i) q^{54} +(-5.41950 - 4.82757i) q^{55} +(2.15819 - 3.73809i) q^{56} +3.35348i q^{57} +(0.859539 + 0.496255i) q^{58} +(-1.26764 + 2.19562i) q^{59} +(-3.57417 - 10.8034i) q^{60} +(3.74581 - 6.48793i) q^{61} +(1.08333 - 0.625462i) q^{62} +(-12.3307 + 7.11911i) q^{63} +5.49162 q^{64} +(-0.198649 + 8.05981i) q^{65} +2.89055 q^{66} +(-3.47722 + 2.00758i) q^{67} +(-3.19071 + 1.84216i) q^{68} +(-3.62291 + 6.27506i) q^{69} +(2.35526 - 0.779207i) q^{70} +(-2.62291 + 4.54300i) q^{71} +(4.73277 + 2.73247i) q^{72} +5.46493i q^{73} +(0.322368 - 0.558359i) q^{74} +(5.34259 - 12.3532i) q^{75} +(-1.17763 - 2.03972i) q^{76} -10.8848i q^{77} +(-2.07602 - 2.44951i) q^{78} -13.7811 q^{79} +(5.60226 + 4.99036i) q^{80} +(1.85526 + 3.21341i) q^{81} +(-0.796819 - 0.460044i) q^{82} -8.61955i q^{83} +(8.53289 - 14.7794i) q^{84} +(-4.26722 - 0.883225i) q^{85} -2.89055 q^{86} +(6.99351 + 4.03771i) q^{87} +(-3.61808 + 2.08890i) q^{88} +(5.15819 + 8.93425i) q^{89} +(0.986548 + 2.98198i) q^{90} +(-9.22398 + 7.81753i) q^{91} -5.08898i q^{92} +(8.81438 - 5.08898i) q^{93} +(-1.13636 - 1.96823i) q^{94} +(0.564617 - 2.72790i) q^{95} -9.91745 q^{96} +(4.56055 + 2.63304i) q^{97} +(1.21648 + 0.702335i) q^{98} +13.7811 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12q + 4q^{4} - 6q^{5} - 10q^{6} + 6q^{9} + O(q^{10}) \) \( 12q + 4q^{4} - 6q^{5} - 10q^{6} + 6q^{9} + 7q^{10} - 44q^{14} - 4q^{15} - 16q^{16} + 12q^{19} - q^{20} - 8q^{21} + 32q^{24} - 2q^{25} + 24q^{26} + 18q^{29} + 4q^{30} - 16q^{31} + 16q^{34} + 10q^{35} - 2q^{36} - 32q^{39} + 70q^{40} + 14q^{41} - 4q^{44} - 29q^{45} + 10q^{46} + 6q^{49} - 31q^{50} + 24q^{51} - 22q^{54} - 26q^{55} - 16q^{56} - 4q^{59} - 96q^{60} + 6q^{61} - 12q^{64} + 23q^{65} + 4q^{66} - 24q^{69} + 20q^{70} - 12q^{71} + 8q^{74} + 2q^{75} - 10q^{76} - 104q^{79} + 33q^{80} + 14q^{81} + 90q^{84} + 21q^{85} - 4q^{86} + 20q^{89} + 62q^{90} - 44q^{91} + 56q^{94} + 20q^{95} + 12q^{96} + 104q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/65\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(41\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.286513 0.165418i 0.202595 0.116968i −0.395270 0.918565i \(-0.629349\pi\)
0.597865 + 0.801597i \(0.296016\pi\)
\(3\) 2.33117 1.34590i 1.34590 0.777057i 0.358236 0.933631i \(-0.383378\pi\)
0.987666 + 0.156574i \(0.0500450\pi\)
\(4\) −0.945274 + 1.63726i −0.472637 + 0.818631i
\(5\) −2.12291 + 0.702335i −0.949392 + 0.314094i
\(6\) 0.445274 0.771236i 0.181782 0.314856i
\(7\) −2.90420 1.67674i −1.09768 0.633748i −0.162072 0.986779i \(-0.551818\pi\)
−0.935611 + 0.353031i \(0.885151\pi\)
\(8\) 1.28714i 0.455071i
\(9\) 2.12291 3.67698i 0.707635 1.22566i
\(10\) −0.492061 + 0.552395i −0.155603 + 0.174683i
\(11\) 1.62291 + 2.81095i 0.489324 + 0.847535i 0.999925 0.0122837i \(-0.00391011\pi\)
−0.510600 + 0.859818i \(0.670577\pi\)
\(12\) 5.08898i 1.46906i
\(13\) 1.21648 3.39414i 0.337391 0.941365i
\(14\) −1.10945 −0.296514
\(15\) −4.00358 + 4.49448i −1.03372 + 1.16047i
\(16\) −1.67763 2.90574i −0.419408 0.726436i
\(17\) 1.68772 + 0.974404i 0.409332 + 0.236328i 0.690503 0.723330i \(-0.257389\pi\)
−0.281171 + 0.959658i \(0.590723\pi\)
\(18\) 1.40467i 0.331084i
\(19\) −0.622905 + 1.07890i −0.142904 + 0.247517i −0.928589 0.371110i \(-0.878977\pi\)
0.785685 + 0.618627i \(0.212311\pi\)
\(20\) 0.856821 4.13965i 0.191591 0.925654i
\(21\) −9.02690 −1.96983
\(22\) 0.929966 + 0.536916i 0.198269 + 0.114471i
\(23\) −2.33117 + 1.34590i −0.486083 + 0.280640i −0.722948 0.690903i \(-0.757213\pi\)
0.236865 + 0.971543i \(0.423880\pi\)
\(24\) 1.73236 + 3.00053i 0.353616 + 0.612481i
\(25\) 4.01345 2.98198i 0.802690 0.596396i
\(26\) −0.212916 1.17369i −0.0417562 0.230180i
\(27\) 3.35348i 0.645377i
\(28\) 5.49052 3.16995i 1.03761 0.599065i
\(29\) 1.50000 + 2.59808i 0.278543 + 0.482451i 0.971023 0.238987i \(-0.0768152\pi\)
−0.692480 + 0.721437i \(0.743482\pi\)
\(30\) −0.403608 + 1.94999i −0.0736883 + 0.356018i
\(31\) 3.78109 0.679105 0.339552 0.940587i \(-0.389724\pi\)
0.339552 + 0.940587i \(0.389724\pi\)
\(32\) −3.19071 1.84216i −0.564043 0.325650i
\(33\) 7.56654 + 4.36854i 1.31717 + 0.760466i
\(34\) 0.644737 0.110571
\(35\) 7.34297 + 1.51984i 1.24119 + 0.256900i
\(36\) 4.01345 + 6.95150i 0.668909 + 1.15858i
\(37\) 1.68772 0.974404i 0.277459 0.160191i −0.354813 0.934937i \(-0.615456\pi\)
0.632273 + 0.774746i \(0.282122\pi\)
\(38\) 0.412160i 0.0668611i
\(39\) −1.73236 9.54958i −0.277399 1.52916i
\(40\) −0.904000 2.73247i −0.142935 0.432041i
\(41\) −1.39055 2.40850i −0.217167 0.376144i 0.736774 0.676139i \(-0.236348\pi\)
−0.953941 + 0.299995i \(0.903015\pi\)
\(42\) −2.58632 + 1.49321i −0.399078 + 0.230408i
\(43\) −7.56654 4.36854i −1.15389 0.666197i −0.204055 0.978959i \(-0.565412\pi\)
−0.949831 + 0.312763i \(0.898745\pi\)
\(44\) −6.13636 −0.925091
\(45\) −1.92426 + 9.29687i −0.286851 + 1.38590i
\(46\) −0.445274 + 0.771236i −0.0656520 + 0.113713i
\(47\) 6.86960i 1.00203i −0.865437 0.501017i \(-0.832959\pi\)
0.865437 0.501017i \(-0.167041\pi\)
\(48\) −7.82169 4.51586i −1.12896 0.651808i
\(49\) 2.12291 + 3.67698i 0.303272 + 0.525283i
\(50\) 0.656632 1.51827i 0.0928618 0.214716i
\(51\) 5.24581 0.734560
\(52\) 4.40719 + 5.20008i 0.611167 + 0.721122i
\(53\) 12.8336i 1.76282i 0.472347 + 0.881412i \(0.343407\pi\)
−0.472347 + 0.881412i \(0.656593\pi\)
\(54\) −0.554726 0.960814i −0.0754887 0.130750i
\(55\) −5.41950 4.82757i −0.730766 0.650949i
\(56\) 2.15819 3.73809i 0.288400 0.499524i
\(57\) 3.35348i 0.444179i
\(58\) 0.859539 + 0.496255i 0.112863 + 0.0651614i
\(59\) −1.26764 + 2.19562i −0.165033 + 0.285845i −0.936667 0.350221i \(-0.886106\pi\)
0.771634 + 0.636067i \(0.219440\pi\)
\(60\) −3.57417 10.8034i −0.461423 1.39472i
\(61\) 3.74581 6.48793i 0.479602 0.830695i −0.520124 0.854090i \(-0.674114\pi\)
0.999726 + 0.0233957i \(0.00744777\pi\)
\(62\) 1.08333 0.625462i 0.137583 0.0794338i
\(63\) −12.3307 + 7.11911i −1.55352 + 0.896924i
\(64\) 5.49162 0.686453
\(65\) −0.198649 + 8.05981i −0.0246394 + 0.999696i
\(66\) 2.89055 0.355802
\(67\) −3.47722 + 2.00758i −0.424810 + 0.245264i −0.697133 0.716942i \(-0.745541\pi\)
0.272323 + 0.962206i \(0.412208\pi\)
\(68\) −3.19071 + 1.84216i −0.386930 + 0.223394i
\(69\) −3.62291 + 6.27506i −0.436147 + 0.755428i
\(70\) 2.35526 0.779207i 0.281508 0.0931331i
\(71\) −2.62291 + 4.54300i −0.311282 + 0.539155i −0.978640 0.205581i \(-0.934092\pi\)
0.667359 + 0.744737i \(0.267425\pi\)
\(72\) 4.73277 + 2.73247i 0.557762 + 0.322024i
\(73\) 5.46493i 0.639622i 0.947481 + 0.319811i \(0.103619\pi\)
−0.947481 + 0.319811i \(0.896381\pi\)
\(74\) 0.322368 0.558359i 0.0374746 0.0649079i
\(75\) 5.34259 12.3532i 0.616909 1.42643i
\(76\) −1.17763 2.03972i −0.135084 0.233972i
\(77\) 10.8848i 1.24043i
\(78\) −2.07602 2.44951i −0.235063 0.277353i
\(79\) −13.7811 −1.55049 −0.775247 0.631658i \(-0.782375\pi\)
−0.775247 + 0.631658i \(0.782375\pi\)
\(80\) 5.60226 + 4.99036i 0.626351 + 0.557939i
\(81\) 1.85526 + 3.21341i 0.206140 + 0.357046i
\(82\) −0.796819 0.460044i −0.0879940 0.0508033i
\(83\) 8.61955i 0.946119i −0.881031 0.473059i \(-0.843150\pi\)
0.881031 0.473059i \(-0.156850\pi\)
\(84\) 8.53289 14.7794i 0.931015 1.61257i
\(85\) −4.26722 0.883225i −0.462845 0.0957992i
\(86\) −2.89055 −0.311696
\(87\) 6.99351 + 4.03771i 0.749783 + 0.432888i
\(88\) −3.61808 + 2.08890i −0.385688 + 0.222677i
\(89\) 5.15819 + 8.93425i 0.546767 + 0.947028i 0.998493 + 0.0548717i \(0.0174750\pi\)
−0.451726 + 0.892156i \(0.649192\pi\)
\(90\) 0.986548 + 2.98198i 0.103991 + 0.314328i
\(91\) −9.22398 + 7.81753i −0.966936 + 0.819500i
\(92\) 5.08898i 0.530563i
\(93\) 8.81438 5.08898i 0.914008 0.527703i
\(94\) −1.13636 1.96823i −0.117206 0.203007i
\(95\) 0.564617 2.72790i 0.0579285 0.279876i
\(96\) −9.91745 −1.01220
\(97\) 4.56055 + 2.63304i 0.463054 + 0.267344i 0.713328 0.700831i \(-0.247187\pi\)
−0.250273 + 0.968175i \(0.580521\pi\)
\(98\) 1.21648 + 0.702335i 0.122883 + 0.0709465i
\(99\) 13.7811 1.38505
\(100\) 1.08847 + 9.38986i 0.108847 + 0.938986i
\(101\) −2.85526 4.94546i −0.284109 0.492092i 0.688283 0.725442i \(-0.258365\pi\)
−0.972393 + 0.233350i \(0.925031\pi\)
\(102\) 1.50299 0.867753i 0.148818 0.0859203i
\(103\) 7.36863i 0.726052i 0.931779 + 0.363026i \(0.118256\pi\)
−0.931779 + 0.363026i \(0.881744\pi\)
\(104\) 4.36872 + 1.56577i 0.428388 + 0.153537i
\(105\) 19.1633 6.33991i 1.87014 0.618712i
\(106\) 2.12291 + 3.67698i 0.206195 + 0.357140i
\(107\) 7.42568 4.28722i 0.717868 0.414461i −0.0960996 0.995372i \(-0.530637\pi\)
0.813967 + 0.580911i \(0.197303\pi\)
\(108\) 5.49052 + 3.16995i 0.528326 + 0.305029i
\(109\) 8.49162 0.813350 0.406675 0.913573i \(-0.366688\pi\)
0.406675 + 0.913573i \(0.366688\pi\)
\(110\) −2.35133 0.486675i −0.224190 0.0464026i
\(111\) 2.62291 4.54300i 0.248955 0.431203i
\(112\) 11.2518i 1.06320i
\(113\) −6.35006 3.66621i −0.597363 0.344888i 0.170640 0.985333i \(-0.445416\pi\)
−0.768004 + 0.640446i \(0.778750\pi\)
\(114\) 0.554726 + 0.960814i 0.0519549 + 0.0899885i
\(115\) 4.00358 4.49448i 0.373336 0.419113i
\(116\) −5.67164 −0.526599
\(117\) −9.89771 11.6784i −0.915044 1.07967i
\(118\) 0.838765i 0.0772145i
\(119\) −3.26764 5.65972i −0.299544 0.518826i
\(120\) −5.78501 5.15315i −0.528097 0.470416i
\(121\) 0.232358 0.402456i 0.0211234 0.0365869i
\(122\) 2.47850i 0.224393i
\(123\) −6.48321 3.74308i −0.584571 0.337502i
\(124\) −3.57417 + 6.19064i −0.320970 + 0.555936i
\(125\) −6.42583 + 9.14925i −0.574744 + 0.818333i
\(126\) −2.35526 + 4.07944i −0.209824 + 0.363425i
\(127\) −7.93599 + 4.58185i −0.704205 + 0.406573i −0.808912 0.587930i \(-0.799943\pi\)
0.104707 + 0.994503i \(0.466610\pi\)
\(128\) 7.95484 4.59273i 0.703115 0.405944i
\(129\) −23.5185 −2.07069
\(130\) 1.27632 + 2.34210i 0.111941 + 0.205416i
\(131\) 10.0000 0.873704 0.436852 0.899533i \(-0.356093\pi\)
0.436852 + 0.899533i \(0.356093\pi\)
\(132\) −14.3049 + 8.25894i −1.24508 + 0.718848i
\(133\) 3.61808 2.08890i 0.313727 0.181130i
\(134\) −0.664179 + 1.15039i −0.0573763 + 0.0993787i
\(135\) 2.35526 + 7.11911i 0.202709 + 0.612716i
\(136\) −1.25419 + 2.17232i −0.107546 + 0.186275i
\(137\) −14.5914 8.42435i −1.24663 0.719741i −0.276193 0.961102i \(-0.589073\pi\)
−0.970435 + 0.241361i \(0.922406\pi\)
\(138\) 2.39718i 0.204061i
\(139\) −0.513452 + 0.889325i −0.0435505 + 0.0754316i −0.886979 0.461810i \(-0.847200\pi\)
0.843429 + 0.537241i \(0.180534\pi\)
\(140\) −9.42949 + 10.5857i −0.796937 + 0.894654i
\(141\) −9.24581 16.0142i −0.778638 1.34864i
\(142\) 1.73551i 0.145640i
\(143\) 11.5150 2.08890i 0.962933 0.174682i
\(144\) −14.2458 −1.18715
\(145\) −5.00908 4.46197i −0.415981 0.370546i
\(146\) 0.904000 + 1.56577i 0.0748155 + 0.129584i
\(147\) 9.89771 + 5.71445i 0.816349 + 0.471319i
\(148\) 3.68431i 0.302849i
\(149\) 7.92583 13.7279i 0.649309 1.12464i −0.333979 0.942581i \(-0.608391\pi\)
0.983288 0.182056i \(-0.0582753\pi\)
\(150\) −0.512727 4.42312i −0.0418640 0.361146i
\(151\) 14.5454 1.18369 0.591845 0.806052i \(-0.298400\pi\)
0.591845 + 0.806052i \(0.298400\pi\)
\(152\) −1.38869 0.801763i −0.112638 0.0650316i
\(153\) 7.16573 4.13713i 0.579315 0.334468i
\(154\) −1.80054 3.11862i −0.145091 0.251306i
\(155\) −8.02690 + 2.65559i −0.644736 + 0.213302i
\(156\) 17.2727 + 6.19064i 1.38292 + 0.495648i
\(157\) 10.9210i 0.871588i 0.900047 + 0.435794i \(0.143532\pi\)
−0.900047 + 0.435794i \(0.856468\pi\)
\(158\) −3.94846 + 2.27964i −0.314123 + 0.181359i
\(159\) 17.2727 + 29.9172i 1.36982 + 2.37259i
\(160\) 8.06738 + 1.66978i 0.637783 + 0.132008i
\(161\) 9.02690 0.711420
\(162\) 1.06311 + 0.613789i 0.0835261 + 0.0482238i
\(163\) −3.61808 2.08890i −0.283390 0.163615i 0.351567 0.936163i \(-0.385649\pi\)
−0.634957 + 0.772547i \(0.718982\pi\)
\(164\) 5.25779 0.410564
\(165\) −19.1312 3.95976i −1.48936 0.308267i
\(166\) −1.42583 2.46961i −0.110666 0.191679i
\(167\) −2.90420 + 1.67674i −0.224733 + 0.129750i −0.608140 0.793830i \(-0.708084\pi\)
0.383407 + 0.923580i \(0.374751\pi\)
\(168\) 11.6188i 0.896413i
\(169\) −10.0404 8.25780i −0.772335 0.635215i
\(170\) −1.36872 + 0.452821i −0.104976 + 0.0347298i
\(171\) 2.64474 + 4.58082i 0.202248 + 0.350304i
\(172\) 14.3049 8.25894i 1.09074 0.629738i
\(173\) 7.56654 + 4.36854i 0.575273 + 0.332134i 0.759253 0.650796i \(-0.225565\pi\)
−0.183979 + 0.982930i \(0.558898\pi\)
\(174\) 2.67164 0.202537
\(175\) −16.6559 + 1.93074i −1.25906 + 0.145950i
\(176\) 5.44527 9.43149i 0.410453 0.710925i
\(177\) 6.82449i 0.512960i
\(178\) 2.95577 + 1.70652i 0.221545 + 0.127909i
\(179\) −9.00507 15.5972i −0.673071 1.16579i −0.977029 0.213107i \(-0.931642\pi\)
0.303958 0.952685i \(-0.401692\pi\)
\(180\) −13.4025 11.9386i −0.998960 0.889850i
\(181\) 1.04366 0.0775749 0.0387875 0.999247i \(-0.487650\pi\)
0.0387875 + 0.999247i \(0.487650\pi\)
\(182\) −1.34963 + 3.76564i −0.100041 + 0.279128i
\(183\) 20.1660i 1.49071i
\(184\) −1.73236 3.00053i −0.127711 0.221202i
\(185\) −2.89851 + 3.25391i −0.213102 + 0.239232i
\(186\) 1.68362 2.91612i 0.123449 0.213820i
\(187\) 6.32546i 0.462564i
\(188\) 11.2473 + 6.49365i 0.820296 + 0.473598i
\(189\) −5.62291 + 9.73916i −0.409006 + 0.708419i
\(190\) −0.289474 0.874976i −0.0210006 0.0634774i
\(191\) −12.7593 + 22.0997i −0.923228 + 1.59908i −0.128841 + 0.991665i \(0.541126\pi\)
−0.794387 + 0.607412i \(0.792208\pi\)
\(192\) 12.8019 7.39118i 0.923898 0.533413i
\(193\) 17.1652 9.91035i 1.23558 0.713362i 0.267392 0.963588i \(-0.413838\pi\)
0.968188 + 0.250225i \(0.0805047\pi\)
\(194\) 1.74221 0.125083
\(195\) 10.3846 + 19.0562i 0.743659 + 1.36464i
\(196\) −8.02690 −0.573350
\(197\) 18.7512 10.8260i 1.33596 0.771319i 0.349758 0.936840i \(-0.386264\pi\)
0.986206 + 0.165521i \(0.0529304\pi\)
\(198\) 3.94846 2.27964i 0.280605 0.162007i
\(199\) 9.11453 15.7868i 0.646112 1.11910i −0.337932 0.941171i \(-0.609727\pi\)
0.984044 0.177928i \(-0.0569393\pi\)
\(200\) 3.83821 + 5.16586i 0.271402 + 0.365281i
\(201\) −5.40400 + 9.36000i −0.381169 + 0.660204i
\(202\) −1.63614 0.944625i −0.115118 0.0664636i
\(203\) 10.0604i 0.706104i
\(204\) −4.95873 + 8.58877i −0.347180 + 0.601334i
\(205\) 4.64357 + 4.13638i 0.324321 + 0.288898i
\(206\) 1.21891 + 2.11121i 0.0849252 + 0.147095i
\(207\) 11.4289i 0.794363i
\(208\) −11.9033 + 2.15934i −0.825345 + 0.149723i
\(209\) −4.04366 −0.279706
\(210\) 4.44178 4.98642i 0.306512 0.344096i
\(211\) −9.64981 16.7140i −0.664320 1.15064i −0.979469 0.201594i \(-0.935388\pi\)
0.315149 0.949042i \(-0.397946\pi\)
\(212\) −21.0119 12.1312i −1.44310 0.833176i
\(213\) 14.1207i 0.967534i
\(214\) 1.41837 2.45669i 0.0969577 0.167936i
\(215\) 19.1312 + 3.95976i 1.30474 + 0.270053i
\(216\) 4.31638 0.293692
\(217\) −10.9810 6.33991i −0.745442 0.430381i
\(218\) 2.43296 1.40467i 0.164781 0.0951362i
\(219\) 7.35526 + 12.7397i 0.497023 + 0.860868i
\(220\) 13.0269 4.30978i 0.878274 0.290565i
\(221\) 5.36034 4.54300i 0.360575 0.305596i
\(222\) 1.73551i 0.116480i
\(223\) −10.7134 + 6.18537i −0.717421 + 0.414203i −0.813803 0.581141i \(-0.802606\pi\)
0.0963818 + 0.995344i \(0.469273\pi\)
\(224\) 6.17763 + 10.7000i 0.412760 + 0.714922i
\(225\) −2.44450 21.0878i −0.162967 1.40586i
\(226\) −2.42583 −0.161364
\(227\) 5.33715 + 3.08141i 0.354239 + 0.204520i 0.666551 0.745460i \(-0.267770\pi\)
−0.312311 + 0.949980i \(0.601103\pi\)
\(228\) −5.49052 3.16995i −0.363619 0.209935i
\(229\) 26.9832 1.78310 0.891551 0.452920i \(-0.149618\pi\)
0.891551 + 0.452920i \(0.149618\pi\)
\(230\) 0.403608 1.94999i 0.0266131 0.128579i
\(231\) −14.6498 25.3742i −0.963887 1.66950i
\(232\) −3.34408 + 1.93070i −0.219549 + 0.126757i
\(233\) 0.824319i 0.0540029i −0.999635 0.0270015i \(-0.991404\pi\)
0.999635 0.0270015i \(-0.00859588\pi\)
\(234\) −4.76764 1.70875i −0.311671 0.111705i
\(235\) 4.82476 + 14.5835i 0.314733 + 0.951323i
\(236\) −2.39654 4.15092i −0.156001 0.270202i
\(237\) −32.1261 + 18.5480i −2.08681 + 1.20482i
\(238\) −1.87244 1.08106i −0.121372 0.0700744i
\(239\) −4.00000 −0.258738 −0.129369 0.991596i \(-0.541295\pi\)
−0.129369 + 0.991596i \(0.541295\pi\)
\(240\) 19.7764 + 4.09329i 1.27656 + 0.264221i
\(241\) −11.3469 + 19.6534i −0.730917 + 1.26599i 0.225575 + 0.974226i \(0.427574\pi\)
−0.956492 + 0.291760i \(0.905759\pi\)
\(242\) 0.153745i 0.00988310i
\(243\) 17.3625 + 10.0242i 1.11380 + 0.643054i
\(244\) 7.08163 + 12.2657i 0.453355 + 0.785234i
\(245\) −7.08920 6.31489i −0.452912 0.403443i
\(246\) −2.47670 −0.157908
\(247\) 2.90420 + 3.42669i 0.184790 + 0.218035i
\(248\) 4.86678i 0.309041i
\(249\) −11.6011 20.0936i −0.735188 1.27338i
\(250\) −0.327631 + 3.68433i −0.0207212 + 0.233017i
\(251\) −9.51345 + 16.4778i −0.600484 + 1.04007i 0.392264 + 0.919853i \(0.371692\pi\)
−0.992748 + 0.120216i \(0.961641\pi\)
\(252\) 26.9180i 1.69568i
\(253\) −7.56654 4.36854i −0.475704 0.274648i
\(254\) −1.51584 + 2.62552i −0.0951124 + 0.164739i
\(255\) −11.1364 + 3.68431i −0.697386 + 0.230721i
\(256\) −3.97218 + 6.88001i −0.248261 + 0.430001i
\(257\) −1.82857 + 1.05573i −0.114063 + 0.0658544i −0.555946 0.831218i \(-0.687644\pi\)
0.441883 + 0.897073i \(0.354311\pi\)
\(258\) −6.73836 + 3.89039i −0.419512 + 0.242205i
\(259\) −6.53528 −0.406083
\(260\) −13.0082 7.94397i −0.806737 0.492664i
\(261\) 12.7374 0.788427
\(262\) 2.86513 1.65418i 0.177008 0.102196i
\(263\) −25.9092 + 14.9587i −1.59763 + 0.922391i −0.605685 + 0.795704i \(0.707101\pi\)
−0.991943 + 0.126687i \(0.959566\pi\)
\(264\) −5.62291 + 9.73916i −0.346066 + 0.599404i
\(265\) −9.01345 27.2444i −0.553692 1.67361i
\(266\) 0.691084 1.19699i 0.0423731 0.0733923i
\(267\) 24.0492 + 13.8848i 1.47179 + 0.849738i
\(268\) 7.59083i 0.463684i
\(269\) 9.29455 16.0986i 0.566699 0.981551i −0.430191 0.902738i \(-0.641554\pi\)
0.996889 0.0788127i \(-0.0251129\pi\)
\(270\) 1.85244 + 1.65011i 0.112736 + 0.100423i
\(271\) −2.91238 5.04439i −0.176914 0.306425i 0.763908 0.645326i \(-0.223278\pi\)
−0.940822 + 0.338901i \(0.889945\pi\)
\(272\) 6.53876i 0.396471i
\(273\) −10.9810 + 30.6386i −0.664603 + 1.85433i
\(274\) −5.57417 −0.336748
\(275\) 14.8957 + 6.44216i 0.898242 + 0.388477i
\(276\) −6.84927 11.8633i −0.412278 0.714086i
\(277\) 11.7263 + 6.77017i 0.704564 + 0.406780i 0.809045 0.587747i \(-0.199985\pi\)
−0.104481 + 0.994527i \(0.533318\pi\)
\(278\) 0.339738i 0.0203761i
\(279\) 8.02690 13.9030i 0.480558 0.832351i
\(280\) −1.95624 + 9.45139i −0.116908 + 0.564829i
\(281\) −0.464716 −0.0277226 −0.0138613 0.999904i \(-0.504412\pi\)
−0.0138613 + 0.999904i \(0.504412\pi\)
\(282\) −5.29809 3.05885i −0.315496 0.182152i
\(283\) 8.71259 5.03022i 0.517910 0.299015i −0.218169 0.975911i \(-0.570009\pi\)
0.736079 + 0.676896i \(0.236675\pi\)
\(284\) −4.95873 8.58877i −0.294246 0.509649i
\(285\) −2.35526 7.11911i −0.139514 0.421700i
\(286\) 2.95365 2.50329i 0.174653 0.148022i
\(287\) 9.32634i 0.550516i
\(288\) −13.5471 + 7.82145i −0.798273 + 0.460883i
\(289\) −6.60107 11.4334i −0.388298 0.672553i
\(290\) −2.17326 0.449818i −0.127618 0.0264142i
\(291\) 14.1752 0.830967
\(292\) −8.94752 5.16586i −0.523614 0.302309i
\(293\) −11.6481 6.72506i −0.680492 0.392882i 0.119548 0.992828i \(-0.461855\pi\)
−0.800040 + 0.599946i \(0.795189\pi\)
\(294\) 3.78109 0.220518
\(295\) 1.14902 5.55140i 0.0668987 0.323215i
\(296\) 1.25419 + 2.17232i 0.0728983 + 0.126264i
\(297\) 9.42647 5.44238i 0.546979 0.315799i
\(298\) 5.24431i 0.303795i
\(299\) 1.73236 + 9.54958i 0.100185 + 0.552266i
\(300\) 15.1752 + 20.4244i 0.876143 + 1.17920i
\(301\) 14.6498 + 25.3742i 0.844401 + 1.46255i
\(302\) 4.16745 2.40608i 0.239810 0.138454i
\(303\) −13.3122 7.68581i −0.764767 0.441538i
\(304\) 4.18002 0.239741
\(305\) −3.39530 + 16.4041i −0.194414 + 0.939295i
\(306\) 1.36872 2.37068i 0.0782442 0.135523i
\(307\) 24.6077i 1.40444i −0.711961 0.702219i \(-0.752193\pi\)
0.711961 0.702219i \(-0.247807\pi\)
\(308\) 17.8212 + 10.2891i 1.01546 + 0.586274i
\(309\) 9.91745 + 17.1775i 0.564184 + 0.977196i
\(310\) −1.86053 + 2.08866i −0.105671 + 0.118628i
\(311\) 2.43781 0.138236 0.0691178 0.997609i \(-0.477982\pi\)
0.0691178 + 0.997609i \(0.477982\pi\)
\(312\) 12.2916 2.22978i 0.695875 0.126236i
\(313\) 19.2965i 1.09071i −0.838207 0.545353i \(-0.816396\pi\)
0.838207 0.545353i \(-0.183604\pi\)
\(314\) 1.80653 + 3.12900i 0.101948 + 0.176579i
\(315\) 21.1768 23.7735i 1.19318 1.33948i
\(316\) 13.0269 22.5633i 0.732821 1.26928i
\(317\) 28.8217i 1.61879i 0.587265 + 0.809395i \(0.300205\pi\)
−0.587265 + 0.809395i \(0.699795\pi\)
\(318\) 9.89771 + 5.71445i 0.555036 + 0.320450i
\(319\) −4.86872 + 8.43286i −0.272596 + 0.472150i
\(320\) −11.6582 + 3.85695i −0.651713 + 0.215610i
\(321\) 11.5404 19.9885i 0.644120 1.11565i
\(322\) 2.58632 1.49321i 0.144130 0.0832136i
\(323\) −2.10258 + 1.21392i −0.116990 + 0.0675445i
\(324\) −7.01492 −0.389718
\(325\) −5.23897 17.2497i −0.290606 0.956843i
\(326\) −1.38217 −0.0765512
\(327\) 19.7954 11.4289i 1.09469 0.632019i
\(328\) 3.10006 1.78982i 0.171172 0.0988264i
\(329\) −11.5185 + 19.9507i −0.635037 + 1.09992i
\(330\) −6.13636 + 2.03013i −0.337795 + 0.111755i
\(331\) 1.48655 2.57478i 0.0817081 0.141522i −0.822276 0.569089i \(-0.807296\pi\)
0.903984 + 0.427567i \(0.140629\pi\)
\(332\) 14.1125 + 8.14783i 0.774522 + 0.447171i
\(333\) 8.27427i 0.453427i
\(334\) −0.554726 + 0.960814i −0.0303533 + 0.0525734i
\(335\) 5.97182 6.70407i 0.326276 0.366282i
\(336\) 15.1438 + 26.2299i 0.826163 + 1.43096i
\(337\) 1.90370i 0.103701i −0.998655 0.0518505i \(-0.983488\pi\)
0.998655 0.0518505i \(-0.0165119\pi\)
\(338\) −4.24268 0.705107i −0.230771 0.0383528i
\(339\) −19.7374 −1.07199
\(340\) 5.47976 6.15167i 0.297182 0.333621i
\(341\) 6.13636 + 10.6285i 0.332302 + 0.575565i
\(342\) 1.51550 + 0.874976i 0.0819490 + 0.0473133i
\(343\) 9.23611i 0.498703i
\(344\) 5.62291 9.73916i 0.303167 0.525100i
\(345\) 3.28390 15.8658i 0.176799 0.854188i
\(346\) 2.89055 0.155397
\(347\) −10.9420 6.31735i −0.587396 0.339133i 0.176671 0.984270i \(-0.443467\pi\)
−0.764067 + 0.645137i \(0.776800\pi\)
\(348\) −13.2216 + 7.63347i −0.708750 + 0.409197i
\(349\) 4.48655 + 7.77093i 0.240159 + 0.415968i 0.960760 0.277383i \(-0.0894670\pi\)
−0.720600 + 0.693351i \(0.756134\pi\)
\(350\) −4.45274 + 3.30837i −0.238009 + 0.176840i
\(351\) −11.3822 4.07944i −0.607535 0.217744i
\(352\) 11.9586i 0.637395i
\(353\) −29.6618 + 17.1252i −1.57874 + 0.911484i −0.583701 + 0.811969i \(0.698396\pi\)
−0.995036 + 0.0995150i \(0.968271\pi\)
\(354\) 1.12890 + 1.95530i 0.0600001 + 0.103923i
\(355\) 2.37747 11.4865i 0.126183 0.609641i
\(356\) −19.5036 −1.03369
\(357\) −15.2349 8.79585i −0.806315 0.465526i
\(358\) −5.16014 2.97921i −0.272722 0.157456i
\(359\) −22.4043 −1.18245 −0.591227 0.806505i \(-0.701356\pi\)
−0.591227 + 0.806505i \(0.701356\pi\)
\(360\) −11.9663 2.47678i −0.630681 0.130538i
\(361\) 8.72398 + 15.1104i 0.459157 + 0.795283i
\(362\) 0.299023 0.172641i 0.0157163 0.00907381i
\(363\) 1.25092i 0.0656565i
\(364\) −4.08016 22.4918i −0.213858 1.17889i
\(365\) −3.83821 11.6015i −0.200901 0.607252i
\(366\) −3.33582 5.77781i −0.174366 0.302011i
\(367\) 11.4273 6.59753i 0.596498 0.344388i −0.171165 0.985242i \(-0.554753\pi\)
0.767663 + 0.640854i \(0.221420\pi\)
\(368\) 7.82169 + 4.51586i 0.407734 + 0.235405i
\(369\) −11.8080 −0.614700
\(370\) −0.292203 + 1.41175i −0.0151909 + 0.0733935i
\(371\) 21.5185 37.2712i 1.11719 1.93502i
\(372\) 19.2419i 0.997647i
\(373\) 13.2168 + 7.63070i 0.684338 + 0.395103i 0.801488 0.598012i \(-0.204042\pi\)
−0.117149 + 0.993114i \(0.537376\pi\)
\(374\) 1.04635 + 1.81233i 0.0541053 + 0.0937131i
\(375\) −2.66572 + 29.9770i −0.137657 + 1.54801i
\(376\) 8.84210 0.455997
\(377\) 10.6430 1.93070i 0.548140 0.0994362i
\(378\) 3.72052i 0.191363i
\(379\) 9.11453 + 15.7868i 0.468182 + 0.810915i 0.999339 0.0363588i \(-0.0115759\pi\)
−0.531157 + 0.847273i \(0.678243\pi\)
\(380\) 3.93256 + 3.50304i 0.201736 + 0.179702i
\(381\) −12.3334 + 21.3621i −0.631861 + 1.09442i
\(382\) 8.44246i 0.431954i
\(383\) −1.24784 0.720440i −0.0637616 0.0368128i 0.467780 0.883845i \(-0.345054\pi\)
−0.531542 + 0.847032i \(0.678387\pi\)
\(384\) 12.3627 21.4129i 0.630883 1.09272i
\(385\) 7.64474 + 23.1073i 0.389612 + 1.17766i
\(386\) 3.27870 5.67888i 0.166882 0.289048i
\(387\) −32.1261 + 18.5480i −1.63306 + 0.942848i
\(388\) −8.62194 + 4.97788i −0.437713 + 0.252714i
\(389\) 18.7912 0.952754 0.476377 0.879241i \(-0.341950\pi\)
0.476377 + 0.879241i \(0.341950\pi\)
\(390\) 6.12757 + 3.74203i 0.310281 + 0.189485i
\(391\) −5.24581 −0.265292
\(392\) −4.73277 + 2.73247i −0.239041 + 0.138010i
\(393\) 23.3117 13.4590i 1.17592 0.678918i
\(394\) 3.58163 6.20357i 0.180440 0.312531i
\(395\) 29.2560 9.67894i 1.47203 0.487000i
\(396\) −13.0269 + 22.5633i −0.654627 + 1.13385i
\(397\) −14.8027 8.54634i −0.742926 0.428928i 0.0802063 0.996778i \(-0.474442\pi\)
−0.823132 + 0.567850i \(0.807775\pi\)
\(398\) 6.03084i 0.302298i
\(399\) 5.62291 9.73916i 0.281497 0.487568i
\(400\) −15.3980 6.65940i −0.769898 0.332970i
\(401\) −11.1011 19.2276i −0.554361 0.960182i −0.997953 0.0639527i \(-0.979629\pi\)
0.443592 0.896229i \(-0.353704\pi\)
\(402\) 3.57568i 0.178339i
\(403\) 4.59962 12.8336i 0.229124 0.639285i
\(404\) 10.7960 0.537122
\(405\) −6.19544 5.51875i −0.307854 0.274229i
\(406\) −1.66418 2.88244i −0.0825918 0.143053i
\(407\) 5.47801 + 3.16273i 0.271535 + 0.156771i
\(408\) 6.75207i 0.334277i
\(409\) −4.81638 + 8.34221i −0.238155 + 0.412496i −0.960185 0.279366i \(-0.909876\pi\)
0.722030 + 0.691862i \(0.243209\pi\)
\(410\) 2.01468 + 0.416996i 0.0994978 + 0.0205939i
\(411\) −45.3534 −2.23712
\(412\) −12.0644 6.96537i −0.594369 0.343159i
\(413\) 7.36296 4.25101i 0.362308 0.209178i
\(414\) 1.89055 + 3.27452i 0.0929153 + 0.160934i
\(415\) 6.05381 + 18.2985i 0.297170 + 0.898238i
\(416\) −10.1340 + 8.58877i −0.496859 + 0.421099i
\(417\) 2.76423i 0.135365i
\(418\) −1.15856 + 0.668896i −0.0566671 + 0.0327168i
\(419\) −0.978168 1.69424i −0.0477866 0.0827689i 0.841143 0.540813i \(-0.181883\pi\)
−0.888929 + 0.458044i \(0.848550\pi\)
\(420\) −7.73444 + 37.3682i −0.377402 + 1.82338i
\(421\) −12.0807 −0.588778 −0.294389 0.955686i \(-0.595116\pi\)
−0.294389 + 0.955686i \(0.595116\pi\)
\(422\) −5.52959 3.19251i −0.269176 0.155409i
\(423\) −25.2594 14.5835i −1.22815 0.709075i
\(424\) −16.5185 −0.802210
\(425\) 9.67923 1.12201i 0.469511 0.0544257i
\(426\) 2.33582 + 4.04576i 0.113171 + 0.196018i
\(427\) −21.7571 + 12.5615i −1.05290 + 0.607893i
\(428\) 16.2104i 0.783558i
\(429\) 24.0320 20.3676i 1.16027 0.983359i
\(430\) 6.13636 2.03013i 0.295921 0.0979016i
\(431\) −12.2945 21.2948i −0.592207 1.02573i −0.993934 0.109974i \(-0.964923\pi\)
0.401727 0.915759i \(-0.368410\pi\)
\(432\) −9.74434 + 5.62590i −0.468825 + 0.270676i
\(433\) 31.2400 + 18.0364i 1.50130 + 0.866775i 0.999999 + 0.00150085i \(0.000477735\pi\)
0.501299 + 0.865274i \(0.332856\pi\)
\(434\) −4.19495 −0.201364
\(435\) −17.6824 3.65988i −0.847805 0.175478i
\(436\) −8.02690 + 13.9030i −0.384419 + 0.665833i
\(437\) 3.35348i 0.160419i
\(438\) 4.21475 + 2.43339i 0.201389 + 0.116272i
\(439\) 1.26764 + 2.19562i 0.0605013 + 0.104791i 0.894690 0.446688i \(-0.147397\pi\)
−0.834188 + 0.551480i \(0.814063\pi\)
\(440\) 6.21373 6.97563i 0.296228 0.332550i
\(441\) 18.0269 0.858424
\(442\) 0.784309 2.18833i 0.0373058 0.104088i
\(443\) 19.3579i 0.919721i −0.887991 0.459860i \(-0.847899\pi\)
0.887991 0.459860i \(-0.152101\pi\)
\(444\) 4.95873 + 8.58877i 0.235331 + 0.407605i
\(445\) −17.2252 15.3438i −0.816552 0.727365i
\(446\) −2.04635 + 3.54438i −0.0968973 + 0.167831i
\(447\) 42.6696i 2.01820i
\(448\) −15.9487 9.20801i −0.753507 0.435038i
\(449\) −12.4040 + 21.4844i −0.585381 + 1.01391i 0.409447 + 0.912334i \(0.365722\pi\)
−0.994828 + 0.101576i \(0.967612\pi\)
\(450\) −4.18869 5.63757i −0.197457 0.265758i
\(451\) 4.51345 7.81753i 0.212530 0.368113i
\(452\) 12.0051 6.93114i 0.564672 0.326013i
\(453\) 33.9079 19.5767i 1.59313 0.919795i
\(454\) 2.03888 0.0956896
\(455\) 14.0911 23.0742i 0.660601 1.08173i
\(456\) −4.31638 −0.202133
\(457\) −6.55363 + 3.78374i −0.306566 + 0.176996i −0.645389 0.763854i \(-0.723305\pi\)
0.338823 + 0.940850i \(0.389971\pi\)
\(458\) 7.73105 4.46352i 0.361248 0.208567i
\(459\) 3.26764 5.65972i 0.152520 0.264173i
\(460\) 3.57417 + 10.8034i 0.166646 + 0.503712i
\(461\) 6.17164 10.6896i 0.287442 0.497864i −0.685756 0.727831i \(-0.740528\pi\)
0.973198 + 0.229967i \(0.0738618\pi\)
\(462\) −8.39472 4.84669i −0.390558 0.225489i
\(463\) 22.8578i 1.06229i 0.847281 + 0.531146i \(0.178238\pi\)
−0.847281 + 0.531146i \(0.821762\pi\)
\(464\) 5.03289 8.71723i 0.233646 0.404687i
\(465\) −15.1379 + 16.9941i −0.702004 + 0.788081i
\(466\) −0.136357 0.236178i −0.00631664 0.0109407i
\(467\) 15.2976i 0.707889i 0.935266 + 0.353945i \(0.115160\pi\)
−0.935266 + 0.353945i \(0.884840\pi\)
\(468\) 28.4766 5.16586i 1.31633 0.238792i
\(469\) 13.4647 0.621743
\(470\) 3.79473 + 3.38026i 0.175038 + 0.155920i
\(471\) 14.6985 + 25.4586i 0.677273 + 1.17307i
\(472\) −2.82606 1.63163i −0.130080 0.0751017i
\(473\) 28.3589i 1.30394i
\(474\) −6.13636 + 10.6285i −0.281852 + 0.488182i
\(475\) 0.717267 + 6.18762i 0.0329105 + 0.283907i
\(476\) 12.3553 0.566303
\(477\) 47.1887 + 27.2444i 2.16062 + 1.24744i
\(478\) −1.14605 + 0.661673i −0.0524192 + 0.0302642i
\(479\) 12.1414 + 21.0296i 0.554756 + 0.960866i 0.997922 + 0.0644264i \(0.0205218\pi\)
−0.443166 + 0.896439i \(0.646145\pi\)
\(480\) 21.0538 6.96537i 0.960971 0.317924i
\(481\) −1.25419 6.91369i −0.0571861 0.315237i
\(482\) 7.50793i 0.341977i
\(483\) 21.0433 12.1493i 0.957501 0.552814i
\(484\) 0.439284 + 0.760862i 0.0199674 + 0.0345846i
\(485\) −11.5309 2.38665i −0.523591 0.108372i
\(486\) 6.63276 0.300868
\(487\) 31.9462 + 18.4441i 1.44762 + 0.835783i 0.998339 0.0576081i \(-0.0183474\pi\)
0.449280 + 0.893391i \(0.351681\pi\)
\(488\) 8.35085 + 4.82136i 0.378025 + 0.218253i
\(489\) −11.2458 −0.508553
\(490\) −3.07574 0.636614i −0.138948 0.0287593i
\(491\) 17.6767 + 30.6170i 0.797739 + 1.38172i 0.921085 + 0.389361i \(0.127304\pi\)
−0.123346 + 0.992364i \(0.539363\pi\)
\(492\) 12.2568 7.07647i 0.552580 0.319032i
\(493\) 5.84642i 0.263310i
\(494\) 1.39893 + 0.501383i 0.0629407 + 0.0225583i
\(495\) −29.2560 + 9.67894i −1.31496 + 0.435036i
\(496\) −6.34328 10.9869i −0.284822 0.493326i
\(497\) 15.2349 8.79585i 0.683377 0.394548i
\(498\) −6.64771 3.83806i −0.297891 0.171988i
\(499\) −16.2189 −0.726058 −0.363029 0.931778i \(-0.618257\pi\)
−0.363029 + 0.931778i \(0.618257\pi\)
\(500\) −8.90554 19.1693i −0.398268 0.857278i
\(501\) −4.51345 + 7.81753i −0.201646 + 0.349261i
\(502\) 6.29480i 0.280950i
\(503\) −17.5270 10.1192i −0.781489 0.451193i 0.0554688 0.998460i \(-0.482335\pi\)
−0.836958 + 0.547268i \(0.815668\pi\)
\(504\) −9.16326 15.8712i −0.408164 0.706961i
\(505\) 9.53482 + 8.49339i 0.424294 + 0.377951i
\(506\) −2.89055 −0.128500
\(507\) −34.5200 5.73700i −1.53309 0.254789i
\(508\) 17.3244i 0.768646i
\(509\) −10.0185 17.3526i −0.444063 0.769140i 0.553923 0.832568i \(-0.313130\pi\)
−0.997986 + 0.0634276i \(0.979797\pi\)
\(510\) −2.58126 + 2.89776i −0.114300 + 0.128315i
\(511\) 9.16326 15.8712i 0.405359 0.702102i
\(512\) 20.9992i 0.928042i
\(513\) 3.61808 + 2.08890i 0.159742 + 0.0922271i
\(514\) −0.349273 + 0.604959i −0.0154058 + 0.0266836i
\(515\) −5.17524 15.6429i −0.228048 0.689308i
\(516\) 22.2314 38.5060i 0.978685 1.69513i
\(517\) 19.3101 11.1487i 0.849259 0.490320i
\(518\) −1.87244 + 1.08106i −0.0822704 + 0.0474988i
\(519\) 23.5185 1.03235
\(520\) −10.3741 0.255688i −0.454933 0.0112127i
\(521\) 16.0269 0.702151 0.351076 0.936347i \(-0.385816\pi\)
0.351076 + 0.936347i \(0.385816\pi\)
\(522\) 3.64944 2.10700i 0.159732 0.0922210i
\(523\) −10.1654 + 5.86898i −0.444501 + 0.256633i −0.705505 0.708705i \(-0.749280\pi\)
0.261004 + 0.965338i \(0.415946\pi\)
\(524\) −9.45274 + 16.3726i −0.412945 + 0.715241i
\(525\) −36.2291 + 26.9180i −1.58117 + 1.17480i
\(526\) −4.94887 + 8.57170i −0.215781 + 0.373744i
\(527\) 6.38142 + 3.68431i 0.277979 + 0.160491i
\(528\) 29.3152i 1.27578i
\(529\) −7.87709 + 13.6435i −0.342482 + 0.593197i
\(530\) −7.08920 6.31489i −0.307935 0.274301i
\(531\) 5.38217 + 9.32219i 0.233566 + 0.404548i
\(532\) 7.89832i 0.342436i
\(533\) −9.86635 + 1.78982i −0.427359 + 0.0775258i
\(534\) 9.18722 0.397570
\(535\) −12.7530 + 14.3167i −0.551358 + 0.618964i
\(536\) −2.58402 4.47565i −0.111613 0.193319i
\(537\) −41.9847 24.2399i −1.81177 1.04603i
\(538\) 6.14995i 0.265143i
\(539\) −6.89055 + 11.9348i −0.296797 + 0.514067i
\(540\) −13.8822 2.87333i −0.597396 0.123648i
\(541\) −21.8080 −0.937599 −0.468800 0.883305i \(-0.655313\pi\)
−0.468800 + 0.883305i \(0.655313\pi\)
\(542\) −1.66887 0.963521i −0.0716840 0.0413868i
\(543\) 2.43296 1.40467i 0.104408 0.0602801i
\(544\) −3.59001 6.21808i −0.153920 0.266598i
\(545\) −18.0269 + 5.96396i −0.772188 + 0.255468i
\(546\) 1.92197 + 10.5948i 0.0822527 + 0.453416i
\(547\) 6.30924i 0.269764i 0.990862 + 0.134882i \(0.0430655\pi\)
−0.990862 + 0.134882i \(0.956935\pi\)
\(548\) 27.5858 15.9266i 1.17840 0.680352i
\(549\) −15.9040 27.5465i −0.678766 1.17566i
\(550\) 5.33345 0.618252i 0.227419 0.0263624i
\(551\) −3.73743 −0.159220
\(552\) −8.07684 4.66317i −0.343773 0.198478i
\(553\) 40.0230 + 23.1073i 1.70195 + 0.982622i
\(554\) 4.47964 0.190322
\(555\) −2.37747 + 11.4865i −0.100918 + 0.487576i
\(556\) −0.970706 1.68131i −0.0411671 0.0713035i
\(557\) −31.0364 + 17.9189i −1.31506 + 0.759247i −0.982929 0.183987i \(-0.941099\pi\)
−0.332126 + 0.943235i \(0.607766\pi\)
\(558\) 5.31119i 0.224840i
\(559\) −24.0320 + 20.3676i −1.01644 + 0.861459i
\(560\) −7.90253 23.8865i −0.333943 1.00939i
\(561\) 8.51345 + 14.7457i 0.359438 + 0.622565i
\(562\) −0.133147 + 0.0768725i −0.00561647 + 0.00324267i
\(563\) −4.33196 2.50106i −0.182570 0.105407i 0.405929 0.913904i \(-0.366948\pi\)
−0.588500 + 0.808497i \(0.700281\pi\)
\(564\) 34.9593 1.47205
\(565\) 16.0555 + 3.32315i 0.675459 + 0.139806i
\(566\) 1.66418 2.88244i 0.0699507 0.121158i
\(567\) 12.4432i 0.522564i
\(568\) −5.84746 3.37603i −0.245354 0.141655i
\(569\) −6.58402 11.4039i −0.276017 0.478075i 0.694375 0.719614i \(-0.255681\pi\)
−0.970391 + 0.241539i \(0.922348\pi\)
\(570\) −1.85244 1.65011i −0.0775904 0.0691157i
\(571\) 19.8349 0.830065 0.415032 0.909807i \(-0.363770\pi\)
0.415032 + 0.909807i \(0.363770\pi\)
\(572\) −7.46475 + 20.8276i −0.312117 + 0.870848i
\(573\) 68.6909i 2.86960i
\(574\) 1.54275 + 2.67212i 0.0643930 + 0.111532i
\(575\) −5.34259 + 12.3532i −0.222801 + 0.515165i
\(576\) 11.6582 20.1926i 0.485758 0.841357i
\(577\) 10.9210i 0.454646i −0.973819 0.227323i \(-0.927003\pi\)
0.973819 0.227323i \(-0.0729972\pi\)
\(578\) −3.78258 2.18388i −0.157335 0.0908373i
\(579\) 26.6767 46.2054i 1.10865 1.92023i
\(580\) 12.0404 3.98339i 0.499949 0.165401i
\(581\) −14.4527 + 25.0329i −0.599601 + 1.03854i
\(582\) 4.06139 2.34484i 0.168350 0.0971969i
\(583\) −36.0745 + 20.8276i −1.49406 + 0.862593i
\(584\) −7.03411 −0.291073
\(585\) 29.2140 + 17.8406i 1.20785 + 0.737620i
\(586\) −4.44979 −0.183819
\(587\) −35.0303 + 20.2247i −1.44585 + 0.834764i −0.998231 0.0594576i \(-0.981063\pi\)
−0.447624 + 0.894222i \(0.647730\pi\)
\(588\) −18.7121 + 10.8034i −0.771673 + 0.445526i
\(589\) −2.35526 + 4.07944i −0.0970469 + 0.168090i
\(590\) −0.589093 1.78062i −0.0242526 0.0733069i
\(591\) 29.1414 50.4744i 1.19872 2.07624i
\(592\) −5.66274 3.26938i −0.232737 0.134371i
\(593\) 1.47709i 0.0606569i 0.999540 + 0.0303284i \(0.00965532\pi\)
−0.999540 + 0.0303284i \(0.990345\pi\)
\(594\) 1.80054 3.11862i 0.0738769 0.127959i
\(595\) 10.9119 + 9.72008i 0.447345 + 0.398484i
\(596\) 14.9842 + 25.9533i 0.613775 + 1.06309i
\(597\) 49.0690i 2.00826i
\(598\) 2.07602 + 2.44951i 0.0848947 + 0.100168i
\(599\) −2.27271 −0.0928606 −0.0464303 0.998922i \(-0.514785\pi\)
−0.0464303 + 0.998922i \(0.514785\pi\)
\(600\) 15.9003 + 6.87664i 0.649125 + 0.280738i
\(601\) −3.70215 6.41231i −0.151014 0.261563i 0.780587 0.625048i \(-0.214920\pi\)
−0.931600 + 0.363484i \(0.881587\pi\)
\(602\) 8.39472 + 4.84669i 0.342143 + 0.197536i
\(603\) 17.0476i 0.694231i
\(604\) −13.7494 + 23.8147i −0.559456 + 0.969005i
\(605\) −0.210615 + 1.01757i −0.00856273 + 0.0413700i
\(606\) −5.08549 −0.206584
\(607\) −9.26059 5.34661i −0.375876 0.217012i 0.300146 0.953893i \(-0.402964\pi\)
−0.676022 + 0.736881i \(0.736298\pi\)
\(608\) 3.97502 2.29498i 0.161208 0.0930736i
\(609\) −13.5404 23.4526i −0.548683 0.950347i
\(610\) 1.74074 + 5.26162i 0.0704804 + 0.213037i
\(611\) −23.3164 8.35673i −0.943280 0.338077i
\(612\) 15.6429i 0.632327i
\(613\) 5.26673 3.04075i 0.212721 0.122815i −0.389854 0.920877i \(-0.627475\pi\)
0.602575 + 0.798062i \(0.294141\pi\)
\(614\) −4.07057 7.05043i −0.164275 0.284532i
\(615\) 16.3921 + 3.39283i 0.660994 + 0.136812i
\(616\) 14.0101 0.564485
\(617\) 27.5732 + 15.9194i 1.11006 + 0.640892i 0.938844 0.344342i \(-0.111898\pi\)
0.171213 + 0.985234i \(0.445231\pi\)
\(618\) 5.68295 + 3.28106i 0.228602 + 0.131983i
\(619\) 26.4043 1.06128 0.530639 0.847598i \(-0.321952\pi\)
0.530639 + 0.847598i \(0.321952\pi\)
\(620\) 3.23972 15.6524i 0.130110 0.628616i
\(621\) 4.51345 + 7.81753i 0.181119 + 0.313707i
\(622\) 0.698464 0.403259i 0.0280059 0.0161692i
\(623\) 34.5957i 1.38605i
\(624\) −24.8424 + 21.0545i −0.994491 + 0.842853i
\(625\) 7.21560 23.9361i 0.288624 0.957443i
\(626\) −3.19200 5.52871i −0.127578 0.220972i
\(627\) −9.42647 + 5.44238i −0.376457 + 0.217348i
\(628\) −17.8805 10.3233i −0.713509 0.411944i
\(629\) 3.79785 0.151430
\(630\) 2.13487 10.3144i 0.0850553 0.410937i
\(631\) −17.5840 + 30.4564i −0.700009 + 1.21245i 0.268454 + 0.963293i \(0.413487\pi\)
−0.968463 + 0.249158i \(0.919846\pi\)
\(632\) 17.7381i 0.705585i
\(633\) −44.9907 25.9754i −1.78822 1.03243i
\(634\) 4.76764 + 8.25780i 0.189347 + 0.327959i
\(635\) 13.6294 15.3005i 0.540865 0.607184i
\(636\) −65.3098 −2.58970
\(637\) 15.0626 2.73247i 0.596804 0.108264i
\(638\) 3.22150i 0.127540i
\(639\) 11.1364 + 19.2887i 0.440547 + 0.763051i
\(640\) −13.6617 + 15.3369i −0.540028 + 0.606244i
\(641\) −2.76257 + 4.78491i −0.109115 + 0.188993i −0.915412 0.402518i \(-0.868135\pi\)
0.806297 + 0.591511i \(0.201468\pi\)
\(642\) 7.63594i 0.301367i
\(643\) 27.8472 + 16.0776i 1.09819 + 0.634039i 0.935744 0.352679i \(-0.114729\pi\)
0.162444 + 0.986718i \(0.448062\pi\)
\(644\) −8.53289 + 14.7794i −0.336243 + 0.582390i
\(645\) 49.9276 16.5179i 1.96590 0.650391i
\(646\) −0.401610 + 0.695609i −0.0158011 + 0.0273684i
\(647\) 11.9376 6.89216i 0.469314 0.270959i −0.246638 0.969108i \(-0.579326\pi\)
0.715953 + 0.698149i \(0.245993\pi\)
\(648\) −4.13609 + 2.38797i −0.162481 + 0.0938085i
\(649\) −8.22905 −0.323019
\(650\) −4.35445 4.07565i −0.170796 0.159860i
\(651\) −34.1316 −1.33772
\(652\) 6.84015 3.94916i 0.267881 0.154661i
\(653\) 7.36296 4.25101i 0.288135 0.166355i −0.348965 0.937136i \(-0.613467\pi\)
0.637100 + 0.770781i \(0.280134\pi\)
\(654\) 3.78109 6.54905i 0.147852 0.256088i
\(655\) −21.2291 + 7.02335i −0.829488 + 0.274425i
\(656\) −4.66565 + 8.08115i −0.182163 + 0.315516i
\(657\) 20.0944 + 11.6015i 0.783959 + 0.452619i
\(658\) 7.62150i 0.297117i
\(659\) 2.02183 3.50192i 0.0787594 0.136415i −0.823956 0.566654i \(-0.808237\pi\)
0.902715 + 0.430239i \(0.141571\pi\)
\(660\) 24.5674 27.5798i 0.956285 1.07354i
\(661\) −15.6364 27.0830i −0.608184 1.05341i −0.991540 0.129805i \(-0.958565\pi\)
0.383356 0.923601i \(-0.374768\pi\)
\(662\) 0.983609i 0.0382290i
\(663\) 6.38142 17.8050i 0.247834 0.691489i
\(664\) 11.0945 0.430551
\(665\) −6.21373 + 6.97563i −0.240958 + 0.270503i
\(666\) −1.36872 2.37068i −0.0530366 0.0918622i
\(667\) −6.99351 4.03771i −0.270790 0.156341i
\(668\) 6.33991i 0.245298i
\(669\) −16.6498 + 28.8383i −0.643719 + 1.11495i
\(670\) 0.602029 2.90865i 0.0232584 0.112371i
\(671\) 24.3164 0.938723
\(672\) 28.8022 + 16.6290i 1.11107 + 0.641477i
\(673\) −27.7768 + 16.0370i −1.07072 + 0.618179i −0.928377 0.371639i \(-0.878796\pi\)
−0.142340 + 0.989818i \(0.545463\pi\)
\(674\) −0.314906 0.545433i −0.0121297 0.0210093i
\(675\) −10.0000 13.4590i −0.384900 0.518038i
\(676\) 23.0111 8.63282i 0.885041 0.332031i
\(677\) 14.2382i 0.547220i −0.961841 0.273610i \(-0.911782\pi\)
0.961841 0.273610i \(-0.0882177\pi\)
\(678\) −5.65503 + 3.26493i −0.217180 + 0.125389i
\(679\) −8.82983 15.2937i −0.338858 0.586919i
\(680\) 1.13683 5.49249i 0.0435954 0.210627i
\(681\) 16.5891 0.635695
\(682\) 3.51629 + 2.03013i 0.134646 + 0.0777377i
\(683\) 22.3302 + 12.8923i 0.854440 + 0.493311i 0.862146 0.506659i \(-0.169120\pi\)
−0.00770647 + 0.999970i \(0.502453\pi\)
\(684\) −10.0000 −0.382360
\(685\) 36.8929 + 7.63605i 1.40961 + 0.291759i
\(686\) 1.52782 + 2.64626i 0.0583325 + 0.101035i
\(687\) 62.9025 36.3168i 2.39988 1.38557i
\(688\) 29.3152i 1.11763i
\(689\) 43.5589 + 15.6118i 1.65946 + 0.594761i
\(690\) −1.68362 5.08898i −0.0640944 0.193734i
\(691\) 0.0218318 + 0.0378138i 0.000830522 + 0.00143851i 0.866440 0.499281i \(-0.166402\pi\)
−0.865610 + 0.500719i \(0.833069\pi\)
\(692\) −14.3049 + 8.25894i −0.543791 + 0.313958i
\(693\) −40.0230 23.1073i −1.52035 0.877774i
\(694\) −4.18002 −0.158671
\(695\) 0.465407 2.24857i 0.0176539 0.0852931i
\(696\) −5.19707 + 9.00160i −0.196995 + 0.341205i
\(697\) 5.41982i 0.205290i
\(698\) 2.57091 + 1.48431i 0.0973103 + 0.0561821i
\(699\) −1.10945 1.92163i −0.0419634 0.0726827i
\(700\) 12.5832 29.0951i 0.475601 1.09969i
\(701\) −14.5454 −0.549373 −0.274687 0.961534i \(-0.588574\pi\)
−0.274687 + 0.961534i \(0.588574\pi\)
\(702\) −3.93595 + 0.714008i −0.148553 + 0.0269485i
\(703\) 2.42785i 0.0915679i
\(704\) 8.91238 + 15.4367i 0.335898 + 0.581792i
\(705\) 30.8753 + 27.5030i 1.16283 + 1.03582i
\(706\) −5.66565 + 9.81320i −0.213230 + 0.369325i
\(707\) 19.1501i 0.720214i
\(708\) −11.1735 6.45101i −0.419925 0.242444i
\(709\) 9.81638 17.0025i 0.368662 0.638541i −0.620695 0.784052i \(-0.713149\pi\)
0.989357 + 0.145511i \(0.0464827\pi\)
\(710\) −1.21891 3.68431i −0.0457447 0.138270i
\(711\) −29.2560 + 50.6728i −1.09718 + 1.90038i
\(712\) −11.4996 + 6.63929i −0.430965 + 0.248818i
\(713\) −8.81438 + 5.08898i −0.330101 + 0.190584i
\(714\) −5.81998 −0.217807
\(715\) −22.9781 + 12.5219i −0.859334 + 0.468293i
\(716\) 34.0490 1.27247
\(717\) −9.32468 + 5.38361i −0.348237 + 0.201055i
\(718\) −6.41912 + 3.70608i −0.239559 + 0.138310i
\(719\) 23.7156 41.0766i 0.884443 1.53190i 0.0380914 0.999274i \(-0.487872\pi\)
0.846351 0.532625i \(-0.178794\pi\)
\(720\) 30.2425 10.0053i 1.12707 0.372876i
\(721\) 12.3553 21.3999i 0.460134 0.796976i
\(722\) 4.99906 + 2.88621i 0.186046 + 0.107414i
\(723\) 61.0872i 2.27186i
\(724\) −0.986548 + 1.70875i −0.0366648 + 0.0635052i
\(725\) 13.7676 + 5.95429i 0.511315 + 0.221137i
\(726\) −0.206926 0.358406i −0.00767973 0.0133017i
\(727\) 34.0951i 1.26452i −0.774757 0.632259i \(-0.782128\pi\)
0.774757 0.632259i \(-0.217872\pi\)
\(728\) −10.0622 11.8725i −0.372931 0.440024i
\(729\) 42.8349 1.58648
\(730\) −3.01880 2.68908i −0.111731 0.0995272i
\(731\) −8.51345 14.7457i −0.314881 0.545391i
\(732\) 33.0170 + 19.0624i 1.22034 + 0.704565i
\(733\) 14.3920i 0.531580i −0.964031 0.265790i \(-0.914367\pi\)
0.964031 0.265790i \(-0.0856327\pi\)
\(734\) 2.18270 3.78055i 0.0805651 0.139543i
\(735\) −25.0253 5.17972i −0.923074 0.191057i
\(736\) 9.91745 0.365562
\(737\) −11.2864 6.51621i −0.415740 0.240028i
\(738\) −3.38314 + 1.95326i −0.124535 + 0.0719004i
\(739\) −17.2240 29.8328i −0.633594 1.09742i −0.986811 0.161876i \(-0.948246\pi\)
0.353217 0.935541i \(-0.385088\pi\)
\(740\) −2.58762 7.82145i −0.0951228 0.287522i
\(741\) 11.3822 + 4.07944i 0.418134 + 0.149862i
\(742\) 14.2382i 0.522702i
\(743\) 35.2589 20.3567i 1.29352 0.746816i 0.314246 0.949342i \(-0.398248\pi\)
0.979277 + 0.202526i \(0.0649150\pi\)
\(744\) 6.55021 + 11.3453i 0.240142 + 0.415939i
\(745\) −7.18418 + 34.7097i −0.263208 + 1.27167i
\(746\) 5.04903 0.184858
\(747\) −31.6939 18.2985i −1.15962 0.669507i
\(748\) −10.3564 5.97929i −0.378669 0.218625i
\(749\) −28.7542 −1.05066
\(750\) 4.19498 + 9.02975i 0.153179 + 0.329720i
\(751\) −16.2509 28.1474i −0.593003 1.02711i −0.993825 0.110956i \(-0.964609\pi\)
0.400822 0.916156i \(-0.368725\pi\)
\(752\) −19.9613 + 11.5247i −0.727914 + 0.420261i
\(753\) 51.2167i 1.86644i
\(754\) 2.72997 2.31371i 0.0994196 0.0842603i
\(755\) −30.8786 + 10.2158i −1.12379 + 0.371790i
\(756\) −10.6304 18.4123i −0.386623 0.669650i
\(757\) 11.2864 6.51621i 0.410211 0.236836i −0.280669 0.959805i \(-0.590556\pi\)
0.690881 + 0.722969i \(0.257223\pi\)
\(758\) 5.22286 + 3.01542i 0.189703 + 0.109525i
\(759\) −23.5185 −0.853668
\(760\) 3.51117 + 0.726739i 0.127364 + 0.0263616i
\(761\) 1.99493 3.45532i 0.0723161 0.125255i −0.827600 0.561318i \(-0.810294\pi\)
0.899916 + 0.436063i \(0.143628\pi\)
\(762\) 8.16070i 0.295631i
\(763\) −24.6613 14.2382i −0.892800 0.515458i
\(764\) −24.1220 41.7805i −0.872703 1.51157i
\(765\) −12.3065 + 13.8155i −0.444943 + 0.499500i
\(766\) −0.476696 −0.0172237
\(767\) 5.91018 + 6.97348i 0.213404 + 0.251798i
\(768\) 21.3847i 0.771652i
\(769\) 3.33343 + 5.77367i 0.120207 + 0.208204i 0.919849 0.392272i \(-0.128311\pi\)
−0.799642 + 0.600476i \(0.794978\pi\)
\(770\) 6.01268 + 5.35596i 0.216682 + 0.193015i
\(771\) −2.84181 + 4.92216i −0.102345 + 0.177267i
\(772\) 37.4720i 1.34865i
\(773\) −41.8593 24.1675i −1.50557 0.869244i −0.999979 0.00647254i \(-0.997940\pi\)
−0.505595 0.862771i \(-0.668727\pi\)
\(774\) −6.13636 + 10.6285i