Properties

Label 65.2.n.a.29.3
Level $65$
Weight $2$
Character 65.29
Analytic conductor $0.519$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 65 = 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 65.n (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.519027613138\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Defining polynomial: \(x^{12} - 8 x^{10} + 54 x^{8} - 78 x^{6} + 92 x^{4} - 10 x^{2} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 29.3
Root \(-0.286513 - 0.165418i\) of defining polynomial
Character \(\chi\) \(=\) 65.29
Dual form 65.2.n.a.9.3

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.286513 + 0.165418i) q^{2} +(-2.33117 + 1.34590i) q^{3} +(-0.945274 + 1.63726i) q^{4} +(-2.12291 - 0.702335i) q^{5} +(0.445274 - 0.771236i) q^{6} +(2.90420 + 1.67674i) q^{7} -1.28714i q^{8} +(2.12291 - 3.67698i) q^{9} +O(q^{10})\) \(q+(-0.286513 + 0.165418i) q^{2} +(-2.33117 + 1.34590i) q^{3} +(-0.945274 + 1.63726i) q^{4} +(-2.12291 - 0.702335i) q^{5} +(0.445274 - 0.771236i) q^{6} +(2.90420 + 1.67674i) q^{7} -1.28714i q^{8} +(2.12291 - 3.67698i) q^{9} +(0.724419 - 0.149939i) q^{10} +(1.62291 + 2.81095i) q^{11} -5.08898i q^{12} +(-1.21648 + 3.39414i) q^{13} -1.10945 q^{14} +(5.89413 - 1.21996i) q^{15} +(-1.67763 - 2.90574i) q^{16} +(-1.68772 - 0.974404i) q^{17} +1.40467i q^{18} +(-0.622905 + 1.07890i) q^{19} +(3.15663 - 2.81185i) q^{20} -9.02690 q^{21} +(-0.929966 - 0.536916i) q^{22} +(2.33117 - 1.34590i) q^{23} +(1.73236 + 3.00053i) q^{24} +(4.01345 + 2.98198i) q^{25} +(-0.212916 - 1.17369i) q^{26} +3.35348i q^{27} +(-5.49052 + 3.16995i) q^{28} +(1.50000 + 2.59808i) q^{29} +(-1.48694 + 1.32453i) q^{30} +3.78109 q^{31} +(3.19071 + 1.84216i) q^{32} +(-7.56654 - 4.36854i) q^{33} +0.644737 q^{34} +(-4.98770 - 5.59927i) q^{35} +(4.01345 + 6.95150i) q^{36} +(-1.68772 + 0.974404i) q^{37} -0.412160i q^{38} +(-1.73236 - 9.54958i) q^{39} +(-0.904000 + 2.73247i) q^{40} +(-1.39055 - 2.40850i) q^{41} +(2.58632 - 1.49321i) q^{42} +(7.56654 + 4.36854i) q^{43} -6.13636 q^{44} +(-7.08920 + 6.31489i) q^{45} +(-0.445274 + 0.771236i) q^{46} +6.86960i q^{47} +(7.82169 + 4.51586i) q^{48} +(2.12291 + 3.67698i) q^{49} +(-1.64318 - 0.190477i) q^{50} +5.24581 q^{51} +(-4.40719 - 5.20008i) q^{52} -12.8336i q^{53} +(-0.554726 - 0.960814i) q^{54} +(-1.47104 - 7.10721i) q^{55} +(2.15819 - 3.73809i) q^{56} -3.35348i q^{57} +(-0.859539 - 0.496255i) q^{58} +(-1.26764 + 2.19562i) q^{59} +(-3.57417 + 10.8034i) q^{60} +(3.74581 - 6.48793i) q^{61} +(-1.08333 + 0.625462i) q^{62} +(12.3307 - 7.11911i) q^{63} +5.49162 q^{64} +(4.96629 - 6.35106i) q^{65} +2.89055 q^{66} +(3.47722 - 2.00758i) q^{67} +(3.19071 - 1.84216i) q^{68} +(-3.62291 + 6.27506i) q^{69} +(2.35526 + 0.779207i) q^{70} +(-2.62291 + 4.54300i) q^{71} +(-4.73277 - 2.73247i) q^{72} -5.46493i q^{73} +(0.322368 - 0.558359i) q^{74} +(-13.3695 - 1.54979i) q^{75} +(-1.17763 - 2.03972i) q^{76} +10.8848i q^{77} +(2.07602 + 2.44951i) q^{78} -13.7811 q^{79} +(1.52065 + 7.34688i) q^{80} +(1.85526 + 3.21341i) q^{81} +(0.796819 + 0.460044i) q^{82} +8.61955i q^{83} +(8.53289 - 14.7794i) q^{84} +(2.89851 + 3.25391i) q^{85} -2.89055 q^{86} +(-6.99351 - 4.03771i) q^{87} +(3.61808 - 2.08890i) q^{88} +(5.15819 + 8.93425i) q^{89} +(0.986548 - 2.98198i) q^{90} +(-9.22398 + 7.81753i) q^{91} +5.08898i q^{92} +(-8.81438 + 5.08898i) q^{93} +(-1.13636 - 1.96823i) q^{94} +(2.08012 - 1.85292i) q^{95} -9.91745 q^{96} +(-4.56055 - 2.63304i) q^{97} +(-1.21648 - 0.702335i) q^{98} +13.7811 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{4} - 6 q^{5} - 10 q^{6} + 6 q^{9} + O(q^{10}) \) \( 12 q + 4 q^{4} - 6 q^{5} - 10 q^{6} + 6 q^{9} + 7 q^{10} - 44 q^{14} - 4 q^{15} - 16 q^{16} + 12 q^{19} - q^{20} - 8 q^{21} + 32 q^{24} - 2 q^{25} + 24 q^{26} + 18 q^{29} + 4 q^{30} - 16 q^{31} + 16 q^{34} + 10 q^{35} - 2 q^{36} - 32 q^{39} + 70 q^{40} + 14 q^{41} - 4 q^{44} - 29 q^{45} + 10 q^{46} + 6 q^{49} - 31 q^{50} + 24 q^{51} - 22 q^{54} - 26 q^{55} - 16 q^{56} - 4 q^{59} - 96 q^{60} + 6 q^{61} - 12 q^{64} + 23 q^{65} + 4 q^{66} - 24 q^{69} + 20 q^{70} - 12 q^{71} + 8 q^{74} + 2 q^{75} - 10 q^{76} - 104 q^{79} + 33 q^{80} + 14 q^{81} + 90 q^{84} + 21 q^{85} - 4 q^{86} + 20 q^{89} + 62 q^{90} - 44 q^{91} + 56 q^{94} + 20 q^{95} + 12 q^{96} + 104 q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/65\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(41\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.286513 + 0.165418i −0.202595 + 0.116968i −0.597865 0.801597i \(-0.703984\pi\)
0.395270 + 0.918565i \(0.370651\pi\)
\(3\) −2.33117 + 1.34590i −1.34590 + 0.777057i −0.987666 0.156574i \(-0.949955\pi\)
−0.358236 + 0.933631i \(0.616622\pi\)
\(4\) −0.945274 + 1.63726i −0.472637 + 0.818631i
\(5\) −2.12291 0.702335i −0.949392 0.314094i
\(6\) 0.445274 0.771236i 0.181782 0.314856i
\(7\) 2.90420 + 1.67674i 1.09768 + 0.633748i 0.935611 0.353031i \(-0.114849\pi\)
0.162072 + 0.986779i \(0.448182\pi\)
\(8\) 1.28714i 0.455071i
\(9\) 2.12291 3.67698i 0.707635 1.22566i
\(10\) 0.724419 0.149939i 0.229081 0.0474150i
\(11\) 1.62291 + 2.81095i 0.489324 + 0.847535i 0.999925 0.0122837i \(-0.00391011\pi\)
−0.510600 + 0.859818i \(0.670577\pi\)
\(12\) 5.08898i 1.46906i
\(13\) −1.21648 + 3.39414i −0.337391 + 0.941365i
\(14\) −1.10945 −0.296514
\(15\) 5.89413 1.21996i 1.52186 0.314992i
\(16\) −1.67763 2.90574i −0.419408 0.726436i
\(17\) −1.68772 0.974404i −0.409332 0.236328i 0.281171 0.959658i \(-0.409277\pi\)
−0.690503 + 0.723330i \(0.742611\pi\)
\(18\) 1.40467i 0.331084i
\(19\) −0.622905 + 1.07890i −0.142904 + 0.247517i −0.928589 0.371110i \(-0.878977\pi\)
0.785685 + 0.618627i \(0.212311\pi\)
\(20\) 3.15663 2.81185i 0.705844 0.628750i
\(21\) −9.02690 −1.96983
\(22\) −0.929966 0.536916i −0.198269 0.114471i
\(23\) 2.33117 1.34590i 0.486083 0.280640i −0.236865 0.971543i \(-0.576120\pi\)
0.722948 + 0.690903i \(0.242787\pi\)
\(24\) 1.73236 + 3.00053i 0.353616 + 0.612481i
\(25\) 4.01345 + 2.98198i 0.802690 + 0.596396i
\(26\) −0.212916 1.17369i −0.0417562 0.230180i
\(27\) 3.35348i 0.645377i
\(28\) −5.49052 + 3.16995i −1.03761 + 0.599065i
\(29\) 1.50000 + 2.59808i 0.278543 + 0.482451i 0.971023 0.238987i \(-0.0768152\pi\)
−0.692480 + 0.721437i \(0.743482\pi\)
\(30\) −1.48694 + 1.32453i −0.271477 + 0.241825i
\(31\) 3.78109 0.679105 0.339552 0.940587i \(-0.389724\pi\)
0.339552 + 0.940587i \(0.389724\pi\)
\(32\) 3.19071 + 1.84216i 0.564043 + 0.325650i
\(33\) −7.56654 4.36854i −1.31717 0.760466i
\(34\) 0.644737 0.110571
\(35\) −4.98770 5.59927i −0.843076 0.946450i
\(36\) 4.01345 + 6.95150i 0.668909 + 1.15858i
\(37\) −1.68772 + 0.974404i −0.277459 + 0.160191i −0.632273 0.774746i \(-0.717878\pi\)
0.354813 + 0.934937i \(0.384544\pi\)
\(38\) 0.412160i 0.0668611i
\(39\) −1.73236 9.54958i −0.277399 1.52916i
\(40\) −0.904000 + 2.73247i −0.142935 + 0.432041i
\(41\) −1.39055 2.40850i −0.217167 0.376144i 0.736774 0.676139i \(-0.236348\pi\)
−0.953941 + 0.299995i \(0.903015\pi\)
\(42\) 2.58632 1.49321i 0.399078 0.230408i
\(43\) 7.56654 + 4.36854i 1.15389 + 0.666197i 0.949831 0.312763i \(-0.101255\pi\)
0.204055 + 0.978959i \(0.434588\pi\)
\(44\) −6.13636 −0.925091
\(45\) −7.08920 + 6.31489i −1.05679 + 0.941368i
\(46\) −0.445274 + 0.771236i −0.0656520 + 0.113713i
\(47\) 6.86960i 1.00203i 0.865437 + 0.501017i \(0.167041\pi\)
−0.865437 + 0.501017i \(0.832959\pi\)
\(48\) 7.82169 + 4.51586i 1.12896 + 0.651808i
\(49\) 2.12291 + 3.67698i 0.303272 + 0.525283i
\(50\) −1.64318 0.190477i −0.232381 0.0269375i
\(51\) 5.24581 0.734560
\(52\) −4.40719 5.20008i −0.611167 0.721122i
\(53\) 12.8336i 1.76282i −0.472347 0.881412i \(-0.656593\pi\)
0.472347 0.881412i \(-0.343407\pi\)
\(54\) −0.554726 0.960814i −0.0754887 0.130750i
\(55\) −1.47104 7.10721i −0.198355 0.958336i
\(56\) 2.15819 3.73809i 0.288400 0.499524i
\(57\) 3.35348i 0.444179i
\(58\) −0.859539 0.496255i −0.112863 0.0651614i
\(59\) −1.26764 + 2.19562i −0.165033 + 0.285845i −0.936667 0.350221i \(-0.886106\pi\)
0.771634 + 0.636067i \(0.219440\pi\)
\(60\) −3.57417 + 10.8034i −0.461423 + 1.39472i
\(61\) 3.74581 6.48793i 0.479602 0.830695i −0.520124 0.854090i \(-0.674114\pi\)
0.999726 + 0.0233957i \(0.00744777\pi\)
\(62\) −1.08333 + 0.625462i −0.137583 + 0.0794338i
\(63\) 12.3307 7.11911i 1.55352 0.896924i
\(64\) 5.49162 0.686453
\(65\) 4.96629 6.35106i 0.615993 0.787752i
\(66\) 2.89055 0.355802
\(67\) 3.47722 2.00758i 0.424810 0.245264i −0.272323 0.962206i \(-0.587792\pi\)
0.697133 + 0.716942i \(0.254459\pi\)
\(68\) 3.19071 1.84216i 0.386930 0.223394i
\(69\) −3.62291 + 6.27506i −0.436147 + 0.755428i
\(70\) 2.35526 + 0.779207i 0.281508 + 0.0931331i
\(71\) −2.62291 + 4.54300i −0.311282 + 0.539155i −0.978640 0.205581i \(-0.934092\pi\)
0.667359 + 0.744737i \(0.267425\pi\)
\(72\) −4.73277 2.73247i −0.557762 0.322024i
\(73\) 5.46493i 0.639622i −0.947481 0.319811i \(-0.896381\pi\)
0.947481 0.319811i \(-0.103619\pi\)
\(74\) 0.322368 0.558359i 0.0374746 0.0649079i
\(75\) −13.3695 1.54979i −1.54378 0.178954i
\(76\) −1.17763 2.03972i −0.135084 0.233972i
\(77\) 10.8848i 1.24043i
\(78\) 2.07602 + 2.44951i 0.235063 + 0.277353i
\(79\) −13.7811 −1.55049 −0.775247 0.631658i \(-0.782375\pi\)
−0.775247 + 0.631658i \(0.782375\pi\)
\(80\) 1.52065 + 7.34688i 0.170014 + 0.821406i
\(81\) 1.85526 + 3.21341i 0.206140 + 0.357046i
\(82\) 0.796819 + 0.460044i 0.0879940 + 0.0508033i
\(83\) 8.61955i 0.946119i 0.881031 + 0.473059i \(0.156850\pi\)
−0.881031 + 0.473059i \(0.843150\pi\)
\(84\) 8.53289 14.7794i 0.931015 1.61257i
\(85\) 2.89851 + 3.25391i 0.314387 + 0.352936i
\(86\) −2.89055 −0.311696
\(87\) −6.99351 4.03771i −0.749783 0.432888i
\(88\) 3.61808 2.08890i 0.385688 0.222677i
\(89\) 5.15819 + 8.93425i 0.546767 + 0.947028i 0.998493 + 0.0548717i \(0.0174750\pi\)
−0.451726 + 0.892156i \(0.649192\pi\)
\(90\) 0.986548 2.98198i 0.103991 0.314328i
\(91\) −9.22398 + 7.81753i −0.966936 + 0.819500i
\(92\) 5.08898i 0.530563i
\(93\) −8.81438 + 5.08898i −0.914008 + 0.527703i
\(94\) −1.13636 1.96823i −0.117206 0.203007i
\(95\) 2.08012 1.85292i 0.213416 0.190106i
\(96\) −9.91745 −1.01220
\(97\) −4.56055 2.63304i −0.463054 0.267344i 0.250273 0.968175i \(-0.419479\pi\)
−0.713328 + 0.700831i \(0.752813\pi\)
\(98\) −1.21648 0.702335i −0.122883 0.0709465i
\(99\) 13.7811 1.38505
\(100\) −8.67609 + 3.75229i −0.867609 + 0.375229i
\(101\) −2.85526 4.94546i −0.284109 0.492092i 0.688283 0.725442i \(-0.258365\pi\)
−0.972393 + 0.233350i \(0.925031\pi\)
\(102\) −1.50299 + 0.867753i −0.148818 + 0.0859203i
\(103\) 7.36863i 0.726052i −0.931779 0.363026i \(-0.881744\pi\)
0.931779 0.363026i \(-0.118256\pi\)
\(104\) 4.36872 + 1.56577i 0.428388 + 0.153537i
\(105\) 19.1633 + 6.33991i 1.87014 + 0.618712i
\(106\) 2.12291 + 3.67698i 0.206195 + 0.357140i
\(107\) −7.42568 + 4.28722i −0.717868 + 0.414461i −0.813967 0.580911i \(-0.802697\pi\)
0.0960996 + 0.995372i \(0.469363\pi\)
\(108\) −5.49052 3.16995i −0.528326 0.305029i
\(109\) 8.49162 0.813350 0.406675 0.913573i \(-0.366688\pi\)
0.406675 + 0.913573i \(0.366688\pi\)
\(110\) 1.59714 + 1.79297i 0.152281 + 0.170953i
\(111\) 2.62291 4.54300i 0.248955 0.431203i
\(112\) 11.2518i 1.06320i
\(113\) 6.35006 + 3.66621i 0.597363 + 0.344888i 0.768004 0.640446i \(-0.221250\pi\)
−0.170640 + 0.985333i \(0.554584\pi\)
\(114\) 0.554726 + 0.960814i 0.0519549 + 0.0899885i
\(115\) −5.89413 + 1.21996i −0.549630 + 0.113762i
\(116\) −5.67164 −0.526599
\(117\) 9.89771 + 11.6784i 0.915044 + 1.07967i
\(118\) 0.838765i 0.0772145i
\(119\) −3.26764 5.65972i −0.299544 0.518826i
\(120\) −1.57025 7.58654i −0.143344 0.692553i
\(121\) 0.232358 0.402456i 0.0211234 0.0365869i
\(122\) 2.47850i 0.224393i
\(123\) 6.48321 + 3.74308i 0.584571 + 0.337502i
\(124\) −3.57417 + 6.19064i −0.320970 + 0.555936i
\(125\) −6.42583 9.14925i −0.574744 0.818333i
\(126\) −2.35526 + 4.07944i −0.209824 + 0.363425i
\(127\) 7.93599 4.58185i 0.704205 0.406573i −0.104707 0.994503i \(-0.533390\pi\)
0.808912 + 0.587930i \(0.200057\pi\)
\(128\) −7.95484 + 4.59273i −0.703115 + 0.405944i
\(129\) −23.5185 −2.07069
\(130\) −0.372325 + 2.64118i −0.0326551 + 0.231646i
\(131\) 10.0000 0.873704 0.436852 0.899533i \(-0.356093\pi\)
0.436852 + 0.899533i \(0.356093\pi\)
\(132\) 14.3049 8.25894i 1.24508 0.718848i
\(133\) −3.61808 + 2.08890i −0.313727 + 0.181130i
\(134\) −0.664179 + 1.15039i −0.0573763 + 0.0993787i
\(135\) 2.35526 7.11911i 0.202709 0.612716i
\(136\) −1.25419 + 2.17232i −0.107546 + 0.186275i
\(137\) 14.5914 + 8.42435i 1.24663 + 0.719741i 0.970435 0.241361i \(-0.0775938\pi\)
0.276193 + 0.961102i \(0.410927\pi\)
\(138\) 2.39718i 0.204061i
\(139\) −0.513452 + 0.889325i −0.0435505 + 0.0754316i −0.886979 0.461810i \(-0.847200\pi\)
0.843429 + 0.537241i \(0.180534\pi\)
\(140\) 13.8822 2.87333i 1.17326 0.242841i
\(141\) −9.24581 16.0142i −0.778638 1.34864i
\(142\) 1.73551i 0.145640i
\(143\) −11.5150 + 2.08890i −0.962933 + 0.174682i
\(144\) −14.2458 −1.18715
\(145\) −1.35964 6.56897i −0.112912 0.545523i
\(146\) 0.904000 + 1.56577i 0.0748155 + 0.129584i
\(147\) −9.89771 5.71445i −0.816349 0.471319i
\(148\) 3.68431i 0.302849i
\(149\) 7.92583 13.7279i 0.649309 1.12464i −0.333979 0.942581i \(-0.608391\pi\)
0.983288 0.182056i \(-0.0582753\pi\)
\(150\) 4.08690 1.76752i 0.333694 0.144318i
\(151\) 14.5454 1.18369 0.591845 0.806052i \(-0.298400\pi\)
0.591845 + 0.806052i \(0.298400\pi\)
\(152\) 1.38869 + 0.801763i 0.112638 + 0.0650316i
\(153\) −7.16573 + 4.13713i −0.579315 + 0.334468i
\(154\) −1.80054 3.11862i −0.145091 0.251306i
\(155\) −8.02690 2.65559i −0.644736 0.213302i
\(156\) 17.2727 + 6.19064i 1.38292 + 0.495648i
\(157\) 10.9210i 0.871588i −0.900047 0.435794i \(-0.856468\pi\)
0.900047 0.435794i \(-0.143532\pi\)
\(158\) 3.94846 2.27964i 0.314123 0.181359i
\(159\) 17.2727 + 29.9172i 1.36982 + 2.37259i
\(160\) −5.47976 6.15167i −0.433213 0.486332i
\(161\) 9.02690 0.711420
\(162\) −1.06311 0.613789i −0.0835261 0.0482238i
\(163\) 3.61808 + 2.08890i 0.283390 + 0.163615i 0.634957 0.772547i \(-0.281018\pi\)
−0.351567 + 0.936163i \(0.614351\pi\)
\(164\) 5.25779 0.410564
\(165\) 12.9949 + 14.5882i 1.01165 + 1.13569i
\(166\) −1.42583 2.46961i −0.110666 0.191679i
\(167\) 2.90420 1.67674i 0.224733 0.129750i −0.383407 0.923580i \(-0.625249\pi\)
0.608140 + 0.793830i \(0.291916\pi\)
\(168\) 11.6188i 0.896413i
\(169\) −10.0404 8.25780i −0.772335 0.635215i
\(170\) −1.36872 0.452821i −0.104976 0.0347298i
\(171\) 2.64474 + 4.58082i 0.202248 + 0.350304i
\(172\) −14.3049 + 8.25894i −1.09074 + 0.629738i
\(173\) −7.56654 4.36854i −0.575273 0.332134i 0.183979 0.982930i \(-0.441102\pi\)
−0.759253 + 0.650796i \(0.774435\pi\)
\(174\) 2.67164 0.202537
\(175\) 6.65585 + 15.3898i 0.503135 + 1.16336i
\(176\) 5.44527 9.43149i 0.410453 0.710925i
\(177\) 6.82449i 0.512960i
\(178\) −2.95577 1.70652i −0.221545 0.127909i
\(179\) −9.00507 15.5972i −0.673071 1.16579i −0.977029 0.213107i \(-0.931642\pi\)
0.303958 0.952685i \(-0.401692\pi\)
\(180\) −3.63790 17.5762i −0.271153 1.31005i
\(181\) 1.04366 0.0775749 0.0387875 0.999247i \(-0.487650\pi\)
0.0387875 + 0.999247i \(0.487650\pi\)
\(182\) 1.34963 3.76564i 0.100041 0.279128i
\(183\) 20.1660i 1.49071i
\(184\) −1.73236 3.00053i −0.127711 0.221202i
\(185\) 4.26722 0.883225i 0.313732 0.0649360i
\(186\) 1.68362 2.91612i 0.123449 0.213820i
\(187\) 6.32546i 0.462564i
\(188\) −11.2473 6.49365i −0.820296 0.473598i
\(189\) −5.62291 + 9.73916i −0.409006 + 0.708419i
\(190\) −0.289474 + 0.874976i −0.0210006 + 0.0634774i
\(191\) −12.7593 + 22.0997i −0.923228 + 1.59908i −0.128841 + 0.991665i \(0.541126\pi\)
−0.794387 + 0.607412i \(0.792208\pi\)
\(192\) −12.8019 + 7.39118i −0.923898 + 0.533413i
\(193\) −17.1652 + 9.91035i −1.23558 + 0.713362i −0.968188 0.250225i \(-0.919495\pi\)
−0.267392 + 0.963588i \(0.586162\pi\)
\(194\) 1.74221 0.125083
\(195\) −3.02937 + 21.4895i −0.216938 + 1.53890i
\(196\) −8.02690 −0.573350
\(197\) −18.7512 + 10.8260i −1.33596 + 0.771319i −0.986206 0.165521i \(-0.947070\pi\)
−0.349758 + 0.936840i \(0.613736\pi\)
\(198\) −3.94846 + 2.27964i −0.280605 + 0.162007i
\(199\) 9.11453 15.7868i 0.646112 1.11910i −0.337932 0.941171i \(-0.609727\pi\)
0.984044 0.177928i \(-0.0569393\pi\)
\(200\) 3.83821 5.16586i 0.271402 0.365281i
\(201\) −5.40400 + 9.36000i −0.381169 + 0.660204i
\(202\) 1.63614 + 0.944625i 0.115118 + 0.0664636i
\(203\) 10.0604i 0.706104i
\(204\) −4.95873 + 8.58877i −0.347180 + 0.601334i
\(205\) 1.26043 + 6.08964i 0.0880321 + 0.425319i
\(206\) 1.21891 + 2.11121i 0.0849252 + 0.147095i
\(207\) 11.4289i 0.794363i
\(208\) 11.9033 2.15934i 0.825345 0.149723i
\(209\) −4.04366 −0.279706
\(210\) −6.53926 + 1.35349i −0.451252 + 0.0933996i
\(211\) −9.64981 16.7140i −0.664320 1.15064i −0.979469 0.201594i \(-0.935388\pi\)
0.315149 0.949042i \(-0.397946\pi\)
\(212\) 21.0119 + 12.1312i 1.44310 + 0.833176i
\(213\) 14.1207i 0.967534i
\(214\) 1.41837 2.45669i 0.0969577 0.167936i
\(215\) −12.9949 14.5882i −0.886242 0.994910i
\(216\) 4.31638 0.293692
\(217\) 10.9810 + 6.33991i 0.745442 + 0.430381i
\(218\) −2.43296 + 1.40467i −0.164781 + 0.0951362i
\(219\) 7.35526 + 12.7397i 0.497023 + 0.860868i
\(220\) 13.0269 + 4.30978i 0.878274 + 0.290565i
\(221\) 5.36034 4.54300i 0.360575 0.305596i
\(222\) 1.73551i 0.116480i
\(223\) 10.7134 6.18537i 0.717421 0.414203i −0.0963818 0.995344i \(-0.530727\pi\)
0.813803 + 0.581141i \(0.197394\pi\)
\(224\) 6.17763 + 10.7000i 0.412760 + 0.714922i
\(225\) 19.4849 8.42692i 1.29899 0.561795i
\(226\) −2.42583 −0.161364
\(227\) −5.33715 3.08141i −0.354239 0.204520i 0.312311 0.949980i \(-0.398897\pi\)
−0.666551 + 0.745460i \(0.732230\pi\)
\(228\) 5.49052 + 3.16995i 0.363619 + 0.209935i
\(229\) 26.9832 1.78310 0.891551 0.452920i \(-0.149618\pi\)
0.891551 + 0.452920i \(0.149618\pi\)
\(230\) 1.48694 1.32453i 0.0980459 0.0873370i
\(231\) −14.6498 25.3742i −0.963887 1.66950i
\(232\) 3.34408 1.93070i 0.219549 0.126757i
\(233\) 0.824319i 0.0540029i 0.999635 + 0.0270015i \(0.00859588\pi\)
−0.999635 + 0.0270015i \(0.991404\pi\)
\(234\) −4.76764 1.70875i −0.311671 0.111705i
\(235\) 4.82476 14.5835i 0.314733 0.951323i
\(236\) −2.39654 4.15092i −0.156001 0.270202i
\(237\) 32.1261 18.5480i 2.08681 1.20482i
\(238\) 1.87244 + 1.08106i 0.121372 + 0.0700744i
\(239\) −4.00000 −0.258738 −0.129369 0.991596i \(-0.541295\pi\)
−0.129369 + 0.991596i \(0.541295\pi\)
\(240\) −13.4331 15.0802i −0.867101 0.973421i
\(241\) −11.3469 + 19.6534i −0.730917 + 1.26599i 0.225575 + 0.974226i \(0.427574\pi\)
−0.956492 + 0.291760i \(0.905759\pi\)
\(242\) 0.153745i 0.00988310i
\(243\) −17.3625 10.0242i −1.11380 0.643054i
\(244\) 7.08163 + 12.2657i 0.453355 + 0.785234i
\(245\) −1.92426 9.29687i −0.122936 0.593955i
\(246\) −2.47670 −0.157908
\(247\) −2.90420 3.42669i −0.184790 0.218035i
\(248\) 4.86678i 0.309041i
\(249\) −11.6011 20.0936i −0.735188 1.27338i
\(250\) 3.35454 + 1.55843i 0.212159 + 0.0985635i
\(251\) −9.51345 + 16.4778i −0.600484 + 1.04007i 0.392264 + 0.919853i \(0.371692\pi\)
−0.992748 + 0.120216i \(0.961641\pi\)
\(252\) 26.9180i 1.69568i
\(253\) 7.56654 + 4.36854i 0.475704 + 0.274648i
\(254\) −1.51584 + 2.62552i −0.0951124 + 0.164739i
\(255\) −11.1364 3.68431i −0.697386 0.230721i
\(256\) −3.97218 + 6.88001i −0.248261 + 0.430001i
\(257\) 1.82857 1.05573i 0.114063 0.0658544i −0.441883 0.897073i \(-0.645689\pi\)
0.555946 + 0.831218i \(0.312356\pi\)
\(258\) 6.73836 3.89039i 0.419512 0.242205i
\(259\) −6.53528 −0.406083
\(260\) 5.70384 + 14.1346i 0.353737 + 0.876591i
\(261\) 12.7374 0.788427
\(262\) −2.86513 + 1.65418i −0.177008 + 0.102196i
\(263\) 25.9092 14.9587i 1.59763 0.922391i 0.605685 0.795704i \(-0.292899\pi\)
0.991943 0.126687i \(-0.0404343\pi\)
\(264\) −5.62291 + 9.73916i −0.346066 + 0.599404i
\(265\) −9.01345 + 27.2444i −0.553692 + 1.67361i
\(266\) 0.691084 1.19699i 0.0423731 0.0733923i
\(267\) −24.0492 13.8848i −1.47179 0.849738i
\(268\) 7.59083i 0.463684i
\(269\) 9.29455 16.0986i 0.566699 0.981551i −0.430191 0.902738i \(-0.641554\pi\)
0.996889 0.0788127i \(-0.0251129\pi\)
\(270\) 0.502818 + 2.42932i 0.0306006 + 0.147844i
\(271\) −2.91238 5.04439i −0.176914 0.306425i 0.763908 0.645326i \(-0.223278\pi\)
−0.940822 + 0.338901i \(0.889945\pi\)
\(272\) 6.53876i 0.396471i
\(273\) 10.9810 30.6386i 0.664603 1.85433i
\(274\) −5.57417 −0.336748
\(275\) −1.86875 + 16.1211i −0.112690 + 0.972139i
\(276\) −6.84927 11.8633i −0.412278 0.714086i
\(277\) −11.7263 6.77017i −0.704564 0.406780i 0.104481 0.994527i \(-0.466682\pi\)
−0.809045 + 0.587747i \(0.800015\pi\)
\(278\) 0.339738i 0.0203761i
\(279\) 8.02690 13.9030i 0.480558 0.832351i
\(280\) −7.20702 + 6.41985i −0.430702 + 0.383659i
\(281\) −0.464716 −0.0277226 −0.0138613 0.999904i \(-0.504412\pi\)
−0.0138613 + 0.999904i \(0.504412\pi\)
\(282\) 5.29809 + 3.05885i 0.315496 + 0.182152i
\(283\) −8.71259 + 5.03022i −0.517910 + 0.299015i −0.736079 0.676896i \(-0.763325\pi\)
0.218169 + 0.975911i \(0.429991\pi\)
\(284\) −4.95873 8.58877i −0.294246 0.509649i
\(285\) −2.35526 + 7.11911i −0.139514 + 0.421700i
\(286\) 2.95365 2.50329i 0.174653 0.148022i
\(287\) 9.32634i 0.550516i
\(288\) 13.5471 7.82145i 0.798273 0.460883i
\(289\) −6.60107 11.4334i −0.388298 0.672553i
\(290\) 1.47618 + 1.65719i 0.0866844 + 0.0973133i
\(291\) 14.1752 0.830967
\(292\) 8.94752 + 5.16586i 0.523614 + 0.302309i
\(293\) 11.6481 + 6.72506i 0.680492 + 0.392882i 0.800040 0.599946i \(-0.204811\pi\)
−0.119548 + 0.992828i \(0.538145\pi\)
\(294\) 3.78109 0.220518
\(295\) 4.23314 3.77079i 0.246463 0.219544i
\(296\) 1.25419 + 2.17232i 0.0728983 + 0.126264i
\(297\) −9.42647 + 5.44238i −0.546979 + 0.315799i
\(298\) 5.24431i 0.303795i
\(299\) 1.73236 + 9.54958i 0.100185 + 0.552266i
\(300\) 15.1752 20.4244i 0.876143 1.17920i
\(301\) 14.6498 + 25.3742i 0.844401 + 1.46255i
\(302\) −4.16745 + 2.40608i −0.239810 + 0.138454i
\(303\) 13.3122 + 7.68581i 0.764767 + 0.441538i
\(304\) 4.18002 0.239741
\(305\) −12.5087 + 11.1425i −0.716246 + 0.638015i
\(306\) 1.36872 2.37068i 0.0782442 0.135523i
\(307\) 24.6077i 1.40444i 0.711961 + 0.702219i \(0.247807\pi\)
−0.711961 + 0.702219i \(0.752193\pi\)
\(308\) −17.8212 10.2891i −1.01546 0.586274i
\(309\) 9.91745 + 17.1775i 0.564184 + 0.977196i
\(310\) 2.73909 0.566935i 0.155570 0.0321997i
\(311\) 2.43781 0.138236 0.0691178 0.997609i \(-0.477982\pi\)
0.0691178 + 0.997609i \(0.477982\pi\)
\(312\) −12.2916 + 2.22978i −0.695875 + 0.126236i
\(313\) 19.2965i 1.09071i 0.838207 + 0.545353i \(0.183604\pi\)
−0.838207 + 0.545353i \(0.816396\pi\)
\(314\) 1.80653 + 3.12900i 0.101948 + 0.176579i
\(315\) −31.1768 + 6.45295i −1.75662 + 0.363583i
\(316\) 13.0269 22.5633i 0.732821 1.26928i
\(317\) 28.8217i 1.61879i −0.587265 0.809395i \(-0.699795\pi\)
0.587265 0.809395i \(-0.300205\pi\)
\(318\) −9.89771 5.71445i −0.555036 0.320450i
\(319\) −4.86872 + 8.43286i −0.272596 + 0.472150i
\(320\) −11.6582 3.85695i −0.651713 0.215610i
\(321\) 11.5404 19.9885i 0.644120 1.11565i
\(322\) −2.58632 + 1.49321i −0.144130 + 0.0832136i
\(323\) 2.10258 1.21392i 0.116990 0.0675445i
\(324\) −7.01492 −0.389718
\(325\) −15.0035 + 9.99470i −0.832246 + 0.554406i
\(326\) −1.38217 −0.0765512
\(327\) −19.7954 + 11.4289i −1.09469 + 0.632019i
\(328\) −3.10006 + 1.78982i −0.171172 + 0.0988264i
\(329\) −11.5185 + 19.9507i −0.635037 + 1.09992i
\(330\) −6.13636 2.03013i −0.337795 0.111755i
\(331\) 1.48655 2.57478i 0.0817081 0.141522i −0.822276 0.569089i \(-0.807296\pi\)
0.903984 + 0.427567i \(0.140629\pi\)
\(332\) −14.1125 8.14783i −0.774522 0.447171i
\(333\) 8.27427i 0.453427i
\(334\) −0.554726 + 0.960814i −0.0303533 + 0.0525734i
\(335\) −8.79180 + 1.81972i −0.480347 + 0.0994218i
\(336\) 15.1438 + 26.2299i 0.826163 + 1.43096i
\(337\) 1.90370i 0.103701i 0.998655 + 0.0518505i \(0.0165119\pi\)
−0.998655 + 0.0518505i \(0.983488\pi\)
\(338\) 4.24268 + 0.705107i 0.230771 + 0.0383528i
\(339\) −19.7374 −1.07199
\(340\) −8.06738 + 1.66978i −0.437515 + 0.0905565i
\(341\) 6.13636 + 10.6285i 0.332302 + 0.575565i
\(342\) −1.51550 0.874976i −0.0819490 0.0473133i
\(343\) 9.23611i 0.498703i
\(344\) 5.62291 9.73916i 0.303167 0.525100i
\(345\) 12.0983 10.7769i 0.651349 0.580206i
\(346\) 2.89055 0.155397
\(347\) 10.9420 + 6.31735i 0.587396 + 0.339133i 0.764067 0.645137i \(-0.223200\pi\)
−0.176671 + 0.984270i \(0.556533\pi\)
\(348\) 13.2216 7.63347i 0.708750 0.409197i
\(349\) 4.48655 + 7.77093i 0.240159 + 0.415968i 0.960760 0.277383i \(-0.0894670\pi\)
−0.720600 + 0.693351i \(0.756134\pi\)
\(350\) −4.45274 3.30837i −0.238009 0.176840i
\(351\) −11.3822 4.07944i −0.607535 0.217744i
\(352\) 11.9586i 0.637395i
\(353\) 29.6618 17.1252i 1.57874 0.911484i 0.583701 0.811969i \(-0.301604\pi\)
0.995036 0.0995150i \(-0.0317291\pi\)
\(354\) 1.12890 + 1.95530i 0.0600001 + 0.103923i
\(355\) 8.75889 7.80221i 0.464874 0.414098i
\(356\) −19.5036 −1.03369
\(357\) 15.2349 + 8.79585i 0.806315 + 0.465526i
\(358\) 5.16014 + 2.97921i 0.272722 + 0.157456i
\(359\) −22.4043 −1.18245 −0.591227 0.806505i \(-0.701356\pi\)
−0.591227 + 0.806505i \(0.701356\pi\)
\(360\) 8.12812 + 9.12475i 0.428389 + 0.480917i
\(361\) 8.72398 + 15.1104i 0.459157 + 0.795283i
\(362\) −0.299023 + 0.172641i −0.0157163 + 0.00907381i
\(363\) 1.25092i 0.0656565i
\(364\) −4.08016 22.4918i −0.213858 1.17889i
\(365\) −3.83821 + 11.6015i −0.200901 + 0.607252i
\(366\) −3.33582 5.77781i −0.174366 0.302011i
\(367\) −11.4273 + 6.59753i −0.596498 + 0.344388i −0.767663 0.640854i \(-0.778580\pi\)
0.171165 + 0.985242i \(0.445247\pi\)
\(368\) −7.82169 4.51586i −0.407734 0.235405i
\(369\) −11.8080 −0.614700
\(370\) −1.07651 + 0.958932i −0.0559652 + 0.0498525i
\(371\) 21.5185 37.2712i 1.11719 1.93502i
\(372\) 19.2419i 0.997647i
\(373\) −13.2168 7.63070i −0.684338 0.395103i 0.117149 0.993114i \(-0.462624\pi\)
−0.801488 + 0.598012i \(0.795958\pi\)
\(374\) 1.04635 + 1.81233i 0.0541053 + 0.0937131i
\(375\) 27.2937 + 12.6799i 1.40944 + 0.654788i
\(376\) 8.84210 0.455997
\(377\) −10.6430 + 1.93070i −0.548140 + 0.0994362i
\(378\) 3.72052i 0.191363i
\(379\) 9.11453 + 15.7868i 0.468182 + 0.810915i 0.999339 0.0363588i \(-0.0115759\pi\)
−0.531157 + 0.847273i \(0.678243\pi\)
\(380\) 1.06744 + 5.15722i 0.0547583 + 0.264560i
\(381\) −12.3334 + 21.3621i −0.631861 + 1.09442i
\(382\) 8.44246i 0.431954i
\(383\) 1.24784 + 0.720440i 0.0637616 + 0.0368128i 0.531542 0.847032i \(-0.321613\pi\)
−0.467780 + 0.883845i \(0.654946\pi\)
\(384\) 12.3627 21.4129i 0.630883 1.09272i
\(385\) 7.64474 23.1073i 0.389612 1.17766i
\(386\) 3.27870 5.67888i 0.166882 0.289048i
\(387\) 32.1261 18.5480i 1.63306 0.942848i
\(388\) 8.62194 4.97788i 0.437713 0.252714i
\(389\) 18.7912 0.952754 0.476377 0.879241i \(-0.341950\pi\)
0.476377 + 0.879241i \(0.341950\pi\)
\(390\) −2.68681 6.65814i −0.136052 0.337148i
\(391\) −5.24581 −0.265292
\(392\) 4.73277 2.73247i 0.239041 0.138010i
\(393\) −23.3117 + 13.4590i −1.17592 + 0.678918i
\(394\) 3.58163 6.20357i 0.180440 0.312531i
\(395\) 29.2560 + 9.67894i 1.47203 + 0.487000i
\(396\) −13.0269 + 22.5633i −0.654627 + 1.13385i
\(397\) 14.8027 + 8.54634i 0.742926 + 0.428928i 0.823132 0.567850i \(-0.192225\pi\)
−0.0802063 + 0.996778i \(0.525558\pi\)
\(398\) 6.03084i 0.302298i
\(399\) 5.62291 9.73916i 0.281497 0.487568i
\(400\) 1.93177 16.6647i 0.0965886 0.833236i
\(401\) −11.1011 19.2276i −0.554361 0.960182i −0.997953 0.0639527i \(-0.979629\pi\)
0.443592 0.896229i \(-0.353704\pi\)
\(402\) 3.57568i 0.178339i
\(403\) −4.59962 + 12.8336i −0.229124 + 0.639285i
\(404\) 10.7960 0.537122
\(405\) −1.68166 8.12478i −0.0835623 0.403724i
\(406\) −1.66418 2.88244i −0.0825918 0.143053i
\(407\) −5.47801 3.16273i −0.271535 0.156771i
\(408\) 6.75207i 0.334277i
\(409\) −4.81638 + 8.34221i −0.238155 + 0.412496i −0.960185 0.279366i \(-0.909876\pi\)
0.722030 + 0.691862i \(0.243209\pi\)
\(410\) −1.36847 1.53626i −0.0675838 0.0758706i
\(411\) −45.3534 −2.23712
\(412\) 12.0644 + 6.96537i 0.594369 + 0.343159i
\(413\) −7.36296 + 4.25101i −0.362308 + 0.209178i
\(414\) 1.89055 + 3.27452i 0.0929153 + 0.160934i
\(415\) 6.05381 18.2985i 0.297170 0.898238i
\(416\) −10.1340 + 8.58877i −0.496859 + 0.421099i
\(417\) 2.76423i 0.135365i
\(418\) 1.15856 0.668896i 0.0566671 0.0327168i
\(419\) −0.978168 1.69424i −0.0477866 0.0827689i 0.841143 0.540813i \(-0.181883\pi\)
−0.888929 + 0.458044i \(0.848550\pi\)
\(420\) −28.4946 + 25.3823i −1.39039 + 1.23853i
\(421\) −12.0807 −0.588778 −0.294389 0.955686i \(-0.595116\pi\)
−0.294389 + 0.955686i \(0.595116\pi\)
\(422\) 5.52959 + 3.19251i 0.269176 + 0.155409i
\(423\) 25.2594 + 14.5835i 1.22815 + 0.709075i
\(424\) −16.5185 −0.802210
\(425\) −3.86792 8.94346i −0.187622 0.433822i
\(426\) 2.33582 + 4.04576i 0.113171 + 0.196018i
\(427\) 21.7571 12.5615i 1.05290 0.607893i
\(428\) 16.2104i 0.783558i
\(429\) 24.0320 20.3676i 1.16027 0.983359i
\(430\) 6.13636 + 2.03013i 0.295921 + 0.0979016i
\(431\) −12.2945 21.2948i −0.592207 1.02573i −0.993934 0.109974i \(-0.964923\pi\)
0.401727 0.915759i \(-0.368410\pi\)
\(432\) 9.74434 5.62590i 0.468825 0.270676i
\(433\) −31.2400 18.0364i −1.50130 0.866775i −0.999999 0.00150085i \(-0.999522\pi\)
−0.501299 0.865274i \(-0.667144\pi\)
\(434\) −4.19495 −0.201364
\(435\) 12.0107 + 13.4835i 0.575871 + 0.646482i
\(436\) −8.02690 + 13.9030i −0.384419 + 0.665833i
\(437\) 3.35348i 0.160419i
\(438\) −4.21475 2.43339i −0.201389 0.116272i
\(439\) 1.26764 + 2.19562i 0.0605013 + 0.104791i 0.894690 0.446688i \(-0.147397\pi\)
−0.834188 + 0.551480i \(0.814063\pi\)
\(440\) −9.14794 + 1.89343i −0.436111 + 0.0902658i
\(441\) 18.0269 0.858424
\(442\) −0.784309 + 2.18833i −0.0373058 + 0.104088i
\(443\) 19.3579i 0.919721i 0.887991 + 0.459860i \(0.152101\pi\)
−0.887991 + 0.459860i \(0.847899\pi\)
\(444\) 4.95873 + 8.58877i 0.235331 + 0.407605i
\(445\) −4.67552 22.5893i −0.221641 1.07084i
\(446\) −2.04635 + 3.54438i −0.0968973 + 0.167831i
\(447\) 42.6696i 2.01820i
\(448\) 15.9487 + 9.20801i 0.753507 + 0.435038i
\(449\) −12.4040 + 21.4844i −0.585381 + 1.01391i 0.409447 + 0.912334i \(0.365722\pi\)
−0.994828 + 0.101576i \(0.967612\pi\)
\(450\) −4.18869 + 5.63757i −0.197457 + 0.265758i
\(451\) 4.51345 7.81753i 0.212530 0.368113i
\(452\) −12.0051 + 6.93114i −0.564672 + 0.326013i
\(453\) −33.9079 + 19.5767i −1.59313 + 0.919795i
\(454\) 2.03888 0.0956896
\(455\) 25.0722 10.1176i 1.17540 0.474318i
\(456\) −4.31638 −0.202133
\(457\) 6.55363 3.78374i 0.306566 0.176996i −0.338823 0.940850i \(-0.610029\pi\)
0.645389 + 0.763854i \(0.276695\pi\)
\(458\) −7.73105 + 4.46352i −0.361248 + 0.208567i
\(459\) 3.26764 5.65972i 0.152520 0.264173i
\(460\) 3.57417 10.8034i 0.166646 0.503712i
\(461\) 6.17164 10.6896i 0.287442 0.497864i −0.685756 0.727831i \(-0.740528\pi\)
0.973198 + 0.229967i \(0.0738618\pi\)
\(462\) 8.39472 + 4.84669i 0.390558 + 0.225489i
\(463\) 22.8578i 1.06229i −0.847281 0.531146i \(-0.821762\pi\)
0.847281 0.531146i \(-0.178238\pi\)
\(464\) 5.03289 8.71723i 0.233646 0.404687i
\(465\) 22.2863 4.61279i 1.03350 0.213913i
\(466\) −0.136357 0.236178i −0.00631664 0.0109407i
\(467\) 15.2976i 0.707889i −0.935266 0.353945i \(-0.884840\pi\)
0.935266 0.353945i \(-0.115160\pi\)
\(468\) −28.4766 + 5.16586i −1.31633 + 0.238792i
\(469\) 13.4647 0.621743
\(470\) 1.03002 + 4.97647i 0.0475115 + 0.229547i
\(471\) 14.6985 + 25.4586i 0.677273 + 1.17307i
\(472\) 2.82606 + 1.63163i 0.130080 + 0.0751017i
\(473\) 28.3589i 1.30394i
\(474\) −6.13636 + 10.6285i −0.281852 + 0.488182i
\(475\) −5.71727 + 2.47264i −0.262326 + 0.113452i
\(476\) 12.3553 0.566303
\(477\) −47.1887 27.2444i −2.16062 1.24744i
\(478\) 1.14605 0.661673i 0.0524192 0.0302642i
\(479\) 12.1414 + 21.0296i 0.554756 + 0.960866i 0.997922 + 0.0644264i \(0.0205218\pi\)
−0.443166 + 0.896439i \(0.646145\pi\)
\(480\) 21.0538 + 6.96537i 0.960971 + 0.317924i
\(481\) −1.25419 6.91369i −0.0571861 0.315237i
\(482\) 7.50793i 0.341977i
\(483\) −21.0433 + 12.1493i −0.957501 + 0.552814i
\(484\) 0.439284 + 0.760862i 0.0199674 + 0.0345846i
\(485\) 7.83235 + 8.79272i 0.355649 + 0.399257i
\(486\) 6.63276 0.300868
\(487\) −31.9462 18.4441i −1.44762 0.835783i −0.449280 0.893391i \(-0.648319\pi\)
−0.998339 + 0.0576081i \(0.981653\pi\)
\(488\) −8.35085 4.82136i −0.378025 0.218253i
\(489\) −11.2458 −0.508553
\(490\) 2.08920 + 2.34537i 0.0943803 + 0.105953i
\(491\) 17.6767 + 30.6170i 0.797739 + 1.38172i 0.921085 + 0.389361i \(0.127304\pi\)
−0.123346 + 0.992364i \(0.539363\pi\)
\(492\) −12.2568 + 7.07647i −0.552580 + 0.319032i
\(493\) 5.84642i 0.263310i
\(494\) 1.39893 + 0.501383i 0.0629407 + 0.0225583i
\(495\) −29.2560 9.67894i −1.31496 0.435036i
\(496\) −6.34328 10.9869i −0.284822 0.493326i
\(497\) −15.2349 + 8.79585i −0.683377 + 0.394548i
\(498\) 6.64771 + 3.83806i 0.297891 + 0.171988i
\(499\) −16.2189 −0.726058 −0.363029 0.931778i \(-0.618257\pi\)
−0.363029 + 0.931778i \(0.618257\pi\)
\(500\) 21.0539 1.87223i 0.941558 0.0837286i
\(501\) −4.51345 + 7.81753i −0.201646 + 0.349261i
\(502\) 6.29480i 0.280950i
\(503\) 17.5270 + 10.1192i 0.781489 + 0.451193i 0.836958 0.547268i \(-0.184332\pi\)
−0.0554688 + 0.998460i \(0.517665\pi\)
\(504\) −9.16326 15.8712i −0.408164 0.706961i
\(505\) 2.58808 + 12.5041i 0.115168 + 0.556425i
\(506\) −2.89055 −0.128500
\(507\) 34.5200 + 5.73700i 1.53309 + 0.254789i
\(508\) 17.3244i 0.768646i
\(509\) −10.0185 17.3526i −0.444063 0.769140i 0.553923 0.832568i \(-0.313130\pi\)
−0.997986 + 0.0634276i \(0.979797\pi\)
\(510\) 3.80016 0.786554i 0.168274 0.0348292i
\(511\) 9.16326 15.8712i 0.405359 0.702102i
\(512\) 20.9992i 0.928042i
\(513\) −3.61808 2.08890i −0.159742 0.0922271i
\(514\) −0.349273 + 0.604959i −0.0154058 + 0.0266836i
\(515\) −5.17524 + 15.6429i −0.228048 + 0.689308i
\(516\) 22.2314 38.5060i 0.978685 1.69513i
\(517\) −19.3101 + 11.1487i −0.849259 + 0.490320i
\(518\) 1.87244 1.08106i 0.0822704 0.0474988i
\(519\) 23.5185 1.03235
\(520\) −8.17467 6.39229i −0.358483 0.280320i
\(521\) 16.0269 0.702151 0.351076 0.936347i \(-0.385816\pi\)
0.351076 + 0.936347i \(0.385816\pi\)
\(522\) −3.64944 + 2.10700i −0.159732 + 0.0922210i
\(523\) 10.1654 5.86898i 0.444501 0.256633i −0.261004 0.965338i \(-0.584054\pi\)
0.705505 + 0.708705i \(0.250720\pi\)
\(524\) −9.45274 + 16.3726i −0.412945 + 0.715241i
\(525\) −36.2291 26.9180i −1.58117 1.17480i
\(526\) −4.94887 + 8.57170i −0.215781 + 0.373744i
\(527\) −6.38142 3.68431i −0.277979 0.160491i
\(528\) 29.3152i 1.27578i
\(529\) −7.87709 + 13.6435i −0.342482 + 0.593197i
\(530\) −1.92426 9.29687i −0.0835844 0.403830i
\(531\) 5.38217 + 9.32219i 0.233566 + 0.404548i
\(532\) 7.89832i 0.342436i
\(533\) 9.86635 1.78982i 0.427359 0.0775258i
\(534\) 9.18722 0.397570
\(535\) 18.7751 3.88605i 0.811718 0.168008i
\(536\) −2.58402 4.47565i −0.111613 0.193319i
\(537\) 41.9847 + 24.2399i 1.81177 + 1.04603i
\(538\) 6.14995i 0.265143i
\(539\) −6.89055 + 11.9348i −0.296797 + 0.514067i
\(540\) 9.42949 + 10.5857i 0.405780 + 0.455536i
\(541\) −21.8080 −0.937599 −0.468800 0.883305i \(-0.655313\pi\)
−0.468800 + 0.883305i \(0.655313\pi\)
\(542\) 1.66887 + 0.963521i 0.0716840 + 0.0413868i
\(543\) −2.43296 + 1.40467i −0.104408 + 0.0602801i
\(544\) −3.59001 6.21808i −0.153920 0.266598i
\(545\) −18.0269 5.96396i −0.772188 0.255468i
\(546\) 1.92197 + 10.5948i 0.0822527 + 0.453416i
\(547\) 6.30924i 0.269764i −0.990862 0.134882i \(-0.956935\pi\)
0.990862 0.134882i \(-0.0430655\pi\)
\(548\) −27.5858 + 15.9266i −1.17840 + 0.680352i
\(549\) −15.9040 27.5465i −0.678766 1.17566i
\(550\) −2.13130 4.92803i −0.0908790 0.210132i
\(551\) −3.73743 −0.159220
\(552\) 8.07684 + 4.66317i 0.343773 + 0.198478i
\(553\) −40.0230 23.1073i −1.70195 0.982622i
\(554\) 4.47964 0.190322
\(555\) −8.75889 + 7.80221i −0.371794 + 0.331185i
\(556\) −0.970706 1.68131i −0.0411671 0.0713035i
\(557\) 31.0364 17.9189i 1.31506 0.759247i 0.332126 0.943235i \(-0.392234\pi\)
0.982929 + 0.183987i \(0.0589006\pi\)
\(558\) 5.31119i 0.224840i
\(559\) −24.0320 + 20.3676i −1.01644 + 0.861459i
\(560\) −7.90253 + 23.8865i −0.333943 + 1.00939i
\(561\) 8.51345 + 14.7457i 0.359438 + 0.622565i
\(562\) 0.133147 0.0768725i 0.00561647 0.00324267i
\(563\) 4.33196 + 2.50106i 0.182570 + 0.105407i 0.588500 0.808497i \(-0.299719\pi\)
−0.405929 + 0.913904i \(0.633052\pi\)
\(564\) 34.9593 1.47205
\(565\) −10.9057 12.2429i −0.458805 0.515062i
\(566\) 1.66418 2.88244i 0.0699507 0.121158i
\(567\) 12.4432i 0.522564i
\(568\) 5.84746 + 3.37603i 0.245354 + 0.141655i
\(569\) −6.58402 11.4039i −0.276017 0.478075i 0.694375 0.719614i \(-0.255681\pi\)
−0.970391 + 0.241539i \(0.922348\pi\)
\(570\) −0.502818 2.42932i −0.0210607 0.101753i
\(571\) 19.8349 0.830065 0.415032 0.909807i \(-0.363770\pi\)
0.415032 + 0.909807i \(0.363770\pi\)
\(572\) 7.46475 20.8276i 0.312117 0.870848i
\(573\) 68.6909i 2.86960i
\(574\) 1.54275 + 2.67212i 0.0643930 + 0.111532i
\(575\) 13.3695 + 1.54979i 0.557547 + 0.0646307i
\(576\) 11.6582 20.1926i 0.485758 0.841357i
\(577\) 10.9210i 0.454646i 0.973819 + 0.227323i \(0.0729972\pi\)
−0.973819 + 0.227323i \(0.927003\pi\)
\(578\) 3.78258 + 2.18388i 0.157335 + 0.0908373i
\(579\) 26.6767 46.2054i 1.10865 1.92023i
\(580\) 12.0404 + 3.98339i 0.499949 + 0.165401i
\(581\) −14.4527 + 25.0329i −0.599601 + 1.03854i
\(582\) −4.06139 + 2.34484i −0.168350 + 0.0971969i
\(583\) 36.0745 20.8276i 1.49406 0.862593i
\(584\) −7.03411 −0.291073
\(585\) −12.8098 31.7436i −0.529618 1.31244i
\(586\) −4.44979 −0.183819
\(587\) 35.0303 20.2247i 1.44585 0.834764i 0.447624 0.894222i \(-0.352270\pi\)
0.998231 + 0.0594576i \(0.0189371\pi\)
\(588\) 18.7121 10.8034i 0.771673 0.445526i
\(589\) −2.35526 + 4.07944i −0.0970469 + 0.168090i
\(590\) −0.589093 + 1.78062i −0.0242526 + 0.0733069i
\(591\) 29.1414 50.4744i 1.19872 2.07624i
\(592\) 5.66274 + 3.26938i 0.232737 + 0.134371i
\(593\) 1.47709i 0.0606569i −0.999540 0.0303284i \(-0.990345\pi\)
0.999540 0.0303284i \(-0.00965532\pi\)
\(594\) 1.80054 3.11862i 0.0738769 0.127959i
\(595\) 2.96188 + 14.3100i 0.121425 + 0.586654i
\(596\) 14.9842 + 25.9533i 0.613775 + 1.06309i
\(597\) 49.0690i 2.00826i
\(598\) −2.07602 2.44951i −0.0848947 0.100168i
\(599\) −2.27271 −0.0928606 −0.0464303 0.998922i \(-0.514785\pi\)
−0.0464303 + 0.998922i \(0.514785\pi\)
\(600\) −1.99479 + 17.2083i −0.0814369 + 0.702528i
\(601\) −3.70215 6.41231i −0.151014 0.261563i 0.780587 0.625048i \(-0.214920\pi\)
−0.931600 + 0.363484i \(0.881587\pi\)
\(602\) −8.39472 4.84669i −0.342143 0.197536i
\(603\) 17.0476i 0.694231i
\(604\) −13.7494 + 23.8147i −0.559456 + 0.969005i
\(605\) −0.775932 + 0.691182i −0.0315461 + 0.0281006i
\(606\) −5.08549 −0.206584
\(607\) 9.26059 + 5.34661i 0.375876 + 0.217012i 0.676022 0.736881i \(-0.263702\pi\)
−0.300146 + 0.953893i \(0.597036\pi\)
\(608\) −3.97502 + 2.29498i −0.161208 + 0.0930736i
\(609\) −13.5404 23.4526i −0.548683 0.950347i
\(610\) 1.74074 5.26162i 0.0704804 0.213037i
\(611\) −23.3164 8.35673i −0.943280 0.338077i
\(612\) 15.6429i 0.632327i
\(613\) −5.26673 + 3.04075i −0.212721 + 0.122815i −0.602575 0.798062i \(-0.705859\pi\)
0.389854 + 0.920877i \(0.372525\pi\)
\(614\) −4.07057 7.05043i −0.164275 0.284532i
\(615\) −11.1343 12.4996i −0.448980 0.504032i
\(616\) 14.0101 0.564485
\(617\) −27.5732 15.9194i −1.11006 0.640892i −0.171213 0.985234i \(-0.554769\pi\)
−0.938844 + 0.344342i \(0.888102\pi\)
\(618\) −5.68295 3.28106i −0.228602 0.131983i
\(619\) 26.4043 1.06128 0.530639 0.847598i \(-0.321952\pi\)
0.530639 + 0.847598i \(0.321952\pi\)
\(620\) 11.9355 10.6319i 0.479342 0.426987i
\(621\) 4.51345 + 7.81753i 0.181119 + 0.313707i
\(622\) −0.698464 + 0.403259i −0.0280059 + 0.0161692i
\(623\) 34.5957i 1.38605i
\(624\) −24.8424 + 21.0545i −0.994491 + 0.842853i
\(625\) 7.21560 + 23.9361i 0.288624 + 0.957443i
\(626\) −3.19200 5.52871i −0.127578 0.220972i
\(627\) 9.42647 5.44238i 0.376457 0.217348i
\(628\) 17.8805 + 10.3233i 0.713509 + 0.411944i
\(629\) 3.79785 0.151430
\(630\) 7.86513 7.00607i 0.313354 0.279129i
\(631\) −17.5840 + 30.4564i −0.700009 + 1.21245i 0.268454 + 0.963293i \(0.413487\pi\)
−0.968463 + 0.249158i \(0.919846\pi\)
\(632\) 17.7381i 0.705585i
\(633\) 44.9907 + 25.9754i 1.78822 + 1.03243i
\(634\) 4.76764 + 8.25780i 0.189347 + 0.327959i
\(635\) −20.0653 + 4.15310i −0.796269 + 0.164811i
\(636\) −65.3098 −2.58970
\(637\) −15.0626 + 2.73247i −0.596804 + 0.108264i
\(638\) 3.22150i 0.127540i
\(639\) 11.1364 + 19.2887i 0.440547 + 0.763051i
\(640\) 20.1130 4.16297i 0.795036 0.164556i
\(641\) −2.76257 + 4.78491i −0.109115 + 0.188993i −0.915412 0.402518i \(-0.868135\pi\)
0.806297 + 0.591511i \(0.201468\pi\)
\(642\) 7.63594i 0.301367i
\(643\) −27.8472 16.0776i −1.09819 0.634039i −0.162444 0.986718i \(-0.551938\pi\)
−0.935744 + 0.352679i \(0.885271\pi\)
\(644\) −8.53289 + 14.7794i −0.336243 + 0.582390i
\(645\) 49.9276 + 16.5179i 1.96590 + 0.650391i
\(646\) −0.401610 + 0.695609i −0.0158011 + 0.0273684i
\(647\) −11.9376 + 6.89216i −0.469314 + 0.270959i −0.715953 0.698149i \(-0.754007\pi\)
0.246638 + 0.969108i \(0.420674\pi\)
\(648\) 4.13609 2.38797i 0.162481 0.0938085i
\(649\) −8.22905 −0.323019
\(650\) 2.64540 5.34547i 0.103761 0.209667i
\(651\) −34.1316 −1.33772
\(652\) −6.84015 + 3.94916i −0.267881 + 0.154661i
\(653\) −7.36296 + 4.25101i −0.288135 + 0.166355i −0.637100 0.770781i \(-0.719866\pi\)
0.348965 + 0.937136i \(0.386533\pi\)
\(654\) 3.78109 6.54905i 0.147852 0.256088i
\(655\) −21.2291 7.02335i −0.829488 0.274425i
\(656\) −4.66565 + 8.08115i −0.182163 + 0.315516i
\(657\) −20.0944 11.6015i −0.783959 0.452619i
\(658\) 7.62150i 0.297117i
\(659\) 2.02183 3.50192i 0.0787594 0.136415i −0.823956 0.566654i \(-0.808237\pi\)
0.902715 + 0.430239i \(0.141571\pi\)
\(660\) −36.1685 + 7.48611i −1.40786 + 0.291397i
\(661\) −15.6364 27.0830i −0.608184 1.05341i −0.991540 0.129805i \(-0.958565\pi\)
0.383356 0.923601i \(-0.374768\pi\)
\(662\) 0.983609i 0.0382290i
\(663\) −6.38142 + 17.8050i −0.247834 + 0.691489i
\(664\) 11.0945 0.430551
\(665\) 9.14794 1.89343i 0.354742 0.0734241i
\(666\) −1.36872 2.37068i −0.0530366 0.0918622i
\(667\) 6.99351 + 4.03771i 0.270790 + 0.156341i
\(668\) 6.33991i 0.245298i
\(669\) −16.6498 + 28.8383i −0.643719 + 1.11495i
\(670\) 2.21795 1.97570i 0.0856869 0.0763278i
\(671\) 24.3164 0.938723
\(672\) −28.8022 16.6290i −1.11107 0.641477i
\(673\) 27.7768 16.0370i 1.07072 0.618179i 0.142340 0.989818i \(-0.454537\pi\)
0.928377 + 0.371639i \(0.121204\pi\)
\(674\) −0.314906 0.545433i −0.0121297 0.0210093i
\(675\) −10.0000 + 13.4590i −0.384900 + 0.518038i
\(676\) 23.0111 8.63282i 0.885041 0.332031i
\(677\) 14.2382i 0.547220i 0.961841 + 0.273610i \(0.0882177\pi\)
−0.961841 + 0.273610i \(0.911782\pi\)
\(678\) 5.65503 3.26493i 0.217180 0.125389i
\(679\) −8.82983 15.2937i −0.338858 0.586919i
\(680\) 4.18822 3.73077i 0.160611 0.143068i
\(681\) 16.5891 0.635695
\(682\) −3.51629 2.03013i −0.134646 0.0777377i
\(683\) −22.3302 12.8923i −0.854440 0.493311i 0.00770647 0.999970i \(-0.497547\pi\)
−0.862146 + 0.506659i \(0.830880\pi\)
\(684\) −10.0000 −0.382360
\(685\) −25.0595 28.1322i −0.957473 1.07487i
\(686\) 1.52782 + 2.64626i 0.0583325 + 0.101035i
\(687\) −62.9025 + 36.3168i −2.39988 + 1.38557i
\(688\) 29.3152i 1.11763i
\(689\) 43.5589 + 15.6118i 1.65946 + 0.594761i
\(690\) −1.68362 + 5.08898i −0.0640944 + 0.193734i
\(691\) 0.0218318 + 0.0378138i 0.000830522 + 0.00143851i 0.866440 0.499281i \(-0.166402\pi\)
−0.865610 + 0.500719i \(0.833069\pi\)
\(692\) 14.3049 8.25894i 0.543791 0.313958i
\(693\) 40.0230 + 23.1073i 1.52035 + 0.877774i
\(694\) −4.18002 −0.158671
\(695\) 1.71461 1.52734i 0.0650390 0.0579352i
\(696\) −5.19707 + 9.00160i −0.196995 + 0.341205i
\(697\) 5.41982i 0.205290i
\(698\) −2.57091 1.48431i −0.0973103 0.0561821i
\(699\) −1.10945 1.92163i −0.0419634 0.0726827i
\(700\) −31.4887 3.65016i −1.19016 0.137963i
\(701\) −14.5454 −0.549373 −0.274687 0.961534i \(-0.588574\pi\)
−0.274687 + 0.961534i \(0.588574\pi\)
\(702\) 3.93595 0.714008i 0.148553 0.0269485i
\(703\) 2.42785i 0.0915679i
\(704\) 8.91238 + 15.4367i 0.335898 + 0.581792i
\(705\) 8.38064 + 40.4903i 0.315633 + 1.52495i
\(706\) −5.66565 + 9.81320i −0.213230 + 0.369325i
\(707\) 19.1501i 0.720214i
\(708\) 11.1735 + 6.45101i 0.419925 + 0.242444i
\(709\) 9.81638 17.0025i 0.368662 0.638541i −0.620695 0.784052i \(-0.713149\pi\)
0.989357 + 0.145511i \(0.0464827\pi\)
\(710\) −1.21891 + 3.68431i −0.0457447 + 0.138270i
\(711\) −29.2560 + 50.6728i −1.09718 + 1.90038i
\(712\) 11.4996 6.63929i 0.430965 0.248818i
\(713\) 8.81438 5.08898i 0.330101 0.190584i
\(714\) −5.81998 −0.217807
\(715\) 25.9124 + 3.65285i 0.969067 + 0.136609i
\(716\) 34.0490 1.27247
\(717\) 9.32468 5.38361i 0.348237 0.201055i
\(718\) 6.41912 3.70608i 0.239559 0.138310i
\(719\) 23.7156 41.0766i 0.884443 1.53190i 0.0380914 0.999274i \(-0.487872\pi\)
0.846351 0.532625i \(-0.178794\pi\)
\(720\) 30.2425 + 10.0053i 1.12707 + 0.372876i
\(721\) 12.3553 21.3999i 0.460134 0.796976i
\(722\) −4.99906 2.88621i −0.186046 0.107414i
\(723\) 61.0872i 2.27186i
\(724\) −0.986548 + 1.70875i −0.0366648 + 0.0635052i
\(725\) −1.72723 + 14.9002i −0.0641477 + 0.553380i
\(726\) −0.206926 0.358406i −0.00767973 0.0133017i
\(727\) 34.0951i 1.26452i 0.774757 + 0.632259i \(0.217872\pi\)
−0.774757 + 0.632259i \(0.782128\pi\)
\(728\) 10.0622 + 11.8725i 0.372931 + 0.440024i
\(729\) 42.8349 1.58648
\(730\) −0.819409 3.95890i −0.0303277 0.146525i
\(731\) −8.51345 14.7457i −0.314881 0.545391i
\(732\) −33.0170 19.0624i −1.22034 0.704565i
\(733\) 14.3920i 0.531580i 0.964031 + 0.265790i \(0.0856327\pi\)
−0.964031 + 0.265790i \(0.914367\pi\)
\(734\) 2.18270 3.78055i 0.0805651 0.139543i
\(735\) 16.9984 + 19.0827i 0.626997 + 0.703877i
\(736\) 9.91745 0.365562
\(737\) 11.2864 + 6.51621i 0.415740 + 0.240028i
\(738\) 3.38314 1.95326i 0.124535 0.0719004i
\(739\) −17.2240 29.8328i −0.633594 1.09742i −0.986811 0.161876i \(-0.948246\pi\)
0.353217 0.935541i \(-0.385088\pi\)
\(740\) −2.58762 + 7.82145i −0.0951228 + 0.287522i
\(741\) 11.3822 + 4.07944i 0.418134 + 0.149862i
\(742\) 14.2382i 0.522702i
\(743\) −35.2589 + 20.3567i −1.29352 + 0.746816i −0.979277 0.202526i \(-0.935085\pi\)
−0.314246 + 0.949342i \(0.601752\pi\)
\(744\) 6.55021 + 11.3453i 0.240142 + 0.415939i
\(745\) −26.4674 + 23.5765i −0.969690 + 0.863777i
\(746\) 5.04903 0.184858
\(747\) 31.6939 + 18.2985i 1.15962 + 0.669507i
\(748\) 10.3564 + 5.97929i 0.378669 + 0.218625i
\(749\) −28.7542 −1.05066
\(750\) −9.91748 + 0.881918i −0.362135 + 0.0322031i
\(751\) −16.2509 28.1474i −0.593003 1.02711i −0.993825 0.110956i \(-0.964609\pi\)
0.400822 0.916156i \(-0.368725\pi\)
\(752\) 19.9613 11.5247i 0.727914 0.420261i
\(753\) 51.2167i 1.86644i
\(754\) 2.72997 2.31371i 0.0994196 0.0842603i
\(755\) −30.8786 10.2158i −1.12379 0.371790i
\(756\) −10.6304 18.4123i −0.386623 0.669650i
\(757\) −11.2864 + 6.51621i −0.410211 + 0.236836i −0.690881 0.722969i \(-0.742777\pi\)
0.280669 + 0.959805i \(0.409444\pi\)
\(758\) −5.22286 3.01542i −0.189703 0.109525i
\(759\) −23.5185 −0.853668
\(760\) −2.38496 2.67739i −0.0865116 0.0971193i
\(761\) 1.99493 3.45532i 0.0723161 0.125255i −0.827600 0.561318i \(-0.810294\pi\)
0.899916 + 0.436063i \(0.143628\pi\)
\(762\) 8.16070i 0.295631i
\(763\) 24.6613 + 14.2382i 0.892800 + 0.515458i
\(764\) −24.1220 41.7805i −0.872703 1.51157i
\(765\) 18.1178 3.75001i 0.655051 0.135582i
\(766\) −0.476696 −0.0172237
\(767\) −5.91018 6.97348i −0.213404 0.251798i
\(768\) 21.3847i 0.771652i
\(769\) 3.33343 + 5.77367i 0.120207 + 0.208204i 0.919849 0.392272i \(-0.128311\pi\)
−0.799642 + 0.600476i \(0.794978\pi\)
\(770\) 1.63205 + 7.88512i 0.0588151 + 0.284160i
\(771\) −2.84181 + 4.92216i −0.102345 + 0.177267i
\(772\) 37.4720i 1.34865i
\(773\) 41.8593 + 24.1675i 1.50557 + 0.869244i 0.999979 + 0.00647254i \(0.00206029\pi\)
0.505595 + 0.862771i \(0.331273\pi\)
\(774\)