Properties

Label 65.2.n.a.29.1
Level $65$
Weight $2$
Character 65.29
Analytic conductor $0.519$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 65 = 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 65.n (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.519027613138\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Defining polynomial: \(x^{12} - 8 x^{10} + 54 x^{8} - 78 x^{6} + 92 x^{4} - 10 x^{2} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 29.1
Root \(-2.20467 - 1.27287i\) of defining polynomial
Character \(\chi\) \(=\) 65.29
Dual form 65.2.n.a.9.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-2.20467 + 1.27287i) q^{2} +(1.86449 - 1.07646i) q^{3} +(2.24039 - 3.88048i) q^{4} +(-0.817544 - 2.08125i) q^{5} +(-2.74039 + 4.74650i) q^{6} +(2.54486 + 1.46928i) q^{7} +6.31544i q^{8} +(0.817544 - 1.41603i) q^{9} +O(q^{10})\) \(q+(-2.20467 + 1.27287i) q^{2} +(1.86449 - 1.07646i) q^{3} +(2.24039 - 3.88048i) q^{4} +(-0.817544 - 2.08125i) q^{5} +(-2.74039 + 4.74650i) q^{6} +(2.54486 + 1.46928i) q^{7} +6.31544i q^{8} +(0.817544 - 1.41603i) q^{9} +(4.45158 + 3.54786i) q^{10} +(0.317544 + 0.550003i) q^{11} -9.64680i q^{12} +(-3.60484 - 0.0716710i) q^{13} -7.48079 q^{14} +(-3.76470 - 3.00042i) q^{15} +(-3.55794 - 6.16253i) q^{16} +(1.05998 + 0.611979i) q^{17} +4.16251i q^{18} +(0.682456 - 1.18205i) q^{19} +(-9.90788 - 1.49037i) q^{20} +6.32648 q^{21} +(-1.40016 - 0.808385i) q^{22} +(-1.86449 + 1.07646i) q^{23} +(6.79833 + 11.7751i) q^{24} +(-3.66324 + 3.40304i) q^{25} +(8.03872 - 4.43048i) q^{26} +2.93855i q^{27} +(11.4030 - 6.58351i) q^{28} +(1.50000 + 2.59808i) q^{29} +(12.1191 + 1.82298i) q^{30} -8.96157 q^{31} +(4.74954 + 2.74215i) q^{32} +(1.18412 + 0.683650i) q^{33} -3.11588 q^{34} +(0.977401 - 6.49770i) q^{35} +(-3.66324 - 6.34492i) q^{36} +(1.05998 - 0.611979i) q^{37} +3.47471i q^{38} +(-6.79833 + 3.74685i) q^{39} +(13.1440 - 5.16315i) q^{40} +(4.98079 + 8.62698i) q^{41} +(-13.9478 + 8.05279i) q^{42} +(-1.18412 - 0.683650i) q^{43} +2.84570 q^{44} +(-3.61549 - 0.543852i) q^{45} +(2.74039 - 4.74650i) q^{46} -6.16379i q^{47} +(-13.2675 - 7.65998i) q^{48} +(0.817544 + 1.41603i) q^{49} +(3.74464 - 12.1654i) q^{50} +2.63509 q^{51} +(-8.35437 + 13.8279i) q^{52} -0.642285i q^{53} +(-3.74039 - 6.47855i) q^{54} +(0.885090 - 1.11054i) q^{55} +(-9.27912 + 16.0719i) q^{56} -2.93855i q^{57} +(-6.61402 - 3.81861i) q^{58} +(3.79833 - 6.57890i) q^{59} +(-20.0774 + 7.88669i) q^{60} +(1.13509 - 1.96603i) q^{61} +(19.7574 - 11.4069i) q^{62} +(4.16107 - 2.40240i) q^{63} +0.270178 q^{64} +(2.79795 + 7.56118i) q^{65} -3.48079 q^{66} +(6.95421 - 4.01502i) q^{67} +(4.74954 - 2.74215i) q^{68} +(-2.31754 + 4.01410i) q^{69} +(6.11588 + 15.5694i) q^{70} +(-1.31754 + 2.28205i) q^{71} +(8.94284 + 5.16315i) q^{72} +10.3263i q^{73} +(-1.55794 + 2.69843i) q^{74} +(-3.16683 + 10.2883i) q^{75} +(-3.05794 - 5.29650i) q^{76} +1.86624i q^{77} +(10.2189 - 16.9140i) q^{78} -1.03843 q^{79} +(-9.91702 + 12.4431i) q^{80} +(5.61588 + 9.72698i) q^{81} +(-21.9620 - 12.6798i) q^{82} -11.8452i q^{83} +(14.1738 - 24.5498i) q^{84} +(0.407104 - 2.70640i) q^{85} +3.48079 q^{86} +(5.59346 + 3.22939i) q^{87} +(-3.47351 + 2.00543i) q^{88} +(-6.27912 - 10.8758i) q^{89} +(8.66324 - 3.40304i) q^{90} +(-9.06851 - 5.47890i) q^{91} +9.64680i q^{92} +(-16.7087 + 9.64680i) q^{93} +(7.84570 + 13.5891i) q^{94} +(-3.01808 - 0.453987i) q^{95} +11.8073 q^{96} +(12.8031 + 7.39190i) q^{97} +(-3.60484 - 2.08125i) q^{98} +1.03843 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12q + 4q^{4} - 6q^{5} - 10q^{6} + 6q^{9} + O(q^{10}) \) \( 12q + 4q^{4} - 6q^{5} - 10q^{6} + 6q^{9} + 7q^{10} - 44q^{14} - 4q^{15} - 16q^{16} + 12q^{19} - q^{20} - 8q^{21} + 32q^{24} - 2q^{25} + 24q^{26} + 18q^{29} + 4q^{30} - 16q^{31} + 16q^{34} + 10q^{35} - 2q^{36} - 32q^{39} + 70q^{40} + 14q^{41} - 4q^{44} - 29q^{45} + 10q^{46} + 6q^{49} - 31q^{50} + 24q^{51} - 22q^{54} - 26q^{55} - 16q^{56} - 4q^{59} - 96q^{60} + 6q^{61} - 12q^{64} + 23q^{65} + 4q^{66} - 24q^{69} + 20q^{70} - 12q^{71} + 8q^{74} + 2q^{75} - 10q^{76} - 104q^{79} + 33q^{80} + 14q^{81} + 90q^{84} + 21q^{85} - 4q^{86} + 20q^{89} + 62q^{90} - 44q^{91} + 56q^{94} + 20q^{95} + 12q^{96} + 104q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/65\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(41\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.20467 + 1.27287i −1.55894 + 0.900055i −0.561582 + 0.827421i \(0.689807\pi\)
−0.997359 + 0.0726333i \(0.976860\pi\)
\(3\) 1.86449 1.07646i 1.07646 0.621496i 0.146523 0.989207i \(-0.453192\pi\)
0.929940 + 0.367711i \(0.119858\pi\)
\(4\) 2.24039 3.88048i 1.12020 1.94024i
\(5\) −0.817544 2.08125i −0.365617 0.930765i
\(6\) −2.74039 + 4.74650i −1.11876 + 1.93775i
\(7\) 2.54486 + 1.46928i 0.961867 + 0.555334i 0.896747 0.442543i \(-0.145924\pi\)
0.0651198 + 0.997877i \(0.479257\pi\)
\(8\) 6.31544i 2.23284i
\(9\) 0.817544 1.41603i 0.272515 0.472010i
\(10\) 4.45158 + 3.54786i 1.40771 + 1.12193i
\(11\) 0.317544 + 0.550003i 0.0957433 + 0.165832i 0.909919 0.414787i \(-0.136144\pi\)
−0.814175 + 0.580619i \(0.802811\pi\)
\(12\) 9.64680i 2.78479i
\(13\) −3.60484 0.0716710i −0.999802 0.0198779i
\(14\) −7.48079 −1.99932
\(15\) −3.76470 3.00042i −0.972040 0.774705i
\(16\) −3.55794 6.16253i −0.889484 1.54063i
\(17\) 1.05998 + 0.611979i 0.257082 + 0.148427i 0.623003 0.782220i \(-0.285912\pi\)
−0.365920 + 0.930646i \(0.619246\pi\)
\(18\) 4.16251i 0.981113i
\(19\) 0.682456 1.18205i 0.156566 0.271180i −0.777062 0.629424i \(-0.783291\pi\)
0.933628 + 0.358244i \(0.116624\pi\)
\(20\) −9.90788 1.49037i −2.21547 0.333256i
\(21\) 6.32648 1.38055
\(22\) −1.40016 0.808385i −0.298516 0.172348i
\(23\) −1.86449 + 1.07646i −0.388773 + 0.224458i −0.681628 0.731699i \(-0.738728\pi\)
0.292856 + 0.956157i \(0.405394\pi\)
\(24\) 6.79833 + 11.7751i 1.38770 + 2.40357i
\(25\) −3.66324 + 3.40304i −0.732648 + 0.680607i
\(26\) 8.03872 4.43048i 1.57652 0.868888i
\(27\) 2.93855i 0.565525i
\(28\) 11.4030 6.58351i 2.15496 1.24417i
\(29\) 1.50000 + 2.59808i 0.278543 + 0.482451i 0.971023 0.238987i \(-0.0768152\pi\)
−0.692480 + 0.721437i \(0.743482\pi\)
\(30\) 12.1191 + 1.82298i 2.21263 + 0.332829i
\(31\) −8.96157 −1.60955 −0.804773 0.593583i \(-0.797713\pi\)
−0.804773 + 0.593583i \(0.797713\pi\)
\(32\) 4.74954 + 2.74215i 0.839607 + 0.484747i
\(33\) 1.18412 + 0.683650i 0.206128 + 0.119008i
\(34\) −3.11588 −0.534368
\(35\) 0.977401 6.49770i 0.165211 1.09831i
\(36\) −3.66324 6.34492i −0.610540 1.05749i
\(37\) 1.05998 0.611979i 0.174259 0.100609i −0.410333 0.911936i \(-0.634588\pi\)
0.584593 + 0.811327i \(0.301254\pi\)
\(38\) 3.47471i 0.563672i
\(39\) −6.79833 + 3.74685i −1.08860 + 0.599975i
\(40\) 13.1440 5.16315i 2.07825 0.816366i
\(41\) 4.98079 + 8.62698i 0.777868 + 1.34731i 0.933168 + 0.359440i \(0.117032\pi\)
−0.155300 + 0.987867i \(0.549634\pi\)
\(42\) −13.9478 + 8.05279i −2.15220 + 1.24257i
\(43\) −1.18412 0.683650i −0.180576 0.104256i 0.406987 0.913434i \(-0.366579\pi\)
−0.587563 + 0.809178i \(0.699913\pi\)
\(44\) 2.84570 0.429005
\(45\) −3.61549 0.543852i −0.538966 0.0810727i
\(46\) 2.74039 4.74650i 0.404049 0.699833i
\(47\) 6.16379i 0.899081i −0.893260 0.449540i \(-0.851588\pi\)
0.893260 0.449540i \(-0.148412\pi\)
\(48\) −13.2675 7.65998i −1.91499 1.10562i
\(49\) 0.817544 + 1.41603i 0.116792 + 0.202290i
\(50\) 3.74464 12.1654i 0.529571 1.72045i
\(51\) 2.63509 0.368986
\(52\) −8.35437 + 13.8279i −1.15854 + 1.91759i
\(53\) 0.642285i 0.0882246i −0.999027 0.0441123i \(-0.985954\pi\)
0.999027 0.0441123i \(-0.0140459\pi\)
\(54\) −3.74039 6.47855i −0.509003 0.881619i
\(55\) 0.885090 1.11054i 0.119345 0.149746i
\(56\) −9.27912 + 16.0719i −1.23997 + 2.14770i
\(57\) 2.93855i 0.389221i
\(58\) −6.61402 3.81861i −0.868464 0.501408i
\(59\) 3.79833 6.57890i 0.494501 0.856500i −0.505479 0.862839i \(-0.668684\pi\)
0.999980 + 0.00633858i \(0.00201765\pi\)
\(60\) −20.0774 + 7.88669i −2.59199 + 1.01817i
\(61\) 1.13509 1.96603i 0.145333 0.251725i −0.784164 0.620554i \(-0.786908\pi\)
0.929497 + 0.368829i \(0.120241\pi\)
\(62\) 19.7574 11.4069i 2.50919 1.44868i
\(63\) 4.16107 2.40240i 0.524246 0.302674i
\(64\) 0.270178 0.0337722
\(65\) 2.79795 + 7.56118i 0.347043 + 0.937849i
\(66\) −3.48079 −0.428455
\(67\) 6.95421 4.01502i 0.849592 0.490512i −0.0109212 0.999940i \(-0.503476\pi\)
0.860513 + 0.509428i \(0.170143\pi\)
\(68\) 4.74954 2.74215i 0.575966 0.332534i
\(69\) −2.31754 + 4.01410i −0.279000 + 0.483241i
\(70\) 6.11588 + 15.5694i 0.730987 + 1.86090i
\(71\) −1.31754 + 2.28205i −0.156364 + 0.270830i −0.933555 0.358435i \(-0.883311\pi\)
0.777191 + 0.629265i \(0.216644\pi\)
\(72\) 8.94284 + 5.16315i 1.05392 + 0.608483i
\(73\) 10.3263i 1.20860i 0.796756 + 0.604301i \(0.206547\pi\)
−0.796756 + 0.604301i \(0.793453\pi\)
\(74\) −1.55794 + 2.69843i −0.181107 + 0.313686i
\(75\) −3.16683 + 10.2883i −0.365674 + 1.18799i
\(76\) −3.05794 5.29650i −0.350770 0.607551i
\(77\) 1.86624i 0.212678i
\(78\) 10.2189 16.9140i 1.15706 1.91513i
\(79\) −1.03843 −0.116832 −0.0584161 0.998292i \(-0.518605\pi\)
−0.0584161 + 0.998292i \(0.518605\pi\)
\(80\) −9.91702 + 12.4431i −1.10876 + 1.39118i
\(81\) 5.61588 + 9.72698i 0.623986 + 1.08078i
\(82\) −21.9620 12.6798i −2.42530 1.40025i
\(83\) 11.8452i 1.30018i −0.759855 0.650092i \(-0.774730\pi\)
0.759855 0.650092i \(-0.225270\pi\)
\(84\) 14.1738 24.5498i 1.54649 2.67860i
\(85\) 0.407104 2.70640i 0.0441566 0.293551i
\(86\) 3.48079 0.375343
\(87\) 5.59346 + 3.22939i 0.599682 + 0.346227i
\(88\) −3.47351 + 2.00543i −0.370277 + 0.213780i
\(89\) −6.27912 10.8758i −0.665585 1.15283i −0.979126 0.203253i \(-0.934849\pi\)
0.313541 0.949575i \(-0.398485\pi\)
\(90\) 8.66324 3.40304i 0.913186 0.358712i
\(91\) −9.06851 5.47890i −0.950638 0.574344i
\(92\) 9.64680i 1.00575i
\(93\) −16.7087 + 9.64680i −1.73262 + 1.00033i
\(94\) 7.84570 + 13.5891i 0.809222 + 1.40161i
\(95\) −3.01808 0.453987i −0.309648 0.0465781i
\(96\) 11.8073 1.20507
\(97\) 12.8031 + 7.39190i 1.29996 + 0.750534i 0.980397 0.197031i \(-0.0631299\pi\)
0.319565 + 0.947564i \(0.396463\pi\)
\(98\) −3.60484 2.08125i −0.364144 0.210238i
\(99\) 1.03843 0.104366
\(100\) 4.99829 + 21.8393i 0.499829 + 2.18393i
\(101\) −6.61588 11.4590i −0.658304 1.14022i −0.981054 0.193732i \(-0.937941\pi\)
0.322750 0.946484i \(-0.395393\pi\)
\(102\) −5.80951 + 3.35412i −0.575228 + 0.332108i
\(103\) 10.9686i 1.08077i −0.841419 0.540383i \(-0.818279\pi\)
0.841419 0.540383i \(-0.181721\pi\)
\(104\) 0.452633 22.7661i 0.0443843 2.23240i
\(105\) −5.17218 13.1670i −0.504753 1.28497i
\(106\) 0.817544 + 1.41603i 0.0794069 + 0.137537i
\(107\) −9.24360 + 5.33680i −0.893613 + 0.515928i −0.875123 0.483901i \(-0.839219\pi\)
−0.0184903 + 0.999829i \(0.505886\pi\)
\(108\) 11.4030 + 6.58351i 1.09725 + 0.633499i
\(109\) 3.27018 0.313226 0.156613 0.987660i \(-0.449942\pi\)
0.156613 + 0.987660i \(0.449942\pi\)
\(110\) −0.537759 + 3.57499i −0.0512733 + 0.340862i
\(111\) 1.31754 2.28205i 0.125056 0.216603i
\(112\) 20.9104i 1.97584i
\(113\) −4.78895 2.76490i −0.450507 0.260100i 0.257537 0.966268i \(-0.417089\pi\)
−0.708044 + 0.706168i \(0.750422\pi\)
\(114\) 3.74039 + 6.47855i 0.350320 + 0.606772i
\(115\) 3.76470 + 3.00042i 0.351060 + 0.279790i
\(116\) 13.4424 1.24809
\(117\) −3.04860 + 5.04596i −0.281844 + 0.466499i
\(118\) 19.3391i 1.78031i
\(119\) 1.79833 + 3.11480i 0.164853 + 0.285533i
\(120\) 18.9490 23.7757i 1.72979 2.17041i
\(121\) 5.29833 9.17698i 0.481666 0.834271i
\(122\) 5.77928i 0.523231i
\(123\) 18.5732 + 10.7233i 1.67469 + 0.966884i
\(124\) −20.0774 + 34.7752i −1.80301 + 3.12290i
\(125\) 10.0774 + 4.84201i 0.901354 + 0.433082i
\(126\) −6.11588 + 10.5930i −0.544845 + 0.943700i
\(127\) −14.9231 + 8.61586i −1.32421 + 0.764534i −0.984397 0.175959i \(-0.943697\pi\)
−0.339813 + 0.940493i \(0.610364\pi\)
\(128\) −10.0947 + 5.82819i −0.892256 + 0.515144i
\(129\) −2.94369 −0.259178
\(130\) −15.7930 13.1085i −1.38513 1.14969i
\(131\) 10.0000 0.873704 0.436852 0.899533i \(-0.356093\pi\)
0.436852 + 0.899533i \(0.356093\pi\)
\(132\) 5.30577 3.06329i 0.461808 0.266625i
\(133\) 3.47351 2.00543i 0.301191 0.173893i
\(134\) −10.2212 + 17.7036i −0.882975 + 1.52936i
\(135\) 6.11588 2.40240i 0.526371 0.206765i
\(136\) −3.86491 + 6.69422i −0.331413 + 0.574025i
\(137\) 7.51044 + 4.33616i 0.641661 + 0.370463i 0.785254 0.619174i \(-0.212532\pi\)
−0.143593 + 0.989637i \(0.545866\pi\)
\(138\) 11.7997i 1.00446i
\(139\) 7.16324 12.4071i 0.607578 1.05236i −0.384060 0.923308i \(-0.625474\pi\)
0.991638 0.129048i \(-0.0411922\pi\)
\(140\) −23.0244 18.3502i −1.94592 1.55087i
\(141\) −6.63509 11.4923i −0.558775 0.967827i
\(142\) 6.70825i 0.562944i
\(143\) −1.10528 2.00543i −0.0924279 0.167703i
\(144\) −11.6351 −0.969591
\(145\) 4.18094 5.24592i 0.347208 0.435650i
\(146\) −13.1440 22.7661i −1.08781 1.88414i
\(147\) 3.04860 + 1.76011i 0.251445 + 0.145172i
\(148\) 5.48429i 0.450806i
\(149\) −8.57745 + 14.8566i −0.702692 + 1.21710i 0.264826 + 0.964296i \(0.414685\pi\)
−0.967518 + 0.252802i \(0.918648\pi\)
\(150\) −6.11379 26.7132i −0.499189 2.18113i
\(151\) −21.3828 −1.74011 −0.870053 0.492957i \(-0.835916\pi\)
−0.870053 + 0.492957i \(0.835916\pi\)
\(152\) 7.46515 + 4.31000i 0.605503 + 0.349587i
\(153\) 1.73316 1.00064i 0.140118 0.0808969i
\(154\) −2.37548 4.11446i −0.191422 0.331552i
\(155\) 7.32648 + 18.6513i 0.588477 + 1.49811i
\(156\) −0.691395 + 34.7752i −0.0553559 + 2.78424i
\(157\) 18.3646i 1.46566i −0.680413 0.732829i \(-0.738200\pi\)
0.680413 0.732829i \(-0.261800\pi\)
\(158\) 2.28939 1.32178i 0.182134 0.105155i
\(159\) −0.691395 1.19753i −0.0548312 0.0949705i
\(160\) 1.82415 12.1268i 0.144211 0.958709i
\(161\) −6.32648 −0.498597
\(162\) −24.7624 14.2966i −1.94551 1.12324i
\(163\) −3.47351 2.00543i −0.272066 0.157078i 0.357760 0.933814i \(-0.383541\pi\)
−0.629826 + 0.776736i \(0.716874\pi\)
\(164\) 44.6357 3.48546
\(165\) 0.454782 3.02336i 0.0354047 0.235368i
\(166\) 15.0774 + 26.1149i 1.17024 + 2.02691i
\(167\) 2.54486 1.46928i 0.196927 0.113696i −0.398294 0.917258i \(-0.630398\pi\)
0.595221 + 0.803562i \(0.297064\pi\)
\(168\) 39.9545i 3.08256i
\(169\) 12.9897 + 0.516725i 0.999210 + 0.0397480i
\(170\) 2.54737 + 6.48493i 0.195374 + 0.497371i
\(171\) −1.11588 1.93275i −0.0853331 0.147801i
\(172\) −5.30577 + 3.06329i −0.404561 + 0.233574i
\(173\) 1.18412 + 0.683650i 0.0900267 + 0.0519769i 0.544337 0.838866i \(-0.316781\pi\)
−0.454311 + 0.890843i \(0.650114\pi\)
\(174\) −16.4424 −1.24649
\(175\) −14.3224 + 3.27794i −1.08267 + 0.247789i
\(176\) 2.25961 3.91375i 0.170324 0.295010i
\(177\) 16.3550i 1.22932i
\(178\) 27.6868 + 15.9850i 2.07522 + 1.19813i
\(179\) 3.89306 + 6.74299i 0.290981 + 0.503994i 0.974042 0.226367i \(-0.0726849\pi\)
−0.683061 + 0.730362i \(0.739352\pi\)
\(180\) −10.2105 + 12.8114i −0.761048 + 0.954905i
\(181\) −3.86684 −0.287420 −0.143710 0.989620i \(-0.545903\pi\)
−0.143710 + 0.989620i \(0.545903\pi\)
\(182\) 26.9670 + 0.536155i 1.99893 + 0.0397425i
\(183\) 4.88752i 0.361296i
\(184\) −6.79833 11.7751i −0.501180 0.868069i
\(185\) −2.14026 1.70576i −0.157355 0.125410i
\(186\) 24.5582 42.5361i 1.80070 3.11890i
\(187\) 0.777322i 0.0568434i
\(188\) −23.9184 13.8093i −1.74443 1.00715i
\(189\) −4.31754 + 7.47821i −0.314055 + 0.543959i
\(190\) 7.23175 2.84073i 0.524646 0.206088i
\(191\) −2.47185 + 4.28136i −0.178857 + 0.309789i −0.941489 0.337043i \(-0.890573\pi\)
0.762633 + 0.646832i \(0.223906\pi\)
\(192\) 0.503743 0.290836i 0.0363545 0.0209893i
\(193\) −4.29240 + 2.47822i −0.308974 + 0.178386i −0.646467 0.762942i \(-0.723754\pi\)
0.337493 + 0.941328i \(0.390421\pi\)
\(194\) −37.6357 −2.70208
\(195\) 13.3561 + 11.0858i 0.956449 + 0.793874i
\(196\) 7.32648 0.523320
\(197\) 5.84174 3.37273i 0.416207 0.240297i −0.277246 0.960799i \(-0.589422\pi\)
0.693453 + 0.720502i \(0.256088\pi\)
\(198\) −2.28939 + 1.32178i −0.162700 + 0.0939349i
\(199\) 2.58772 4.48207i 0.183439 0.317725i −0.759611 0.650378i \(-0.774610\pi\)
0.943049 + 0.332653i \(0.107944\pi\)
\(200\) −21.4917 23.1350i −1.51969 1.63589i
\(201\) 8.64403 14.9719i 0.609703 1.05604i
\(202\) 29.1717 + 16.8423i 2.05251 + 1.18502i
\(203\) 8.81566i 0.618738i
\(204\) 5.90364 10.2254i 0.413337 0.715921i
\(205\) 13.8829 17.4192i 0.969625 1.21661i
\(206\) 13.9616 + 24.1822i 0.972749 + 1.68485i
\(207\) 3.52022i 0.244673i
\(208\) 12.3841 + 22.4699i 0.858684 + 1.55801i
\(209\) 0.866840 0.0599606
\(210\) 28.1629 + 22.4455i 1.94342 + 1.54889i
\(211\) 7.00894 + 12.1398i 0.482515 + 0.835741i 0.999799 0.0200732i \(-0.00638994\pi\)
−0.517283 + 0.855814i \(0.673057\pi\)
\(212\) −2.49237 1.43897i −0.171177 0.0988289i
\(213\) 5.67315i 0.388718i
\(214\) 13.5861 23.5318i 0.928726 1.60860i
\(215\) −0.454782 + 3.02336i −0.0310158 + 0.206191i
\(216\) −18.5582 −1.26273
\(217\) −22.8060 13.1670i −1.54817 0.893836i
\(218\) −7.20968 + 4.16251i −0.488301 + 0.281921i
\(219\) 11.1159 + 19.2533i 0.751141 + 1.30101i
\(220\) −2.32648 5.92262i −0.156852 0.399303i
\(221\) −3.77719 2.28205i −0.254081 0.153508i
\(222\) 6.70825i 0.450228i
\(223\) 0.00719226 0.00415245i 0.000481629 0.000278069i −0.499759 0.866164i \(-0.666578\pi\)
0.500241 + 0.865886i \(0.333245\pi\)
\(224\) 8.05794 + 13.9568i 0.538394 + 0.932525i
\(225\) 1.82393 + 7.96939i 0.121596 + 0.531293i
\(226\) 14.0774 0.936418
\(227\) −9.75454 5.63179i −0.647431 0.373795i 0.140040 0.990146i \(-0.455277\pi\)
−0.787471 + 0.616351i \(0.788610\pi\)
\(228\) −11.4030 6.58351i −0.755181 0.436004i
\(229\) 16.5404 1.09302 0.546509 0.837453i \(-0.315957\pi\)
0.546509 + 0.837453i \(0.315957\pi\)
\(230\) −12.1191 1.82298i −0.799108 0.120204i
\(231\) 2.00894 + 3.47959i 0.132179 + 0.228940i
\(232\) −16.4080 + 9.47315i −1.07724 + 0.621943i
\(233\) 6.94941i 0.455271i −0.973746 0.227636i \(-0.926900\pi\)
0.973746 0.227636i \(-0.0730995\pi\)
\(234\) 0.298331 15.0052i 0.0195025 0.980919i
\(235\) −12.8284 + 5.03917i −0.836833 + 0.328719i
\(236\) −17.0195 29.4787i −1.10788 1.91890i
\(237\) −1.93613 + 1.11783i −0.125765 + 0.0726107i
\(238\) −7.92947 4.57808i −0.513991 0.296753i
\(239\) −4.00000 −0.258738 −0.129369 0.991596i \(-0.541295\pi\)
−0.129369 + 0.991596i \(0.541295\pi\)
\(240\) −5.09562 + 33.8753i −0.328921 + 2.18664i
\(241\) −9.88605 + 17.1231i −0.636817 + 1.10300i 0.349310 + 0.937007i \(0.386416\pi\)
−0.986127 + 0.165992i \(0.946917\pi\)
\(242\) 26.9763i 1.73410i
\(243\) 13.3069 + 7.68273i 0.853637 + 0.492848i
\(244\) −5.08609 8.80937i −0.325604 0.563962i
\(245\) 2.27874 2.85918i 0.145583 0.182667i
\(246\) −54.5973 −3.48099
\(247\) −2.54486 + 4.21218i −0.161926 + 0.268015i
\(248\) 56.5962i 3.59386i
\(249\) −12.7510 22.0853i −0.808060 1.39960i
\(250\) −28.3807 + 2.15223i −1.79496 + 0.136119i
\(251\) −1.83676 + 3.18136i −0.115935 + 0.200806i −0.918153 0.396226i \(-0.870320\pi\)
0.802218 + 0.597031i \(0.203653\pi\)
\(252\) 21.5293i 1.35622i
\(253\) −1.18412 0.683650i −0.0744447 0.0429807i
\(254\) 21.9337 37.9903i 1.37624 2.38372i
\(255\) −2.15430 5.48429i −0.134908 0.343440i
\(256\) 14.5669 25.2306i 0.910430 1.57691i
\(257\) −11.4877 + 6.63242i −0.716583 + 0.413719i −0.813494 0.581574i \(-0.802437\pi\)
0.0969108 + 0.995293i \(0.469104\pi\)
\(258\) 6.48989 3.74694i 0.404043 0.233274i
\(259\) 3.59666 0.223486
\(260\) 35.6095 + 6.08264i 2.20841 + 0.377230i
\(261\) 4.90527 0.303628
\(262\) −22.0467 + 12.7287i −1.36205 + 0.786381i
\(263\) 26.2150 15.1352i 1.61649 0.933279i 0.628667 0.777674i \(-0.283601\pi\)
0.987819 0.155605i \(-0.0497327\pi\)
\(264\) −4.31754 + 7.47821i −0.265726 + 0.460252i
\(265\) −1.33676 + 0.525096i −0.0821164 + 0.0322564i
\(266\) −5.10530 + 8.84265i −0.313026 + 0.542177i
\(267\) −23.4147 13.5185i −1.43296 0.827317i
\(268\) 35.9809i 2.19788i
\(269\) −11.1248 + 19.2687i −0.678292 + 1.17484i 0.297203 + 0.954814i \(0.403946\pi\)
−0.975495 + 0.220022i \(0.929387\pi\)
\(270\) −10.4256 + 13.0812i −0.634480 + 0.796097i
\(271\) 5.91421 + 10.2437i 0.359262 + 0.622261i 0.987838 0.155488i \(-0.0496950\pi\)
−0.628575 + 0.777749i \(0.716362\pi\)
\(272\) 8.70953i 0.528093i
\(273\) −22.8060 0.453425i −1.38028 0.0274425i
\(274\) −22.0774 −1.33375
\(275\) −3.03492 0.934179i −0.183013 0.0563331i
\(276\) 10.3844 + 17.9863i 0.625069 + 1.08265i
\(277\) 14.5363 + 8.39254i 0.873402 + 0.504259i 0.868477 0.495729i \(-0.165099\pi\)
0.00492452 + 0.999988i \(0.498432\pi\)
\(278\) 36.4715i 2.18741i
\(279\) −7.32648 + 12.6898i −0.438625 + 0.759721i
\(280\) 41.0358 + 6.17271i 2.45236 + 0.368890i
\(281\) −10.5967 −0.632144 −0.316072 0.948735i \(-0.602364\pi\)
−0.316072 + 0.948735i \(0.602364\pi\)
\(282\) 29.2564 + 16.8912i 1.74219 + 1.00586i
\(283\) −7.63458 + 4.40783i −0.453829 + 0.262018i −0.709446 0.704760i \(-0.751055\pi\)
0.255617 + 0.966778i \(0.417721\pi\)
\(284\) 5.90364 + 10.2254i 0.350316 + 0.606766i
\(285\) −6.11588 + 2.40240i −0.362273 + 0.142306i
\(286\) 4.98943 + 3.01445i 0.295031 + 0.178248i
\(287\) 29.2726i 1.72791i
\(288\) 7.76591 4.48365i 0.457611 0.264202i
\(289\) −7.75096 13.4251i −0.455939 0.789710i
\(290\) −2.54024 + 16.8873i −0.149168 + 0.991659i
\(291\) 31.8284 1.86581
\(292\) 40.0709 + 23.1350i 2.34497 + 1.35387i
\(293\) 24.4675 + 14.1263i 1.42940 + 0.825267i 0.997074 0.0764476i \(-0.0243578\pi\)
0.432331 + 0.901715i \(0.357691\pi\)
\(294\) −8.96157 −0.522650
\(295\) −16.7977 2.52675i −0.977999 0.147113i
\(296\) 3.86491 + 6.69422i 0.224643 + 0.389094i
\(297\) −1.61621 + 0.933121i −0.0937822 + 0.0541452i
\(298\) 43.6719i 2.52984i
\(299\) 6.79833 3.74685i 0.393158 0.216686i
\(300\) 32.8284 + 35.3386i 1.89535 + 2.04027i
\(301\) −2.00894 3.47959i −0.115793 0.200560i
\(302\) 47.1421 27.2175i 2.71272 1.56619i
\(303\) −24.6704 14.2435i −1.41728 0.818267i
\(304\) −9.71254 −0.557052
\(305\) −5.01980 0.755091i −0.287433 0.0432364i
\(306\) −2.54737 + 4.41217i −0.145623 + 0.252227i
\(307\) 12.7219i 0.726077i −0.931774 0.363039i \(-0.881739\pi\)
0.931774 0.363039i \(-0.118261\pi\)
\(308\) 7.24190 + 4.18112i 0.412646 + 0.238241i
\(309\) −11.8073 20.4508i −0.671692 1.16340i
\(310\) −39.8932 31.7944i −2.26578 1.80580i
\(311\) 27.9231 1.58338 0.791688 0.610925i \(-0.209202\pi\)
0.791688 + 0.610925i \(0.209202\pi\)
\(312\) −23.6630 42.9344i −1.33965 2.43068i
\(313\) 24.5807i 1.38938i 0.719307 + 0.694692i \(0.244460\pi\)
−0.719307 + 0.694692i \(0.755540\pi\)
\(314\) 23.3758 + 40.4880i 1.31917 + 2.28487i
\(315\) −8.40186 6.69619i −0.473391 0.377287i
\(316\) −2.32648 + 4.02959i −0.130875 + 0.226682i
\(317\) 0.234377i 0.0131639i 0.999978 + 0.00658196i \(0.00209512\pi\)
−0.999978 + 0.00658196i \(0.997905\pi\)
\(318\) 3.04860 + 1.76011i 0.170957 + 0.0987022i
\(319\) −0.952633 + 1.65001i −0.0533372 + 0.0923828i
\(320\) −0.220882 0.562309i −0.0123477 0.0314340i
\(321\) −11.4897 + 19.9008i −0.641294 + 1.11075i
\(322\) 13.9478 8.05279i 0.777283 0.448764i
\(323\) 1.44678 0.835296i 0.0805008 0.0464771i
\(324\) 50.3271 2.79595
\(325\) 13.4493 12.0048i 0.746033 0.665909i
\(326\) 10.2106 0.565513
\(327\) 6.09721 3.52022i 0.337176 0.194669i
\(328\) −54.4831 + 31.4558i −3.00833 + 1.73686i
\(329\) 9.05631 15.6860i 0.499290 0.864796i
\(330\) 2.84570 + 7.24440i 0.156651 + 0.398791i
\(331\) 9.16324 15.8712i 0.503657 0.872360i −0.496334 0.868132i \(-0.665321\pi\)
0.999991 0.00422829i \(-0.00134591\pi\)
\(332\) −45.9652 26.5380i −2.52267 1.45646i
\(333\) 2.00128i 0.109669i
\(334\) −3.74039 + 6.47855i −0.204665 + 0.354491i
\(335\) −14.0416 11.1910i −0.767177 0.611431i
\(336\) −22.5092 38.9871i −1.22798 2.12692i
\(337\) 21.2949i 1.16001i 0.814614 + 0.580003i \(0.196949\pi\)
−0.814614 + 0.580003i \(0.803051\pi\)
\(338\) −29.2958 + 15.3950i −1.59348 + 0.837379i
\(339\) −11.9053 −0.646605
\(340\) −9.59006 7.64317i −0.520094 0.414509i
\(341\) −2.84570 4.92889i −0.154103 0.266915i
\(342\) 4.92028 + 2.84073i 0.266059 + 0.153609i
\(343\) 15.7651i 0.851234i
\(344\) 4.31754 7.47821i 0.232786 0.403198i
\(345\) 10.2491 + 1.54169i 0.551791 + 0.0830019i
\(346\) −3.48079 −0.187128
\(347\) −3.30407 1.90761i −0.177372 0.102406i 0.408685 0.912675i \(-0.365987\pi\)
−0.586057 + 0.810270i \(0.699321\pi\)
\(348\) 25.0631 14.4702i 1.34352 0.775684i
\(349\) 12.1632 + 21.0674i 0.651083 + 1.12771i 0.982860 + 0.184352i \(0.0590185\pi\)
−0.331777 + 0.943358i \(0.607648\pi\)
\(350\) 27.4039 25.4574i 1.46480 1.36075i
\(351\) 0.210609 10.5930i 0.0112415 0.565413i
\(352\) 3.48301i 0.185645i
\(353\) −23.4338 + 13.5295i −1.24726 + 0.720104i −0.970562 0.240853i \(-0.922573\pi\)
−0.276696 + 0.960958i \(0.589239\pi\)
\(354\) 20.8178 + 36.0576i 1.10646 + 1.91644i
\(355\) 5.82669 + 0.876465i 0.309248 + 0.0465179i
\(356\) −56.2708 −2.98235
\(357\) 6.70593 + 3.87167i 0.354916 + 0.204911i
\(358\) −17.1659 9.91073i −0.907245 0.523798i
\(359\) −27.0039 −1.42521 −0.712605 0.701566i \(-0.752485\pi\)
−0.712605 + 0.701566i \(0.752485\pi\)
\(360\) 3.43466 22.8334i 0.181023 1.20343i
\(361\) 8.56851 + 14.8411i 0.450974 + 0.781110i
\(362\) 8.52512 4.92198i 0.448071 0.258694i
\(363\) 22.8138i 1.19742i
\(364\) −41.5777 + 22.9152i −2.17927 + 1.20108i
\(365\) 21.4917 8.44221i 1.12492 0.441885i
\(366\) 6.22118 + 10.7754i 0.325186 + 0.563239i
\(367\) 6.01118 3.47055i 0.313781 0.181161i −0.334836 0.942276i \(-0.608681\pi\)
0.648617 + 0.761115i \(0.275348\pi\)
\(368\) 13.2675 + 7.65998i 0.691615 + 0.399304i
\(369\) 16.2881 0.847922
\(370\) 6.88980 + 1.03638i 0.358184 + 0.0538789i
\(371\) 0.943693 1.63452i 0.0489941 0.0848603i
\(372\) 86.4505i 4.48225i
\(373\) −2.00301 1.15644i −0.103712 0.0598781i 0.447247 0.894411i \(-0.352405\pi\)
−0.550959 + 0.834532i \(0.685738\pi\)
\(374\) −0.989429 1.71374i −0.0511622 0.0886154i
\(375\) 24.0015 1.82013i 1.23943 0.0939913i
\(376\) 38.9270 2.00751
\(377\) −5.22105 9.47315i −0.268898 0.487892i
\(378\) 21.9827i 1.13067i
\(379\) 2.58772 + 4.48207i 0.132922 + 0.230228i 0.924802 0.380449i \(-0.124231\pi\)
−0.791880 + 0.610677i \(0.790897\pi\)
\(380\) −8.52337 + 10.6945i −0.437240 + 0.548615i
\(381\) −18.5493 + 32.1283i −0.950309 + 1.64598i
\(382\) 12.5854i 0.643923i
\(383\) 17.8929 + 10.3305i 0.914283 + 0.527861i 0.881807 0.471611i \(-0.156327\pi\)
0.0324760 + 0.999473i \(0.489661\pi\)
\(384\) −12.5477 + 21.7332i −0.640320 + 1.10907i
\(385\) 3.88412 1.52574i 0.197953 0.0777587i
\(386\) 6.30890 10.9273i 0.321115 0.556187i
\(387\) −1.93613 + 1.11783i −0.0984193 + 0.0568224i
\(388\) 57.3682 33.1215i 2.91243 1.68149i
\(389\) −19.7477 −1.00125 −0.500624 0.865665i \(-0.666896\pi\)
−0.500624 + 0.865665i \(0.666896\pi\)
\(390\) −43.5566 7.44014i −2.20558 0.376746i
\(391\) −2.63509 −0.133262
\(392\) −8.94284 + 5.16315i −0.451681 + 0.260778i
\(393\) 18.6449 10.7646i 0.940510 0.543004i
\(394\) −8.58609 + 14.8715i −0.432561 + 0.749218i
\(395\) 0.848960 + 2.16123i 0.0427158 + 0.108743i
\(396\) 2.32648 4.02959i 0.116910 0.202494i
\(397\) −8.13113 4.69451i −0.408090 0.235611i 0.281879 0.959450i \(-0.409042\pi\)
−0.689969 + 0.723839i \(0.742376\pi\)
\(398\) 13.1753i 0.660420i
\(399\) 4.31754 7.47821i 0.216148 0.374379i
\(400\) 34.0049 + 10.4670i 1.70024 + 0.523352i
\(401\) −12.2510 21.2193i −0.611784 1.05964i −0.990940 0.134308i \(-0.957119\pi\)
0.379156 0.925333i \(-0.376214\pi\)
\(402\) 44.0109i 2.19506i
\(403\) 32.3050 + 0.642285i 1.60923 + 0.0319945i
\(404\) −59.2887 −2.94972
\(405\) 15.6531 19.6403i 0.777809 0.975935i
\(406\) −11.2212 19.4357i −0.556898 0.964575i
\(407\) 0.673180 + 0.388661i 0.0333683 + 0.0192652i
\(408\) 16.6417i 0.823889i
\(409\) 18.0582 31.2778i 0.892922 1.54659i 0.0565671 0.998399i \(-0.481985\pi\)
0.836355 0.548188i \(-0.184682\pi\)
\(410\) −8.43492 + 56.0749i −0.416571 + 2.76934i
\(411\) 18.6708 0.920965
\(412\) −42.5633 24.5739i −2.09694 1.21067i
\(413\) 19.3324 11.1616i 0.951288 0.549226i
\(414\) −4.48079 7.76095i −0.220219 0.381430i
\(415\) −24.6530 + 9.68401i −1.21017 + 0.475370i
\(416\) −16.9248 10.2254i −0.829805 0.501341i
\(417\) 30.8439i 1.51043i
\(418\) −1.91110 + 1.10337i −0.0934749 + 0.0539678i
\(419\) −3.43342 5.94686i −0.167734 0.290523i 0.769889 0.638178i \(-0.220311\pi\)
−0.937623 + 0.347655i \(0.886978\pi\)
\(420\) −62.6820 9.42879i −3.05857 0.460078i
\(421\) 33.9795 1.65606 0.828029 0.560686i \(-0.189462\pi\)
0.828029 + 0.560686i \(0.189462\pi\)
\(422\) −30.9049 17.8429i −1.50443 0.868580i
\(423\) −8.72810 5.03917i −0.424375 0.245013i
\(424\) 4.05631 0.196992
\(425\) −5.96554 + 1.36532i −0.289371 + 0.0662277i
\(426\) −7.22118 12.5075i −0.349867 0.605988i
\(427\) 5.77729 3.33552i 0.279582 0.161417i
\(428\) 47.8261i 2.31176i
\(429\) −4.21955 2.54931i −0.203722 0.123082i
\(430\) −2.84570 7.24440i −0.137232 0.349356i
\(431\) 8.12482 + 14.0726i 0.391359 + 0.677853i 0.992629 0.121193i \(-0.0386719\pi\)
−0.601270 + 0.799046i \(0.705339\pi\)
\(432\) 18.1089 10.4552i 0.871265 0.503025i
\(433\) −0.221929 0.128130i −0.0106652 0.00615756i 0.494658 0.869088i \(-0.335293\pi\)
−0.505323 + 0.862930i \(0.668627\pi\)
\(434\) 67.0396 3.21800
\(435\) 2.14827 14.2816i 0.103002 0.684750i
\(436\) 7.32648 12.6898i 0.350875 0.607733i
\(437\) 2.93855i 0.140570i
\(438\) −49.0138 28.2981i −2.34197 1.35214i
\(439\) −3.79833 6.57890i −0.181284 0.313994i 0.761034 0.648712i \(-0.224692\pi\)
−0.942318 + 0.334718i \(0.891359\pi\)
\(440\) 7.01356 + 5.58973i 0.334358 + 0.266480i
\(441\) 2.67352 0.127310
\(442\) 11.2322 + 0.223318i 0.534263 + 0.0106221i
\(443\) 4.32246i 0.205366i 0.994714 + 0.102683i \(0.0327428\pi\)
−0.994714 + 0.102683i \(0.967257\pi\)
\(444\) −5.90364 10.2254i −0.280174 0.485276i
\(445\) −17.5017 + 21.9599i −0.829663 + 1.04100i
\(446\) −0.0105711 + 0.0183096i −0.000500554 + 0.000866986i
\(447\) 36.9332i 1.74688i
\(448\) 0.687565 + 0.396966i 0.0324844 + 0.0187549i
\(449\) 1.64403 2.84754i 0.0775865 0.134384i −0.824622 0.565685i \(-0.808612\pi\)
0.902208 + 0.431301i \(0.141945\pi\)
\(450\) −14.1652 15.2483i −0.667753 0.718811i
\(451\) −3.16324 + 5.47890i −0.148951 + 0.257991i
\(452\) −21.4583 + 12.3889i −1.00931 + 0.582727i
\(453\) −39.8680 + 23.0178i −1.87316 + 1.08147i
\(454\) 28.6741 1.34574
\(455\) −3.98907 + 23.3531i −0.187010 + 1.09481i
\(456\) 18.5582 0.869069
\(457\) 13.3594 7.71304i 0.624925 0.360801i −0.153859 0.988093i \(-0.549170\pi\)
0.778784 + 0.627292i \(0.215837\pi\)
\(458\) −36.4661 + 21.0537i −1.70395 + 0.983775i
\(459\) −1.79833 + 3.11480i −0.0839389 + 0.145386i
\(460\) 20.0774 7.88669i 0.936116 0.367719i
\(461\) −12.9424 + 22.4168i −0.602786 + 1.04406i 0.389611 + 0.920979i \(0.372609\pi\)
−0.992397 + 0.123076i \(0.960724\pi\)
\(462\) −8.85812 5.11424i −0.412117 0.237936i
\(463\) 7.04045i 0.327197i 0.986527 + 0.163599i \(0.0523102\pi\)
−0.986527 + 0.163599i \(0.947690\pi\)
\(464\) 10.6738 18.4876i 0.495519 0.858265i
\(465\) 33.7376 + 26.8885i 1.56454 + 1.24692i
\(466\) 8.84570 + 15.3212i 0.409769 + 0.709741i
\(467\) 18.8113i 0.870482i −0.900314 0.435241i \(-0.856663\pi\)
0.900314 0.435241i \(-0.143337\pi\)
\(468\) 12.7507 + 23.1350i 0.589399 + 1.06941i
\(469\) 23.5967 1.08959
\(470\) 21.8683 27.4386i 1.00871 1.26565i
\(471\) −19.7688 34.2406i −0.910900 1.57773i
\(472\) 41.5486 + 23.9881i 1.91243 + 1.10414i
\(473\) 0.868356i 0.0399271i
\(474\) 2.84570 4.92889i 0.130707 0.226392i
\(475\) 1.52255 + 6.65255i 0.0698594 + 0.305240i
\(476\) 16.1159 0.738670
\(477\) −0.909493 0.525096i −0.0416428 0.0240425i
\(478\) 8.81870 5.09148i 0.403358 0.232879i
\(479\) −9.73876 16.8680i −0.444975 0.770720i 0.553075 0.833131i \(-0.313454\pi\)
−0.998051 + 0.0624114i \(0.980121\pi\)
\(480\) −9.65297 24.5739i −0.440596 1.12164i
\(481\) −3.86491 + 2.13011i −0.176225 + 0.0971249i
\(482\) 50.3346i 2.29268i
\(483\) −11.7957 + 6.81023i −0.536721 + 0.309876i
\(484\) −23.7407 41.1201i −1.07912 1.86909i
\(485\) 4.91728 32.6898i 0.223282 1.48437i
\(486\) −39.1165 −1.77436
\(487\) −27.9935 16.1620i −1.26851 0.732372i −0.293800 0.955867i \(-0.594920\pi\)
−0.974705 + 0.223495i \(0.928253\pi\)
\(488\) 12.4163 + 7.16858i 0.562062 + 0.324506i
\(489\) −8.63509 −0.390492
\(490\) −1.38451 + 9.20411i −0.0625456 + 0.415799i
\(491\) −14.3354 24.8297i −0.646949 1.12055i −0.983848 0.179007i \(-0.942711\pi\)
0.336899 0.941541i \(-0.390622\pi\)
\(492\) 83.2227 48.0487i 3.75197 2.16620i
\(493\) 3.67187i 0.165373i
\(494\) 0.249036 12.5258i 0.0112046 0.563561i
\(495\) −0.848960 2.16123i −0.0381579 0.0971401i
\(496\) 31.8847 + 55.2260i 1.43167 + 2.47972i
\(497\) −6.70593 + 3.87167i −0.300802 + 0.173668i
\(498\) 56.2235 + 32.4606i 2.51943 + 1.45460i
\(499\) −28.9616 −1.29650 −0.648249 0.761428i \(-0.724498\pi\)
−0.648249 + 0.761428i \(0.724498\pi\)
\(500\) 41.3667 28.2573i 1.84998 1.26370i
\(501\) 3.16324 5.47890i 0.141323 0.244779i
\(502\) 9.35181i 0.417392i
\(503\) 24.3433 + 14.0546i 1.08542 + 0.626665i 0.932352 0.361551i \(-0.117753\pi\)
0.153063 + 0.988216i \(0.451086\pi\)
\(504\) 15.1722 + 26.2790i 0.675823 + 1.17056i
\(505\) −18.4404 + 23.1376i −0.820587 + 1.02961i
\(506\) 3.48079 0.154740
\(507\) 24.7754 13.0195i 1.10032 0.578218i
\(508\) 77.2116i 3.42571i
\(509\) 10.5563 + 18.2841i 0.467900 + 0.810427i 0.999327 0.0366773i \(-0.0116774\pi\)
−0.531427 + 0.847104i \(0.678344\pi\)
\(510\) 11.7303 + 9.34893i 0.519427 + 0.413978i
\(511\) −15.1722 + 26.2790i −0.671178 + 1.16251i
\(512\) 50.8542i 2.24746i
\(513\) 3.47351 + 2.00543i 0.153359 + 0.0885420i
\(514\) 16.8844 29.2447i 0.744740 1.28993i
\(515\) −22.8284 + 8.96730i −1.00594 + 0.395147i
\(516\) −6.59503 + 11.4229i −0.290330 + 0.502866i
\(517\) 3.39010 1.95728i 0.149097 0.0860809i
\(518\) −7.92947 + 4.57808i −0.348401 + 0.201149i
\(519\) 2.94369 0.129214
\(520\) −47.7522 + 17.6703i −2.09407 + 0.774893i
\(521\) 0.673516 0.0295073 0.0147536 0.999891i \(-0.495304\pi\)
0.0147536 + 0.999891i \(0.495304\pi\)
\(522\) −10.8145 + 6.24376i −0.473339 + 0.273282i
\(523\) −25.8618 + 14.9313i −1.13086 + 0.652900i −0.944150 0.329516i \(-0.893114\pi\)
−0.186706 + 0.982416i \(0.559781\pi\)
\(524\) 22.4039 38.8048i 0.978720 1.69519i
\(525\) −23.1754 + 21.5293i −1.01146 + 0.939614i
\(526\) −38.5304 + 66.7366i −1.68000 + 2.90985i
\(527\) −9.49907 5.48429i −0.413786 0.238899i
\(528\) 9.72953i 0.423423i
\(529\) −9.18246 + 15.9045i −0.399237 + 0.691499i
\(530\) 2.27874 2.85918i 0.0989820 0.124195i
\(531\) −6.21061 10.7571i −0.269517 0.466818i
\(532\) 17.9718i 0.779177i
\(533\) −17.3366 31.4558i −0.750933 1.36250i
\(534\) 68.8290 2.97852
\(535\) 18.6643 + 14.8752i 0.806928 + 0.643112i
\(536\) 25.3566 + 43.9189i 1.09524 + 1.89701i
\(537\) 14.5171 + 8.38148i 0.626461 + 0.361687i
\(538\) 56.6418i 2.44200i
\(539\) −0.519213 + 0.899304i −0.0223641 + 0.0387358i
\(540\) 4.37953 29.1148i 0.188465 1.25290i
\(541\) 6.28806 0.270345 0.135172 0.990822i \(-0.456841\pi\)
0.135172 + 0.990822i \(0.456841\pi\)
\(542\) −26.0778 15.0560i −1.12014 0.646712i
\(543\) −7.20968 + 4.16251i −0.309397 + 0.178630i
\(544\) 3.35627 + 5.81323i 0.143899 + 0.249240i
\(545\) −2.67352 6.80607i −0.114521 0.291540i
\(546\) 50.8569 28.0294i 2.17647 1.19955i
\(547\) 3.03789i 0.129891i 0.997889 + 0.0649454i \(0.0206873\pi\)
−0.997889 + 0.0649454i \(0.979313\pi\)
\(548\) 33.6527 19.4294i 1.43757 0.829983i
\(549\) −1.85597 3.21464i −0.0792109 0.137197i
\(550\) 7.88011 1.80350i 0.336009 0.0769015i
\(551\) 4.09473 0.174442
\(552\) −25.3508 14.6363i −1.07900 0.622962i
\(553\) −2.64265 1.52574i −0.112377 0.0648809i
\(554\) −42.7304 −1.81544
\(555\) −5.82669 0.876465i −0.247329 0.0372039i
\(556\) −32.0970 55.5936i −1.36121 2.35769i
\(557\) −17.9264 + 10.3498i −0.759566 + 0.438536i −0.829140 0.559041i \(-0.811169\pi\)
0.0695738 + 0.997577i \(0.477836\pi\)
\(558\) 37.3026i 1.57915i
\(559\) 4.21955 + 2.54931i 0.178468 + 0.107824i
\(560\) −43.5198 + 17.0952i −1.83905 + 0.722402i
\(561\) 0.836758 + 1.44931i 0.0353279 + 0.0611898i
\(562\) 23.3622 13.4882i 0.985475 0.568964i
\(563\) −9.49188 5.48014i −0.400035 0.230960i 0.286464 0.958091i \(-0.407520\pi\)
−0.686499 + 0.727131i \(0.740853\pi\)
\(564\) −59.4608 −2.50375
\(565\) −1.83929 + 12.2275i −0.0773794 + 0.514413i
\(566\) 11.2212 19.4357i 0.471661 0.816941i
\(567\) 33.0051i 1.38608i
\(568\) −14.4122 8.32087i −0.604721 0.349136i
\(569\) 21.3566 + 36.9907i 0.895314 + 1.55073i 0.833416 + 0.552647i \(0.186382\pi\)
0.0618981 + 0.998082i \(0.480285\pi\)
\(570\) 10.4256 13.0812i 0.436679 0.547912i
\(571\) −23.6145 −0.988238 −0.494119 0.869394i \(-0.664509\pi\)
−0.494119 + 0.869394i \(0.664509\pi\)
\(572\) −10.2583 0.203954i −0.428920 0.00852774i
\(573\) 10.6434i 0.444635i
\(574\) −37.2602 64.5366i −1.55521 2.69370i
\(575\) 3.16683 10.2883i 0.132066 0.429050i
\(576\) 0.220882 0.382579i 0.00920343 0.0159408i
\(577\) 18.3646i 0.764530i 0.924053 + 0.382265i \(0.124856\pi\)
−0.924053 + 0.382265i \(0.875144\pi\)
\(578\) 34.1767 + 19.7319i 1.42156 + 0.820740i
\(579\) −5.33542 + 9.24123i −0.221733 + 0.384052i
\(580\) −10.9897 27.9770i −0.456324 1.16168i
\(581\) 17.4039 30.1445i 0.722037 1.25060i
\(582\) −70.1713 + 40.5134i −2.90869 + 1.67934i
\(583\) 0.353259 0.203954i 0.0146305 0.00844691i
\(584\) −65.2151 −2.69862
\(585\) 12.9943 + 2.21962i 0.537248 + 0.0917702i
\(586\) −71.9237 −2.97114
\(587\) 0.608726 0.351448i 0.0251248 0.0145058i −0.487385 0.873187i \(-0.662049\pi\)
0.512510 + 0.858681i \(0.328716\pi\)
\(588\) 13.6601 7.88669i 0.563335 0.325242i
\(589\) −6.11588 + 10.5930i −0.252000 + 0.436477i
\(590\) 40.2496 15.8106i 1.65705 0.650912i
\(591\) 7.26124 12.5768i 0.298687 0.517342i
\(592\) −7.54267 4.35476i −0.310002 0.178980i
\(593\) 37.1593i 1.52595i −0.646428 0.762975i \(-0.723738\pi\)
0.646428 0.762975i \(-0.276262\pi\)
\(594\) 2.37548 4.11446i 0.0974672 0.168818i
\(595\) 5.01248 6.28927i 0.205492 0.257835i
\(596\) 38.4337 + 66.5692i 1.57431 + 2.72678i
\(597\) 11.1423i 0.456026i
\(598\) −10.2189 + 16.9140i −0.417880 + 0.691663i
\(599\) 15.6914 0.641133 0.320567 0.947226i \(-0.396127\pi\)
0.320567 + 0.947226i \(0.396127\pi\)
\(600\) −64.9749 19.9999i −2.65259 0.816493i
\(601\) −6.00193 10.3956i −0.244824 0.424047i 0.717258 0.696807i \(-0.245397\pi\)
−0.962082 + 0.272760i \(0.912063\pi\)
\(602\) 8.85812 + 5.11424i 0.361030 + 0.208441i
\(603\) 13.1298i 0.534687i
\(604\) −47.9059 + 82.9754i −1.94926 + 3.37622i
\(605\) −23.4313 3.52459i −0.952616 0.143295i
\(606\) 72.5204 2.94594
\(607\) 33.5035 + 19.3433i 1.35987 + 0.785119i 0.989606 0.143809i \(-0.0459350\pi\)
0.370261 + 0.928928i \(0.379268\pi\)
\(608\) 6.48269 3.74278i 0.262908 0.151790i
\(609\) 9.48973 + 16.4367i 0.384543 + 0.666048i
\(610\) 12.0282 4.72482i 0.487006 0.191302i
\(611\) −0.441765 + 22.2195i −0.0178719 + 0.898903i
\(612\) 8.96730i 0.362482i
\(613\) −14.9684 + 8.64201i −0.604568 + 0.349047i −0.770836 0.637033i \(-0.780161\pi\)
0.166269 + 0.986081i \(0.446828\pi\)
\(614\) 16.1933 + 28.0477i 0.653509 + 1.13191i
\(615\) 7.13340 47.4224i 0.287646 1.91225i
\(616\) −11.7861 −0.474877
\(617\) 22.9229 + 13.2345i 0.922841 + 0.532803i 0.884540 0.466464i \(-0.154472\pi\)
0.0383009 + 0.999266i \(0.487805\pi\)
\(618\) 52.0624 + 30.0582i 2.09426 + 1.20912i
\(619\) 31.0039 1.24615 0.623075 0.782162i \(-0.285883\pi\)
0.623075 + 0.782162i \(0.285883\pi\)
\(620\) 88.7902 + 13.3560i 3.56590 + 0.536392i
\(621\) −3.16324 5.47890i −0.126937 0.219861i
\(622\) −61.5615 + 35.5425i −2.46839 + 1.42513i
\(623\) 36.9030i 1.47849i
\(624\) 47.2781 + 28.5639i 1.89264 + 1.14347i
\(625\) 1.83869 24.9323i 0.0735475 0.997292i
\(626\) −31.2881 54.1925i −1.25052 2.16597i
\(627\) 1.61621 0.933121i 0.0645453 0.0372653i
\(628\) −71.2635 41.1440i −2.84372 1.64182i
\(629\) 1.49807 0.0597320
\(630\) 27.0467 + 4.06844i 1.07757 + 0.162091i
\(631\) 10.3566 17.9381i 0.412288 0.714104i −0.582851 0.812579i \(-0.698063\pi\)
0.995140 + 0.0984745i \(0.0313963\pi\)
\(632\) 6.55812i 0.260868i
\(633\) 26.1362 + 15.0897i 1.03882 + 0.599763i
\(634\) −0.298331 0.516725i −0.0118482 0.0205218i
\(635\) 30.1321 + 24.0149i 1.19576 + 0.953003i
\(636\) −6.19599 −0.245687
\(637\) −2.84563 5.16315i −0.112748 0.204571i
\(638\) 4.85031i 0.192026i
\(639\) 2.15430 + 3.73136i 0.0852229 + 0.147610i
\(640\) 20.3828 + 16.2449i 0.805702 + 0.642136i
\(641\) −10.5947 + 18.3506i −0.418467 + 0.724806i −0.995785 0.0917132i \(-0.970766\pi\)
0.577319 + 0.816519i \(0.304099\pi\)
\(642\) 58.4997i 2.30880i
\(643\) 9.98843 + 5.76682i 0.393905 + 0.227421i 0.683851 0.729622i \(-0.260304\pi\)
−0.289946 + 0.957043i \(0.593637\pi\)
\(644\) −14.1738 + 24.5498i −0.558526 + 0.967396i
\(645\) 2.40660 + 6.12658i 0.0947598 + 0.241234i
\(646\) −2.12645 + 3.68311i −0.0836639 + 0.144910i
\(647\) 30.1779 17.4232i 1.18641 0.684977i 0.228925 0.973444i \(-0.426479\pi\)
0.957490 + 0.288467i \(0.0931456\pi\)
\(648\) −61.4301 + 35.4667i −2.41320 + 1.39326i
\(649\) 4.82456 0.189380
\(650\) −14.3707 + 43.5860i −0.563666 + 1.70958i
\(651\) −56.6953 −2.22206
\(652\) −15.5641 + 8.98591i −0.609535 + 0.351915i
\(653\) 19.3324 11.1616i 0.756537 0.436787i −0.0715139 0.997440i \(-0.522783\pi\)
0.828051 + 0.560653i \(0.189450\pi\)
\(654\) −8.96157 + 15.5219i −0.350425 + 0.606954i
\(655\) −8.17544 20.8125i −0.319441 0.813214i
\(656\) 35.4427 61.3885i 1.38380 2.39682i
\(657\) 14.6223 + 8.44221i 0.570471 + 0.329362i
\(658\) 46.1100i 1.79755i
\(659\) −0.433420 + 0.750705i −0.0168836 + 0.0292433i −0.874344 0.485307i \(-0.838708\pi\)
0.857460 + 0.514550i \(0.172041\pi\)
\(660\) −10.7132 8.53829i −0.417010 0.332352i
\(661\) −6.65430 11.5256i −0.258822 0.448293i 0.707104 0.707109i \(-0.250001\pi\)
−0.965927 + 0.258816i \(0.916668\pi\)
\(662\) 46.6544i 1.81328i
\(663\) −9.49907 0.188859i −0.368913 0.00733469i
\(664\) 74.8079 2.90311
\(665\) −7.01356 5.58973i −0.271974 0.216760i
\(666\) 2.54737 + 4.41217i 0.0987085 + 0.170968i
\(667\) −5.59346 3.22939i −0.216580 0.125042i
\(668\) 13.1670i 0.509448i
\(669\) 0.00893993 0.0154844i 0.000345637 0.000598662i
\(670\) 45.2020 + 6.79940i 1.74630 + 0.262684i
\(671\) 1.44176 0.0556587
\(672\) 30.0479 + 17.3481i 1.15912 + 0.669219i
\(673\) −4.77457 + 2.75660i −0.184046 + 0.106259i −0.589192 0.807993i \(-0.700554\pi\)
0.405146 + 0.914252i \(0.367221\pi\)
\(674\) −27.1056 46.9483i −1.04407 1.80838i
\(675\) −10.0000 10.7646i −0.384900 0.414331i
\(676\) 31.1072 49.2486i 1.19643 1.89418i
\(677\) 4.80479i 0.184663i 0.995728 + 0.0923316i \(0.0294320\pi\)
−0.995728 + 0.0923316i \(0.970568\pi\)
\(678\) 26.2472 15.1539i 1.00802 0.581980i
\(679\) 21.7215 + 37.6227i 0.833594 + 1.44383i
\(680\) 17.0921 + 2.57104i 0.655453 + 0.0985949i
\(681\) −24.2496 −0.929248
\(682\) 12.5477 + 7.24440i 0.480475 + 0.277403i
\(683\) −10.1866 5.88126i −0.389781 0.225040i 0.292284 0.956331i \(-0.405585\pi\)
−0.682065 + 0.731291i \(0.738918\pi\)
\(684\) −10.0000 −0.382360
\(685\) 2.88453 19.1761i 0.110212 0.732683i
\(686\) 20.0669 + 34.7569i 0.766157 + 1.32702i
\(687\) 30.8393 17.8051i 1.17659 0.679306i
\(688\) 9.72953i 0.370935i
\(689\) −0.0460332 + 2.31533i −0.00175372 + 0.0882071i
\(690\) −24.5582 + 9.64680i −0.934916 + 0.367247i
\(691\) −2.43342 4.21481i −0.0925717 0.160339i 0.816021 0.578022i \(-0.196175\pi\)
−0.908593 + 0.417684i \(0.862842\pi\)
\(692\) 5.30577 3.06329i 0.201695 0.116449i
\(693\) 2.64265 + 1.52574i 0.100386 + 0.0579579i
\(694\) 9.71254 0.368683
\(695\) −31.6786 4.76518i −1.20164 0.180753i
\(696\) −20.3950 + 35.3252i −0.773070 + 1.33900i
\(697\) 12.1925i 0.461825i
\(698\) −53.6320 30.9644i −2.03000 1.17202i
\(699\) −7.48079 12.9571i −0.282949 0.490083i
\(700\) −19.3679 + 62.9218i −0.732039 + 2.37822i
\(701\) 21.3828 0.807617 0.403808 0.914844i \(-0.367686\pi\)
0.403808 + 0.914844i \(0.367686\pi\)
\(702\) 13.0192 + 23.6222i 0.491378 + 0.891563i
\(703\) 1.67059i 0.0630076i
\(704\) 0.0857934 + 0.148599i 0.00323346 + 0.00560052i
\(705\) −18.4939 + 23.2048i −0.696522 + 0.873943i
\(706\) 34.4427 59.6564i 1.29627 2.24520i
\(707\) 38.8822i 1.46232i
\(708\) −63.4654 36.6417i −2.38517 1.37708i
\(709\) −13.0582 + 22.6175i −0.490412 + 0.849419i −0.999939 0.0110357i \(-0.996487\pi\)
0.509527 + 0.860455i \(0.329820\pi\)
\(710\) −13.9616 + 5.48429i −0.523969 + 0.205822i
\(711\) −0.848960 + 1.47044i −0.0318385 + 0.0551459i
\(712\) 68.6851 39.6554i 2.57408 1.48615i
\(713\) 16.7087 9.64680i 0.625748 0.361276i
\(714\) −19.7125 −0.737723
\(715\) −3.27020 + 3.93989i −0.122299 + 0.147344i
\(716\) 34.8880 1.30383
\(717\) −7.45795 + 4.30585i −0.278522 + 0.160805i
\(718\) 59.5347 34.3724i 2.22182 1.28277i
\(719\) 18.3387 31.7635i 0.683918 1.18458i −0.289858 0.957070i \(-0.593608\pi\)
0.973776 0.227510i \(-0.0730586\pi\)
\(720\) 9.51220 + 24.2156i 0.354499 + 0.902462i
\(721\) 16.1159 27.9135i 0.600187 1.03955i
\(722\) −37.7815 21.8132i −1.40608 0.811803i
\(723\) 42.5679i 1.58312i
\(724\) −8.66324 + 15.0052i −0.321967 + 0.557663i
\(725\) −14.3362 4.41283i −0.532434 0.163888i
\(726\) 29.0390 + 50.2971i 1.07774 + 1.86670i
\(727\) 26.2596i 0.973916i 0.873425 + 0.486958i \(0.161893\pi\)
−0.873425 + 0.486958i \(0.838107\pi\)
\(728\) 34.6016 57.2716i 1.28242 2.12263i
\(729\) −0.614542 −0.0227608
\(730\) −36.6363 + 45.9684i −1.35597 + 1.70137i
\(731\) −0.836758 1.44931i −0.0309486 0.0536046i
\(732\) −18.9659 10.9500i −0.701000 0.404723i
\(733\) 31.7811i 1.17386i 0.809637 + 0.586931i \(0.199664\pi\)
−0.809637 + 0.586931i \(0.800336\pi\)
\(734\) −8.83513 + 15.3029i −0.326110 + 0.564840i
\(735\) 1.17087 7.78389i 0.0431883 0.287113i
\(736\) −11.8073 −0.435222
\(737\) 4.41654 + 2.54989i 0.162685 + 0.0939265i
\(738\) −35.9099 + 20.7326i −1.32186 + 0.763176i
\(739\) −17.0685 29.5635i −0.627875 1.08751i −0.987977 0.154599i \(-0.950591\pi\)
0.360102 0.932913i \(-0.382742\pi\)
\(740\) −11.4142 + 4.48365i −0.419595 + 0.164822i
\(741\) −0.210609 + 10.5930i −0.00773691 + 0.389144i
\(742\) 4.80479i 0.176390i
\(743\) 2.70254 1.56031i 0.0991465 0.0572423i −0.449607 0.893227i \(-0.648436\pi\)
0.548753 + 0.835984i \(0.315103\pi\)
\(744\) −60.9237 105.523i −2.23357 3.86866i
\(745\) 37.9328 + 5.70594i 1.38975 + 0.209050i
\(746\) 5.88798 0.215574
\(747\) −16.7732 9.68401i −0.613699 0.354320i
\(748\) 3.01638 + 1.74151i 0.110290 + 0.0636758i
\(749\) −31.3649 −1.14605
\(750\) −50.5988 + 34.5636i −1.84761 + 1.26208i
\(751\) −0.742024 1.28522i −0.0270769 0.0468985i 0.852169 0.523266i \(-0.175287\pi\)
−0.879246 + 0.476367i \(0.841953\pi\)
\(752\) −37.9845 + 21.9304i −1.38515 + 0.799718i
\(753\) 7.90881i 0.288213i
\(754\) 23.5688 + 14.2395i 0.858325 + 0.518572i
\(755\) 17.4814 + 44.5030i 0.636213 + 1.61963i
\(756\) 19.3460 + 33.5082i 0.703607 + 1.21868i
\(757\) −4.41654 + 2.54989i −0.160522 + 0.0926774i −0.578109 0.815960i \(-0.696209\pi\)
0.417587 + 0.908637i \(0.362876\pi\)
\(758\) −11.4102 6.58767i −0.414436 0.239275i
\(759\) −2.94369 −0.106849
\(760\) 2.86713 19.0605i 0.104002 0.691397i
\(761\) 14.8931 25.7955i 0.539873 0.935088i −0.459037 0.888417i \(-0.651806\pi\)
0.998910 0.0466707i \(-0.0148611\pi\)
\(762\) 94.4433i 3.42132i
\(763\) 8.32215 + 4.80479i 0.301282 + 0.173945i
\(764\) 11.0758 + 19.1839i 0.400709 + 0.694048i
\(765\) −3.49952 2.78908i −0.126525 0.100839i
\(766\) −52.5973 −1.90042
\(767\) −14.1639 + 23.4437i −0.511428 + 0.846501i
\(768\) 62.7228i 2.26331i
\(769\) 9.54930 + 16.5399i 0.344356 + 0.596443i 0.985237 0.171198i \(-0.0547638\pi\)
−0.640880 + 0.767641i \(0.721430\pi\)
\(770\) −6.62117 + 8.30773i −0.238610 + 0.299390i
\(771\) −14.2791 + 24.7322i −0.514250 + 0.890707i
\(772\) 22.2088i 0.799311i
\(773\) −42.6350 24.6153i −1.53347 0.885351i −0.999198 0.0400400i \(-0.987251\pi\)
−0.534275 0.845311i \(-0.679415\pi\)
\(774\) 2.84570 4.92889i 0.102286