Properties

Label 65.2.n.a
Level 65
Weight 2
Character orbit 65.n
Analytic conductor 0.519
Analytic rank 0
Dimension 12
CM No
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 65 = 5 \cdot 13 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 65.n (of order \(6\) and degree \(2\))

Newform invariants

Self dual: No
Analytic conductor: \(0.519027613138\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -\beta_{4} q^{2} + ( \beta_{4} - \beta_{11} ) q^{3} + ( -\beta_{2} - \beta_{6} - \beta_{10} ) q^{4} + ( \beta_{6} - \beta_{7} + \beta_{8} ) q^{5} + ( \beta_{2} + 2 \beta_{6} + \beta_{10} ) q^{6} + ( -\beta_{1} - \beta_{3} ) q^{7} + ( -1 - \beta_{1} + \beta_{3} - \beta_{4} - \beta_{6} + \beta_{7} - \beta_{8} - \beta_{9} + \beta_{11} ) q^{8} + ( -\beta_{5} - 2 \beta_{6} + \beta_{7} ) q^{9} +O(q^{10})\) \( q -\beta_{4} q^{2} + ( \beta_{4} - \beta_{11} ) q^{3} + ( -\beta_{2} - \beta_{6} - \beta_{10} ) q^{4} + ( \beta_{6} - \beta_{7} + \beta_{8} ) q^{5} + ( \beta_{2} + 2 \beta_{6} + \beta_{10} ) q^{6} + ( -\beta_{1} - \beta_{3} ) q^{7} + ( -1 - \beta_{1} + \beta_{3} - \beta_{4} - \beta_{6} + \beta_{7} - \beta_{8} - \beta_{9} + \beta_{11} ) q^{8} + ( -\beta_{5} - 2 \beta_{6} + \beta_{7} ) q^{9} + ( 2 + \beta_{5} + 2 \beta_{6} + \beta_{9} + \beta_{10} ) q^{10} + ( \beta_{5} - \beta_{8} + \beta_{9} ) q^{11} + ( 1 + 2 \beta_{1} + \beta_{3} + 2 \beta_{4} + \beta_{6} - \beta_{7} + \beta_{8} + \beta_{9} + \beta_{11} ) q^{12} + ( -1 + \beta_{1} - \beta_{3} + \beta_{4} - \beta_{5} - \beta_{6} - \beta_{8} - \beta_{9} - \beta_{11} ) q^{13} + ( -4 + \beta_{2} ) q^{14} + ( -1 - \beta_{4} - \beta_{6} - \beta_{10} + 2 \beta_{11} ) q^{15} + ( -3 - \beta_{5} - 3 \beta_{6} + \beta_{8} - \beta_{9} - \beta_{10} ) q^{16} + ( \beta_{1} + \beta_{3} + \beta_{5} + \beta_{7} ) q^{17} + ( -1 - \beta_{6} + \beta_{7} - \beta_{8} - \beta_{9} ) q^{18} + ( \beta_{5} - \beta_{6} - \beta_{7} ) q^{19} + ( 3 \beta_{1} + \beta_{2} - \beta_{3} - \beta_{5} + \beta_{10} ) q^{20} + ( -2 \beta_{2} + \beta_{6} - \beta_{7} + \beta_{8} - \beta_{9} ) q^{21} + ( -\beta_{1} - \beta_{5} - \beta_{7} ) q^{22} + ( -\beta_{4} + \beta_{11} ) q^{23} + ( 6 + \beta_{5} + 6 \beta_{6} - \beta_{8} + \beta_{9} + 2 \beta_{10} ) q^{24} + ( -2 \beta_{1} + \beta_{2} - \beta_{3} - 2 \beta_{4} + \beta_{9} - \beta_{11} ) q^{25} + ( 2 - 2 \beta_{2} - \beta_{5} - 2 \beta_{6} + \beta_{7} - \beta_{10} ) q^{26} + ( -\beta_{1} - \beta_{3} - \beta_{4} - \beta_{11} ) q^{27} + ( 1 + 4 \beta_{4} + \beta_{5} + \beta_{6} + \beta_{8} + \beta_{9} - 3 \beta_{11} ) q^{28} + ( 3 + 3 \beta_{6} ) q^{29} + ( -3 \beta_{1} - \beta_{2} + \beta_{3} + \beta_{5} - \beta_{6} + \beta_{7} - \beta_{10} ) q^{30} + ( -2 + 2 \beta_{2} ) q^{31} + ( -2 \beta_{1} - \beta_{3} ) q^{32} + ( -\beta_{1} + 3 \beta_{3} ) q^{33} + ( 1 + \beta_{2} + \beta_{6} - \beta_{7} + \beta_{8} - \beta_{9} ) q^{34} + ( -\beta_{1} - \beta_{2} + 2 \beta_{3} - 2 \beta_{5} - 3 \beta_{6} - \beta_{10} ) q^{35} + ( -1 + \beta_{5} - \beta_{6} - \beta_{8} + \beta_{9} - 2 \beta_{10} ) q^{36} + ( 1 - \beta_{4} + \beta_{5} + \beta_{6} + \beta_{8} + \beta_{9} - \beta_{11} ) q^{37} + ( 1 - 3 \beta_{1} - 3 \beta_{4} + \beta_{6} - \beta_{7} + \beta_{8} + \beta_{9} ) q^{38} + ( -4 + 2 \beta_{2} - \beta_{5} - 2 \beta_{6} + \beta_{8} - \beta_{9} + 2 \beta_{10} ) q^{39} + ( 6 + 3 \beta_{1} - 2 \beta_{2} - \beta_{3} + 3 \beta_{4} - \beta_{9} - \beta_{11} ) q^{40} + ( 3 + 3 \beta_{6} + 2 \beta_{10} ) q^{41} + ( -1 - 5 \beta_{4} - \beta_{5} - \beta_{6} - \beta_{8} - \beta_{9} + 2 \beta_{11} ) q^{42} + ( \beta_{1} - 3 \beta_{3} ) q^{43} + ( -\beta_{2} + \beta_{6} - \beta_{7} + \beta_{8} - \beta_{9} ) q^{44} + ( 2 \beta_{1} - \beta_{2} + \beta_{3} + \beta_{5} + 5 \beta_{6} - \beta_{10} ) q^{45} + ( -\beta_{2} - 2 \beta_{6} - \beta_{10} ) q^{46} + ( -2 + 6 \beta_{1} - 2 \beta_{3} + 6 \beta_{4} - 2 \beta_{6} + 2 \beta_{7} - 2 \beta_{8} - 2 \beta_{9} - 2 \beta_{11} ) q^{47} + ( 5 \beta_{1} - 4 \beta_{3} - \beta_{5} - \beta_{7} ) q^{48} + ( 1 + \beta_{5} + \beta_{6} - \beta_{8} + \beta_{9} ) q^{49} + ( -5 + 3 \beta_{4} + \beta_{5} - 5 \beta_{6} + \beta_{9} - \beta_{10} - \beta_{11} ) q^{50} + ( 2 - \beta_{6} + \beta_{7} - \beta_{8} + \beta_{9} ) q^{51} + ( -1 - 4 \beta_{1} + 3 \beta_{3} - 6 \beta_{4} - \beta_{5} - \beta_{6} - \beta_{8} - \beta_{9} + 2 \beta_{11} ) q^{52} + ( 1 - 2 \beta_{1} + 4 \beta_{3} - 2 \beta_{4} + \beta_{6} - \beta_{7} + \beta_{8} + \beta_{9} + 4 \beta_{11} ) q^{53} + ( -4 - 4 \beta_{6} - \beta_{10} ) q^{54} + ( -5 + 2 \beta_{4} - \beta_{5} - 5 \beta_{6} - \beta_{8} - \beta_{9} + \beta_{10} + \beta_{11} ) q^{55} + ( 4 \beta_{2} + \beta_{5} + 5 \beta_{6} - \beta_{7} + 4 \beta_{10} ) q^{56} + ( \beta_{1} + \beta_{3} + \beta_{4} + \beta_{11} ) q^{57} + 3 \beta_{1} q^{58} + ( -2 \beta_{2} - \beta_{5} - \beta_{6} + \beta_{7} - 2 \beta_{10} ) q^{59} + ( -10 - \beta_{1} + 3 \beta_{2} - 3 \beta_{3} - \beta_{4} - 2 \beta_{9} - 3 \beta_{11} ) q^{60} + ( -2 \beta_{5} - 3 \beta_{6} + 2 \beta_{7} ) q^{61} + ( 2 + 6 \beta_{4} + 2 \beta_{5} + 2 \beta_{6} + 2 \beta_{8} + 2 \beta_{9} - 2 \beta_{11} ) q^{62} + ( 2 - 2 \beta_{4} + 2 \beta_{5} + 2 \beta_{6} + 2 \beta_{8} + 2 \beta_{9} + 4 \beta_{11} ) q^{63} + ( -1 - 2 \beta_{6} + 2 \beta_{7} - 2 \beta_{8} + 2 \beta_{9} ) q^{64} + ( 4 - \beta_{1} + \beta_{2} + 2 \beta_{3} + \beta_{4} - \beta_{5} + 5 \beta_{6} - \beta_{9} + \beta_{10} + 3 \beta_{11} ) q^{65} + \beta_{2} q^{66} + ( 3 \beta_{4} + \beta_{11} ) q^{67} + ( 2 \beta_{4} + \beta_{11} ) q^{68} + ( \beta_{5} + 5 \beta_{6} - \beta_{7} ) q^{69} + ( -3 \beta_{1} - \beta_{2} + \beta_{3} - 3 \beta_{4} - 3 \beta_{6} + 3 \beta_{7} - 3 \beta_{8} - \beta_{9} + \beta_{11} ) q^{70} + ( \beta_{5} + 3 \beta_{6} - \beta_{7} ) q^{71} + ( -6 \beta_{1} + 2 \beta_{3} - \beta_{5} - \beta_{7} ) q^{72} + ( 1 - 6 \beta_{1} + 2 \beta_{3} - 6 \beta_{4} + \beta_{6} - \beta_{7} + \beta_{8} + \beta_{9} + 2 \beta_{11} ) q^{73} + ( \beta_{2} + \beta_{5} - \beta_{7} + \beta_{10} ) q^{74} + ( -\beta_{4} - 2 \beta_{5} - 2 \beta_{9} + 2 \beta_{10} - 3 \beta_{11} ) q^{75} + ( -2 - \beta_{5} - 2 \beta_{6} + \beta_{8} - \beta_{9} - \beta_{10} ) q^{76} + ( -2 + 3 \beta_{1} - 3 \beta_{3} + 3 \beta_{4} - 2 \beta_{6} + 2 \beta_{7} - 2 \beta_{8} - 2 \beta_{9} - 3 \beta_{11} ) q^{77} + ( 2 + 3 \beta_{1} - 2 \beta_{3} + 6 \beta_{4} + \beta_{5} + 2 \beta_{6} - \beta_{7} + 2 \beta_{8} + 2 \beta_{9} - 2 \beta_{11} ) q^{78} + ( -8 - 2 \beta_{2} ) q^{79} + ( 5 - 5 \beta_{4} + 5 \beta_{6} - \beta_{8} ) q^{80} + ( 3 + 2 \beta_{5} + 3 \beta_{6} - 2 \beta_{8} + 2 \beta_{9} + 2 \beta_{10} ) q^{81} + ( 7 \beta_{1} - 2 \beta_{3} - 2 \beta_{5} - 2 \beta_{7} ) q^{82} + ( 2 + 2 \beta_{1} - 4 \beta_{3} + 2 \beta_{4} + 2 \beta_{6} - 2 \beta_{7} + 2 \beta_{8} + 2 \beta_{9} - 4 \beta_{11} ) q^{83} + ( -3 \beta_{2} - 3 \beta_{5} - 19 \beta_{6} + 3 \beta_{7} - 3 \beta_{10} ) q^{84} + ( 3 \beta_{1} - \beta_{3} + 3 \beta_{5} - 2 \beta_{6} ) q^{85} -\beta_{2} q^{86} + ( -3 \beta_{1} + 3 \beta_{3} ) q^{87} + ( 2 - 5 \beta_{4} + 2 \beta_{5} + 2 \beta_{6} + 2 \beta_{8} + 2 \beta_{9} + \beta_{11} ) q^{88} + ( 2 - \beta_{5} + 2 \beta_{6} + \beta_{8} - \beta_{9} - 4 \beta_{10} ) q^{89} + ( 5 + 2 \beta_{1} - \beta_{2} + \beta_{3} + 2 \beta_{4} - \beta_{9} + \beta_{11} ) q^{90} + ( -4 + \beta_{5} + 3 \beta_{6} - 3 \beta_{7} + 2 \beta_{8} - 2 \beta_{9} - 2 \beta_{10} ) q^{91} + ( -1 - 2 \beta_{1} - \beta_{3} - 2 \beta_{4} - \beta_{6} + \beta_{7} - \beta_{8} - \beta_{9} - \beta_{11} ) q^{92} + ( -2 - 4 \beta_{4} - 2 \beta_{5} - 2 \beta_{6} - 2 \beta_{8} - 2 \beta_{9} - 2 \beta_{11} ) q^{93} + ( 10 - 2 \beta_{5} + 10 \beta_{6} + 2 \beta_{8} - 2 \beta_{9} + 2 \beta_{10} ) q^{94} + ( -2 \beta_{1} + \beta_{2} - \beta_{3} - \beta_{5} - 2 \beta_{6} - 3 \beta_{7} + \beta_{10} ) q^{95} + ( 2 - 3 \beta_{2} + \beta_{6} - \beta_{7} + \beta_{8} - \beta_{9} ) q^{96} + ( -3 \beta_{1} + 3 \beta_{3} + 2 \beta_{5} + 2 \beta_{7} ) q^{97} + ( -\beta_{5} - \beta_{7} ) q^{98} + ( 8 + 2 \beta_{2} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12q + 4q^{4} - 6q^{5} - 10q^{6} + 6q^{9} + O(q^{10}) \) \( 12q + 4q^{4} - 6q^{5} - 10q^{6} + 6q^{9} + 7q^{10} - 44q^{14} - 4q^{15} - 16q^{16} + 12q^{19} - q^{20} - 8q^{21} + 32q^{24} - 2q^{25} + 24q^{26} + 18q^{29} + 4q^{30} - 16q^{31} + 16q^{34} + 10q^{35} - 2q^{36} - 32q^{39} + 70q^{40} + 14q^{41} - 4q^{44} - 29q^{45} + 10q^{46} + 6q^{49} - 31q^{50} + 24q^{51} - 22q^{54} - 26q^{55} - 16q^{56} - 4q^{59} - 96q^{60} + 6q^{61} - 12q^{64} + 23q^{65} + 4q^{66} - 24q^{69} + 20q^{70} - 12q^{71} + 8q^{74} + 2q^{75} - 10q^{76} - 104q^{79} + 33q^{80} + 14q^{81} + 90q^{84} + 21q^{85} - 4q^{86} + 20q^{89} + 62q^{90} - 44q^{91} + 56q^{94} + 20q^{95} + 12q^{96} + 104q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{12} - 8 x^{10} + 54 x^{8} - 78 x^{6} + 92 x^{4} - 10 x^{2} + 1\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\((\)\( 16 \nu^{10} - 108 \nu^{8} + 729 \nu^{6} - 184 \nu^{4} + 20 \nu^{2} + 3531 \)\()/1222\)
\(\beta_{3}\)\(=\)\((\)\( 108 \nu^{11} - 729 \nu^{9} + 4768 \nu^{7} - 1242 \nu^{5} + 135 \nu^{3} + 11156 \nu \)\()/1222\)
\(\beta_{4}\)\(=\)\((\)\( 135 \nu^{11} - 1064 \nu^{9} + 7182 \nu^{7} - 9801 \nu^{5} + 12236 \nu^{3} - 1330 \nu \)\()/1222\)
\(\beta_{5}\)\(=\)\((\)\( -92 \nu^{11} + 293 \nu^{10} + 621 \nu^{9} - 2436 \nu^{8} - 4039 \nu^{7} + 16443 \nu^{6} + 1058 \nu^{5} - 26893 \nu^{4} - 115 \nu^{3} + 28014 \nu^{2} - 5181 \nu - 3045 \)\()/2444\)
\(\beta_{6}\)\(=\)\((\)\( 135 \nu^{10} - 1064 \nu^{8} + 7182 \nu^{6} - 9801 \nu^{4} + 12236 \nu^{2} - 1330 \)\()/1222\)
\(\beta_{7}\)\(=\)\((\)\( -92 \nu^{11} - 293 \nu^{10} + 621 \nu^{9} + 2436 \nu^{8} - 4039 \nu^{7} - 16443 \nu^{6} + 1058 \nu^{5} + 26893 \nu^{4} - 115 \nu^{3} - 28014 \nu^{2} - 5181 \nu + 3045 \)\()/2444\)
\(\beta_{8}\)\(=\)\((\)\( 563 \nu^{11} - 655 \nu^{10} - 4564 \nu^{9} + 5185 \nu^{8} + 30807 \nu^{7} - 34846 \nu^{6} - 46495 \nu^{5} + 47553 \nu^{4} + 52486 \nu^{3} - 52601 \nu^{2} - 5705 \nu + 524 \)\()/2444\)
\(\beta_{9}\)\(=\)\((\)\( 655 \nu^{11} + 92 \nu^{10} - 5185 \nu^{9} - 621 \nu^{8} + 34846 \nu^{7} + 4039 \nu^{6} - 47553 \nu^{5} - 1058 \nu^{4} + 52601 \nu^{3} + 115 \nu^{2} - 524 \nu + 2737 \)\()/2444\)
\(\beta_{10}\)\(=\)\((\)\( -405 \nu^{10} + 3192 \nu^{8} - 21546 \nu^{6} + 29403 \nu^{4} - 35486 \nu^{2} + 324 \)\()/1222\)
\(\beta_{11}\)\(=\)\( \nu^{11} - 8 \nu^{9} + 54 \nu^{7} - 78 \nu^{5} + 92 \nu^{3} - 10 \nu \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(\beta_{10} + 3 \beta_{6} + 3\)
\(\nu^{3}\)\(=\)\(-\beta_{11} + \beta_{9} + \beta_{8} - \beta_{7} + \beta_{6} + 5 \beta_{4} - \beta_{3} + 5 \beta_{1} + 1\)
\(\nu^{4}\)\(=\)\(7 \beta_{10} - \beta_{7} + 18 \beta_{6} + \beta_{5} + 7 \beta_{2}\)
\(\nu^{5}\)\(=\)\(-7 \beta_{11} + 8 \beta_{9} + 8 \beta_{8} + 8 \beta_{6} + 8 \beta_{5} + 30 \beta_{4} + 8\)
\(\nu^{6}\)\(=\)\(-8 \beta_{9} + 8 \beta_{8} - 8 \beta_{7} + 8 \beta_{6} + 46 \beta_{2} - 107\)
\(\nu^{7}\)\(=\)\(54 \beta_{7} + 54 \beta_{5} + 46 \beta_{3} - 191 \beta_{1}\)
\(\nu^{8}\)\(=\)\(-299 \beta_{10} - 54 \beta_{9} + 54 \beta_{8} - 689 \beta_{6} - 54 \beta_{5} - 689\)
\(\nu^{9}\)\(=\)\(299 \beta_{11} - 353 \beta_{9} - 353 \beta_{8} + 353 \beta_{7} - 353 \beta_{6} - 1233 \beta_{4} + 299 \beta_{3} - 1233 \beta_{1} - 353\)
\(\nu^{10}\)\(=\)\(-1939 \beta_{10} + 353 \beta_{7} - 4812 \beta_{6} - 353 \beta_{5} - 1939 \beta_{2}\)
\(\nu^{11}\)\(=\)\(1939 \beta_{11} - 2292 \beta_{9} - 2292 \beta_{8} - 2292 \beta_{6} - 2292 \beta_{5} - 7984 \beta_{4} - 2292\)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/65\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(41\)
\(\chi(n)\) \(-1\) \(\beta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
9.1
−2.20467 + 1.27287i
−1.02826 + 0.593667i
−0.286513 + 0.165418i
0.286513 0.165418i
1.02826 0.593667i
2.20467 1.27287i
−2.20467 1.27287i
−1.02826 0.593667i
−0.286513 0.165418i
0.286513 + 0.165418i
1.02826 + 0.593667i
2.20467 + 1.27287i
−2.20467 1.27287i 1.86449 + 1.07646i 2.24039 + 3.88048i −0.817544 + 2.08125i −2.74039 4.74650i 2.54486 1.46928i 6.31544i 0.817544 + 1.41603i 4.45158 3.54786i
9.2 −1.02826 0.593667i 0.298874 + 0.172555i −0.295120 0.511162i 1.44045 1.71029i −0.204880 0.354863i 1.75765 1.01478i 3.07548i −1.44045 2.49493i −2.49650 + 0.903481i
9.3 −0.286513 0.165418i −2.33117 1.34590i −0.945274 1.63726i −2.12291 + 0.702335i 0.445274 + 0.771236i 2.90420 1.67674i 1.28714i 2.12291 + 3.67698i 0.724419 + 0.149939i
9.4 0.286513 + 0.165418i 2.33117 + 1.34590i −0.945274 1.63726i −2.12291 0.702335i 0.445274 + 0.771236i −2.90420 + 1.67674i 1.28714i 2.12291 + 3.67698i −0.492061 0.552395i
9.5 1.02826 + 0.593667i −0.298874 0.172555i −0.295120 0.511162i 1.44045 + 1.71029i −0.204880 0.354863i −1.75765 + 1.01478i 3.07548i −1.44045 2.49493i 0.465813 + 2.61378i
9.6 2.20467 + 1.27287i −1.86449 1.07646i 2.24039 + 3.88048i −0.817544 2.08125i −2.74039 4.74650i −2.54486 + 1.46928i 6.31544i 0.817544 + 1.41603i 0.846746 5.62912i
29.1 −2.20467 + 1.27287i 1.86449 1.07646i 2.24039 3.88048i −0.817544 2.08125i −2.74039 + 4.74650i 2.54486 + 1.46928i 6.31544i 0.817544 1.41603i 4.45158 + 3.54786i
29.2 −1.02826 + 0.593667i 0.298874 0.172555i −0.295120 + 0.511162i 1.44045 + 1.71029i −0.204880 + 0.354863i 1.75765 + 1.01478i 3.07548i −1.44045 + 2.49493i −2.49650 0.903481i
29.3 −0.286513 + 0.165418i −2.33117 + 1.34590i −0.945274 + 1.63726i −2.12291 0.702335i 0.445274 0.771236i 2.90420 + 1.67674i 1.28714i 2.12291 3.67698i 0.724419 0.149939i
29.4 0.286513 0.165418i 2.33117 1.34590i −0.945274 + 1.63726i −2.12291 + 0.702335i 0.445274 0.771236i −2.90420 1.67674i 1.28714i 2.12291 3.67698i −0.492061 + 0.552395i
29.5 1.02826 0.593667i −0.298874 + 0.172555i −0.295120 + 0.511162i 1.44045 1.71029i −0.204880 + 0.354863i −1.75765 1.01478i 3.07548i −1.44045 + 2.49493i 0.465813 2.61378i
29.6 2.20467 1.27287i −1.86449 + 1.07646i 2.24039 3.88048i −0.817544 + 2.08125i −2.74039 + 4.74650i −2.54486 1.46928i 6.31544i 0.817544 1.41603i 0.846746 + 5.62912i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 29.6
Significant digits:
Format:

Inner twists

Char. orbit Parity Mult. Self Twist Proved
1.a Even 1 trivial yes
5.b Even 1 yes
13.c Even 1 yes
65.n Even 1 yes

Hecke kernels

There are no other newforms in \(S_{2}^{\mathrm{new}}(65, [\chi])\).