Properties

Label 65.2.n
Level $65$
Weight $2$
Character orbit 65.n
Rep. character $\chi_{65}(9,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $12$
Newform subspaces $1$
Sturm bound $14$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 65 = 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 65.n (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 65 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(14\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(65, [\chi])\).

Total New Old
Modular forms 20 20 0
Cusp forms 12 12 0
Eisenstein series 8 8 0

Trace form

\( 12 q + 4 q^{4} - 6 q^{5} - 10 q^{6} + 6 q^{9} + O(q^{10}) \) \( 12 q + 4 q^{4} - 6 q^{5} - 10 q^{6} + 6 q^{9} + 7 q^{10} - 44 q^{14} - 4 q^{15} - 16 q^{16} + 12 q^{19} - q^{20} - 8 q^{21} + 32 q^{24} - 2 q^{25} + 24 q^{26} + 18 q^{29} + 4 q^{30} - 16 q^{31} + 16 q^{34} + 10 q^{35} - 2 q^{36} - 32 q^{39} + 70 q^{40} + 14 q^{41} - 4 q^{44} - 29 q^{45} + 10 q^{46} + 6 q^{49} - 31 q^{50} + 24 q^{51} - 22 q^{54} - 26 q^{55} - 16 q^{56} - 4 q^{59} - 96 q^{60} + 6 q^{61} - 12 q^{64} + 23 q^{65} + 4 q^{66} - 24 q^{69} + 20 q^{70} - 12 q^{71} + 8 q^{74} + 2 q^{75} - 10 q^{76} - 104 q^{79} + 33 q^{80} + 14 q^{81} + 90 q^{84} + 21 q^{85} - 4 q^{86} + 20 q^{89} + 62 q^{90} - 44 q^{91} + 56 q^{94} + 20 q^{95} + 12 q^{96} + 104 q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(65, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
65.2.n.a \(12\) \(0.519\) \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None \(0\) \(0\) \(-6\) \(0\) \(q-\beta _{4}q^{2}+(\beta _{4}-\beta _{11})q^{3}+(-\beta _{2}-\beta _{6}+\cdots)q^{4}+\cdots\)