Defining parameters
Level: | \( N \) | = | \( 65 = 5 \cdot 13 \) |
Weight: | \( k \) | = | \( 2 \) |
Character orbit: | \([\chi]\) | = | 65.n (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | = | \( 65 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newforms: | \( 1 \) | ||
Sturm bound: | \(14\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(65, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 20 | 20 | 0 |
Cusp forms | 12 | 12 | 0 |
Eisenstein series | 8 | 8 | 0 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(65, [\chi])\) into irreducible Hecke orbits
Label | Dim. | \(A\) | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
\(a_2\) | \(a_3\) | \(a_5\) | \(a_7\) | ||||||
65.2.n.a | \(12\) | \(0.519\) | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(0\) | \(0\) | \(-6\) | \(0\) | \(q-\beta _{4}q^{2}+(\beta _{4}-\beta _{11})q^{3}+(-\beta _{2}-\beta _{6}+\cdots)q^{4}+\cdots\) |