Properties

Label 65.2.m.a.36.2
Level $65$
Weight $2$
Character 65.36
Analytic conductor $0.519$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 65 = 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 65.m (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.519027613138\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.22581504.2
Defining polynomial: \(x^{8} - 4 x^{7} + 5 x^{6} + 2 x^{5} - 11 x^{4} + 4 x^{3} + 20 x^{2} - 32 x + 16\)
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 36.2
Root \(-1.27597 + 0.609843i\) of defining polynomial
Character \(\chi\) \(=\) 65.36
Dual form 65.2.m.a.56.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.190254 + 0.109843i) q^{2} +(0.800098 + 1.38581i) q^{3} +(-0.975869 + 1.69025i) q^{4} -1.00000i q^{5} +(-0.304444 - 0.175771i) q^{6} +(-0.287734 - 0.166123i) q^{7} -0.868145i q^{8} +(0.219687 - 0.380509i) q^{9} +O(q^{10})\) \(q+(-0.190254 + 0.109843i) q^{2} +(0.800098 + 1.38581i) q^{3} +(-0.975869 + 1.69025i) q^{4} -1.00000i q^{5} +(-0.304444 - 0.175771i) q^{6} +(-0.287734 - 0.166123i) q^{7} -0.868145i q^{8} +(0.219687 - 0.380509i) q^{9} +(0.109843 + 0.190254i) q^{10} +(4.65213 - 2.68591i) q^{11} -3.12316 q^{12} +(-3.55193 - 0.619491i) q^{13} +0.0729902 q^{14} +(1.38581 - 0.800098i) q^{15} +(-1.85638 - 3.21534i) q^{16} +(-2.53215 + 4.38581i) q^{17} +0.0965246i q^{18} +(-1.96410 - 1.13397i) q^{19} +(1.69025 + 0.975869i) q^{20} -0.531659i q^{21} +(-0.590059 + 1.02201i) q^{22} +(-1.41959 - 2.45880i) q^{23} +(1.20308 - 0.694601i) q^{24} -1.00000 q^{25} +(0.743818 - 0.272296i) q^{26} +5.50367 q^{27} +(0.561581 - 0.324229i) q^{28} +(1.45174 + 2.51448i) q^{29} +(-0.175771 + 0.304444i) q^{30} +5.46410i q^{31} +(2.21004 + 1.27597i) q^{32} +(7.44432 + 4.29798i) q^{33} -1.11256i q^{34} +(-0.166123 + 0.287734i) q^{35} +(0.428771 + 0.742653i) q^{36} +(-5.17191 + 2.98601i) q^{37} +0.498239 q^{38} +(-1.98340 - 5.41796i) q^{39} -0.868145 q^{40} +(3.23205 - 1.86603i) q^{41} +(0.0583993 + 0.101151i) q^{42} +(-2.53215 + 4.38581i) q^{43} +10.4844i q^{44} +(-0.380509 - 0.219687i) q^{45} +(0.540166 + 0.311865i) q^{46} -8.34285i q^{47} +(2.97057 - 5.14517i) q^{48} +(-3.44481 - 5.96658i) q^{49} +(0.190254 - 0.109843i) q^{50} -8.10387 q^{51} +(4.51332 - 5.39913i) q^{52} -1.56063 q^{53} +(-1.04710 + 0.604542i) q^{54} +(-2.68591 - 4.65213i) q^{55} +(-0.144219 + 0.249795i) q^{56} -3.62916i q^{57} +(-0.552399 - 0.318928i) q^{58} +(2.34461 + 1.35366i) q^{59} +3.12316i q^{60} +(-7.05193 + 12.2143i) q^{61} +(-0.600196 - 1.03957i) q^{62} +(-0.126423 + 0.0729902i) q^{63} +6.86488 q^{64} +(-0.619491 + 3.55193i) q^{65} -1.88842 q^{66} +(8.94799 - 5.16612i) q^{67} +(-4.94209 - 8.55995i) q^{68} +(2.27162 - 3.93456i) q^{69} -0.0729902i q^{70} +(-11.0828 - 6.39866i) q^{71} +(-0.330337 - 0.190720i) q^{72} +9.68922i q^{73} +(0.655986 - 1.13620i) q^{74} +(-0.800098 - 1.38581i) q^{75} +(3.83341 - 2.21322i) q^{76} -1.78477 q^{77} +(0.972477 + 0.812927i) q^{78} +4.51851 q^{79} +(-3.21534 + 1.85638i) q^{80} +(3.74441 + 6.48552i) q^{81} +(-0.409941 + 0.710039i) q^{82} -4.26371i q^{83} +(0.898640 + 0.518830i) q^{84} +(4.38581 + 2.53215i) q^{85} -1.11256i q^{86} +(-2.32306 + 4.02367i) q^{87} +(-2.33176 - 4.03872i) q^{88} +(-2.79366 + 1.61292i) q^{89} +0.0965246 q^{90} +(0.919100 + 0.768307i) q^{91} +5.54133 q^{92} +(-7.57221 + 4.37182i) q^{93} +(0.916407 + 1.58726i) q^{94} +(-1.13397 + 1.96410i) q^{95} +4.08359i q^{96} +(2.17191 + 1.25396i) q^{97} +(1.31078 + 0.756779i) q^{98} -2.36023i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q + 2q^{3} + 2q^{4} - 18q^{6} - 6q^{7} - 4q^{9} + O(q^{10}) \) \( 8q + 2q^{3} + 2q^{4} - 18q^{6} - 6q^{7} - 4q^{9} - 2q^{10} + 20q^{12} + 4q^{14} - 6q^{15} - 2q^{16} - 2q^{17} + 12q^{19} + 12q^{20} - 12q^{22} - 10q^{23} - 12q^{24} - 8q^{25} + 10q^{26} - 4q^{27} - 18q^{28} - 8q^{29} + 4q^{30} + 6q^{32} + 42q^{33} + 10q^{35} + 20q^{36} + 6q^{37} - 16q^{38} - 12q^{40} + 12q^{41} + 4q^{42} - 2q^{43} - 42q^{46} + 28q^{48} + 12q^{49} - 8q^{51} - 6q^{52} - 24q^{53} + 18q^{54} + 12q^{56} + 36q^{58} - 12q^{59} - 28q^{61} + 4q^{62} - 24q^{63} - 8q^{64} - 8q^{65} + 12q^{66} + 6q^{67} - 14q^{68} - 16q^{69} - 48q^{72} + 10q^{74} - 2q^{75} + 54q^{76} - 36q^{77} - 56q^{78} - 16q^{79} + 8q^{81} + 4q^{82} - 30q^{84} + 18q^{85} + 22q^{87} - 18q^{88} + 24q^{89} + 40q^{90} + 28q^{91} + 44q^{92} + 32q^{94} - 16q^{95} - 30q^{97} + 72q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/65\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(41\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.190254 + 0.109843i −0.134530 + 0.0776710i −0.565755 0.824574i \(-0.691415\pi\)
0.431224 + 0.902245i \(0.358082\pi\)
\(3\) 0.800098 + 1.38581i 0.461937 + 0.800098i 0.999057 0.0434075i \(-0.0138214\pi\)
−0.537121 + 0.843505i \(0.680488\pi\)
\(4\) −0.975869 + 1.69025i −0.487934 + 0.845127i
\(5\) 1.00000i 0.447214i
\(6\) −0.304444 0.175771i −0.124289 0.0717582i
\(7\) −0.287734 0.166123i −0.108753 0.0627887i 0.444637 0.895711i \(-0.353333\pi\)
−0.553390 + 0.832922i \(0.686666\pi\)
\(8\) 0.868145i 0.306936i
\(9\) 0.219687 0.380509i 0.0732290 0.126836i
\(10\) 0.109843 + 0.190254i 0.0347355 + 0.0601637i
\(11\) 4.65213 2.68591i 1.40267 0.809832i 0.408004 0.912980i \(-0.366225\pi\)
0.994666 + 0.103149i \(0.0328917\pi\)
\(12\) −3.12316 −0.901579
\(13\) −3.55193 0.619491i −0.985129 0.171816i
\(14\) 0.0729902 0.0195074
\(15\) 1.38581 0.800098i 0.357815 0.206584i
\(16\) −1.85638 3.21534i −0.464094 0.803835i
\(17\) −2.53215 + 4.38581i −0.614136 + 1.06372i 0.376399 + 0.926458i \(0.377162\pi\)
−0.990535 + 0.137258i \(0.956171\pi\)
\(18\) 0.0965246i 0.0227511i
\(19\) −1.96410 1.13397i −0.450596 0.260152i 0.257486 0.966282i \(-0.417106\pi\)
−0.708082 + 0.706130i \(0.750439\pi\)
\(20\) 1.69025 + 0.975869i 0.377952 + 0.218211i
\(21\) 0.531659i 0.116018i
\(22\) −0.590059 + 1.02201i −0.125801 + 0.217894i
\(23\) −1.41959 2.45880i −0.296005 0.512695i 0.679213 0.733941i \(-0.262321\pi\)
−0.975218 + 0.221246i \(0.928988\pi\)
\(24\) 1.20308 0.694601i 0.245578 0.141785i
\(25\) −1.00000 −0.200000
\(26\) 0.743818 0.272296i 0.145875 0.0534016i
\(27\) 5.50367 1.05918
\(28\) 0.561581 0.324229i 0.106129 0.0612735i
\(29\) 1.45174 + 2.51448i 0.269581 + 0.466928i 0.968754 0.248025i \(-0.0797815\pi\)
−0.699173 + 0.714953i \(0.746448\pi\)
\(30\) −0.175771 + 0.304444i −0.0320912 + 0.0555837i
\(31\) 5.46410i 0.981382i 0.871334 + 0.490691i \(0.163256\pi\)
−0.871334 + 0.490691i \(0.836744\pi\)
\(32\) 2.21004 + 1.27597i 0.390683 + 0.225561i
\(33\) 7.44432 + 4.29798i 1.29589 + 0.748182i
\(34\) 1.11256i 0.190802i
\(35\) −0.166123 + 0.287734i −0.0280800 + 0.0486359i
\(36\) 0.428771 + 0.742653i 0.0714619 + 0.123776i
\(37\) −5.17191 + 2.98601i −0.850257 + 0.490896i −0.860738 0.509049i \(-0.829997\pi\)
0.0104803 + 0.999945i \(0.496664\pi\)
\(38\) 0.498239 0.0808250
\(39\) −1.98340 5.41796i −0.317598 0.867568i
\(40\) −0.868145 −0.137266
\(41\) 3.23205 1.86603i 0.504762 0.291424i −0.225916 0.974147i \(-0.572538\pi\)
0.730678 + 0.682723i \(0.239204\pi\)
\(42\) 0.0583993 + 0.101151i 0.00901121 + 0.0156079i
\(43\) −2.53215 + 4.38581i −0.386149 + 0.668830i −0.991928 0.126803i \(-0.959528\pi\)
0.605779 + 0.795633i \(0.292862\pi\)
\(44\) 10.4844i 1.58058i
\(45\) −0.380509 0.219687i −0.0567229 0.0327490i
\(46\) 0.540166 + 0.311865i 0.0796432 + 0.0459820i
\(47\) 8.34285i 1.21693i −0.793581 0.608465i \(-0.791786\pi\)
0.793581 0.608465i \(-0.208214\pi\)
\(48\) 2.97057 5.14517i 0.428764 0.742642i
\(49\) −3.44481 5.96658i −0.492115 0.852368i
\(50\) 0.190254 0.109843i 0.0269060 0.0155342i
\(51\) −8.10387 −1.13477
\(52\) 4.51332 5.39913i 0.625885 0.748724i
\(53\) −1.56063 −0.214369 −0.107184 0.994239i \(-0.534183\pi\)
−0.107184 + 0.994239i \(0.534183\pi\)
\(54\) −1.04710 + 0.604542i −0.142492 + 0.0822678i
\(55\) −2.68591 4.65213i −0.362168 0.627293i
\(56\) −0.144219 + 0.249795i −0.0192721 + 0.0333802i
\(57\) 3.62916i 0.480694i
\(58\) −0.552399 0.318928i −0.0725335 0.0418773i
\(59\) 2.34461 + 1.35366i 0.305242 + 0.176232i 0.644795 0.764355i \(-0.276943\pi\)
−0.339553 + 0.940587i \(0.610276\pi\)
\(60\) 3.12316i 0.403199i
\(61\) −7.05193 + 12.2143i −0.902908 + 1.56388i −0.0792059 + 0.996858i \(0.525238\pi\)
−0.823702 + 0.567023i \(0.808095\pi\)
\(62\) −0.600196 1.03957i −0.0762249 0.132025i
\(63\) −0.126423 + 0.0729902i −0.0159278 + 0.00919590i
\(64\) 6.86488 0.858111
\(65\) −0.619491 + 3.55193i −0.0768384 + 0.440563i
\(66\) −1.88842 −0.232448
\(67\) 8.94799 5.16612i 1.09317 0.631142i 0.158752 0.987319i \(-0.449253\pi\)
0.934419 + 0.356176i \(0.115920\pi\)
\(68\) −4.94209 8.55995i −0.599316 1.03805i
\(69\) 2.27162 3.93456i 0.273471 0.473666i
\(70\) 0.0729902i 0.00872400i
\(71\) −11.0828 6.39866i −1.31529 0.759382i −0.332321 0.943166i \(-0.607832\pi\)
−0.982967 + 0.183785i \(0.941165\pi\)
\(72\) −0.330337 0.190720i −0.0389306 0.0224766i
\(73\) 9.68922i 1.13404i 0.823705 + 0.567019i \(0.191903\pi\)
−0.823705 + 0.567019i \(0.808097\pi\)
\(74\) 0.655986 1.13620i 0.0762569 0.132081i
\(75\) −0.800098 1.38581i −0.0923873 0.160020i
\(76\) 3.83341 2.21322i 0.439722 0.253874i
\(77\) −1.78477 −0.203393
\(78\) 0.972477 + 0.812927i 0.110111 + 0.0920459i
\(79\) 4.51851 0.508372 0.254186 0.967155i \(-0.418192\pi\)
0.254186 + 0.967155i \(0.418192\pi\)
\(80\) −3.21534 + 1.85638i −0.359486 + 0.207549i
\(81\) 3.74441 + 6.48552i 0.416046 + 0.720613i
\(82\) −0.409941 + 0.710039i −0.0452704 + 0.0784107i
\(83\) 4.26371i 0.468003i −0.972236 0.234001i \(-0.924818\pi\)
0.972236 0.234001i \(-0.0751821\pi\)
\(84\) 0.898640 + 0.518830i 0.0980496 + 0.0566090i
\(85\) 4.38581 + 2.53215i 0.475708 + 0.274650i
\(86\) 1.11256i 0.119970i
\(87\) −2.32306 + 4.02367i −0.249059 + 0.431382i
\(88\) −2.33176 4.03872i −0.248566 0.430529i
\(89\) −2.79366 + 1.61292i −0.296127 + 0.170969i −0.640702 0.767790i \(-0.721356\pi\)
0.344575 + 0.938759i \(0.388023\pi\)
\(90\) 0.0965246 0.0101746
\(91\) 0.919100 + 0.768307i 0.0963478 + 0.0805405i
\(92\) 5.54133 0.577724
\(93\) −7.57221 + 4.37182i −0.785201 + 0.453336i
\(94\) 0.916407 + 1.58726i 0.0945202 + 0.163714i
\(95\) −1.13397 + 1.96410i −0.116343 + 0.201513i
\(96\) 4.08359i 0.416780i
\(97\) 2.17191 + 1.25396i 0.220524 + 0.127320i 0.606193 0.795318i \(-0.292696\pi\)
−0.385669 + 0.922637i \(0.626029\pi\)
\(98\) 1.31078 + 0.756779i 0.132409 + 0.0764462i
\(99\) 2.36023i 0.237213i
\(100\) 0.975869 1.69025i 0.0975869 0.169025i
\(101\) 6.22336 + 10.7792i 0.619247 + 1.07257i 0.989623 + 0.143686i \(0.0458955\pi\)
−0.370376 + 0.928882i \(0.620771\pi\)
\(102\) 1.54180 0.890157i 0.152661 0.0881386i
\(103\) 15.0247 1.48043 0.740215 0.672370i \(-0.234724\pi\)
0.740215 + 0.672370i \(0.234724\pi\)
\(104\) −0.537808 + 3.08359i −0.0527364 + 0.302371i
\(105\) −0.531659 −0.0518846
\(106\) 0.296916 0.171425i 0.0288390 0.0166502i
\(107\) 6.53215 + 11.3140i 0.631487 + 1.09377i 0.987248 + 0.159190i \(0.0508883\pi\)
−0.355761 + 0.934577i \(0.615778\pi\)
\(108\) −5.37086 + 9.30260i −0.516811 + 0.895144i
\(109\) 11.2325i 1.07587i −0.842985 0.537937i \(-0.819204\pi\)
0.842985 0.537937i \(-0.180796\pi\)
\(110\) 1.02201 + 0.590059i 0.0974450 + 0.0562599i
\(111\) −8.27607 4.77819i −0.785530 0.453526i
\(112\) 1.23355i 0.116560i
\(113\) 9.17191 15.8862i 0.862821 1.49445i −0.00637349 0.999980i \(-0.502029\pi\)
0.869195 0.494470i \(-0.164638\pi\)
\(114\) 0.398640 + 0.690464i 0.0373360 + 0.0646679i
\(115\) −2.45880 + 1.41959i −0.229284 + 0.132377i
\(116\) −5.66682 −0.526151
\(117\) −1.01603 + 1.21545i −0.0939325 + 0.112368i
\(118\) −0.594763 −0.0547524
\(119\) 1.45717 0.841298i 0.133579 0.0771216i
\(120\) −0.694601 1.20308i −0.0634081 0.109826i
\(121\) 8.92820 15.4641i 0.811655 1.40583i
\(122\) 3.09843i 0.280519i
\(123\) 5.17191 + 2.98601i 0.466336 + 0.269239i
\(124\) −9.23572 5.33225i −0.829392 0.478850i
\(125\) 1.00000i 0.0894427i
\(126\) 0.0160350 0.0277734i 0.00142851 0.00247425i
\(127\) 1.61998 + 2.80589i 0.143750 + 0.248982i 0.928906 0.370316i \(-0.120751\pi\)
−0.785156 + 0.619298i \(0.787417\pi\)
\(128\) −5.72615 + 3.30600i −0.506125 + 0.292212i
\(129\) −8.10387 −0.713506
\(130\) −0.272296 0.743818i −0.0238819 0.0652372i
\(131\) 0.175664 0.0153478 0.00767390 0.999971i \(-0.497557\pi\)
0.00767390 + 0.999971i \(0.497557\pi\)
\(132\) −14.5294 + 8.38853i −1.26462 + 0.730127i
\(133\) 0.376759 + 0.652566i 0.0326692 + 0.0565846i
\(134\) −1.13493 + 1.96576i −0.0980430 + 0.169815i
\(135\) 5.50367i 0.473681i
\(136\) 3.80752 + 2.19827i 0.326492 + 0.188500i
\(137\) −15.5736 8.99144i −1.33054 0.768190i −0.345162 0.938543i \(-0.612176\pi\)
−0.985383 + 0.170353i \(0.945509\pi\)
\(138\) 0.998090i 0.0849631i
\(139\) −5.99307 + 10.3803i −0.508325 + 0.880445i 0.491628 + 0.870805i \(0.336402\pi\)
−0.999954 + 0.00964021i \(0.996931\pi\)
\(140\) −0.324229 0.561581i −0.0274024 0.0474623i
\(141\) 11.5616 6.67510i 0.973663 0.562144i
\(142\) 2.81140 0.235928
\(143\) −18.1879 + 6.65821i −1.52095 + 0.556788i
\(144\) −1.63129 −0.135941
\(145\) 2.51448 1.45174i 0.208816 0.120560i
\(146\) −1.06430 1.84342i −0.0880819 0.152562i
\(147\) 5.51236 9.54769i 0.454652 0.787481i
\(148\) 11.6558i 0.958101i
\(149\) 2.95350 + 1.70520i 0.241960 + 0.139696i 0.616077 0.787686i \(-0.288721\pi\)
−0.374117 + 0.927381i \(0.622054\pi\)
\(150\) 0.304444 + 0.175771i 0.0248578 + 0.0143516i
\(151\) 7.96141i 0.647890i −0.946076 0.323945i \(-0.894991\pi\)
0.946076 0.323945i \(-0.105009\pi\)
\(152\) −0.984454 + 1.70512i −0.0798498 + 0.138304i
\(153\) 1.11256 + 1.92701i 0.0899451 + 0.155790i
\(154\) 0.339560 0.196045i 0.0273625 0.0157978i
\(155\) 5.46410 0.438887
\(156\) 11.0933 + 1.93477i 0.888172 + 0.154906i
\(157\) −16.4329 −1.31148 −0.655742 0.754985i \(-0.727644\pi\)
−0.655742 + 0.754985i \(0.727644\pi\)
\(158\) −0.859667 + 0.496329i −0.0683914 + 0.0394858i
\(159\) −1.24865 2.16273i −0.0990247 0.171516i
\(160\) 1.27597 2.21004i 0.100874 0.174719i
\(161\) 0.943307i 0.0743430i
\(162\) −1.42478 0.822599i −0.111942 0.0646295i
\(163\) 15.4215 + 8.90361i 1.20791 + 0.697384i 0.962301 0.271986i \(-0.0876804\pi\)
0.245604 + 0.969370i \(0.421014\pi\)
\(164\) 7.28398i 0.568784i
\(165\) 4.29798 7.44432i 0.334597 0.579539i
\(166\) 0.468341 + 0.811190i 0.0363503 + 0.0629605i
\(167\) 5.45047 3.14683i 0.421770 0.243509i −0.274064 0.961711i \(-0.588368\pi\)
0.695834 + 0.718202i \(0.255035\pi\)
\(168\) −0.461557 −0.0356099
\(169\) 12.2325 + 4.40078i 0.940959 + 0.338522i
\(170\) −1.11256 −0.0853294
\(171\) −0.862975 + 0.498239i −0.0659933 + 0.0381013i
\(172\) −4.94209 8.55995i −0.376831 0.652690i
\(173\) 7.98756 13.8349i 0.607283 1.05184i −0.384404 0.923165i \(-0.625593\pi\)
0.991686 0.128679i \(-0.0410738\pi\)
\(174\) 1.02069i 0.0773786i
\(175\) 0.287734 + 0.166123i 0.0217506 + 0.0125577i
\(176\) −17.2722 9.97212i −1.30194 0.751677i
\(177\) 4.33225i 0.325632i
\(178\) 0.354337 0.613729i 0.0265587 0.0460010i
\(179\) 11.8087 + 20.4533i 0.882625 + 1.52875i 0.848412 + 0.529336i \(0.177559\pi\)
0.0342123 + 0.999415i \(0.489108\pi\)
\(180\) 0.742653 0.428771i 0.0553541 0.0319587i
\(181\) 2.62590 0.195182 0.0975909 0.995227i \(-0.468886\pi\)
0.0975909 + 0.995227i \(0.468886\pi\)
\(182\) −0.259256 0.0452168i −0.0192174 0.00335169i
\(183\) −22.5689 −1.66834
\(184\) −2.13459 + 1.23241i −0.157364 + 0.0908544i
\(185\) 2.98601 + 5.17191i 0.219536 + 0.380247i
\(186\) 0.960431 1.66351i 0.0704222 0.121975i
\(187\) 27.2045i 1.98939i
\(188\) 14.1015 + 8.14153i 1.02846 + 0.593782i
\(189\) −1.58359 0.914288i −0.115189 0.0665046i
\(190\) 0.498239i 0.0361460i
\(191\) 1.00791 1.74575i 0.0729298 0.126318i −0.827254 0.561828i \(-0.810098\pi\)
0.900184 + 0.435509i \(0.143432\pi\)
\(192\) 5.49258 + 9.51343i 0.396393 + 0.686572i
\(193\) −19.7636 + 11.4105i −1.42262 + 0.821348i −0.996522 0.0833298i \(-0.973445\pi\)
−0.426095 + 0.904678i \(0.640111\pi\)
\(194\) −0.550955 −0.0395563
\(195\) −5.41796 + 1.98340i −0.387988 + 0.142034i
\(196\) 13.4467 0.960480
\(197\) −0.556877 + 0.321513i −0.0396758 + 0.0229068i −0.519707 0.854345i \(-0.673959\pi\)
0.480031 + 0.877252i \(0.340625\pi\)
\(198\) 0.259256 + 0.449045i 0.0184245 + 0.0319122i
\(199\) 1.53342 2.65596i 0.108701 0.188276i −0.806543 0.591175i \(-0.798664\pi\)
0.915244 + 0.402899i \(0.131997\pi\)
\(200\) 0.868145i 0.0613871i
\(201\) 14.3185 + 8.26681i 1.00995 + 0.583096i
\(202\) −2.36804 1.36719i −0.166615 0.0961952i
\(203\) 0.964670i 0.0677065i
\(204\) 7.90831 13.6976i 0.553693 0.959024i
\(205\) −1.86603 3.23205i −0.130329 0.225736i
\(206\) −2.85852 + 1.65037i −0.199163 + 0.114987i
\(207\) −1.24746 −0.0867045
\(208\) 4.60185 + 12.5707i 0.319081 + 0.871620i
\(209\) −12.1830 −0.842716
\(210\) 0.101151 0.0583993i 0.00698005 0.00402993i
\(211\) 4.10020 + 7.10175i 0.282269 + 0.488904i 0.971943 0.235215i \(-0.0755796\pi\)
−0.689674 + 0.724120i \(0.742246\pi\)
\(212\) 1.52297 2.63786i 0.104598 0.181169i
\(213\) 20.4782i 1.40314i
\(214\) −2.48554 1.43503i −0.169908 0.0980964i
\(215\) 4.38581 + 2.53215i 0.299110 + 0.172691i
\(216\) 4.77798i 0.325101i
\(217\) 0.907714 1.57221i 0.0616197 0.106728i
\(218\) 1.23381 + 2.13703i 0.0835643 + 0.144738i
\(219\) −13.4274 + 7.75232i −0.907341 + 0.523854i
\(220\) 10.4844 0.706856
\(221\) 11.7110 14.0095i 0.787767 0.942378i
\(222\) 2.09941 0.140903
\(223\) 8.87174 5.12210i 0.594095 0.343001i −0.172620 0.984989i \(-0.555223\pi\)
0.766715 + 0.641987i \(0.221890\pi\)
\(224\) −0.423935 0.734278i −0.0283254 0.0490610i
\(225\) −0.219687 + 0.380509i −0.0146458 + 0.0253673i
\(226\) 4.02990i 0.268065i
\(227\) −6.10012 3.52190i −0.404879 0.233757i 0.283708 0.958911i \(-0.408435\pi\)
−0.688587 + 0.725154i \(0.741769\pi\)
\(228\) 6.13421 + 3.54159i 0.406248 + 0.234547i
\(229\) 1.32899i 0.0878219i −0.999035 0.0439109i \(-0.986018\pi\)
0.999035 0.0439109i \(-0.0139818\pi\)
\(230\) 0.311865 0.540166i 0.0205638 0.0356175i
\(231\) −1.42799 2.47335i −0.0939547 0.162734i
\(232\) 2.18294 1.26032i 0.143317 0.0827440i
\(233\) 1.24746 0.0817238 0.0408619 0.999165i \(-0.486990\pi\)
0.0408619 + 0.999165i \(0.486990\pi\)
\(234\) 0.0597962 0.342849i 0.00390900 0.0224127i
\(235\) −8.34285 −0.544227
\(236\) −4.57606 + 2.64199i −0.297876 + 0.171979i
\(237\) 3.61525 + 6.26180i 0.234836 + 0.406748i
\(238\) −0.184822 + 0.320121i −0.0119802 + 0.0207504i
\(239\) 9.94207i 0.643099i −0.946893 0.321549i \(-0.895796\pi\)
0.946893 0.321549i \(-0.104204\pi\)
\(240\) −5.14517 2.97057i −0.332120 0.191749i
\(241\) −19.5608 11.2934i −1.26002 0.727475i −0.286944 0.957947i \(-0.592640\pi\)
−0.973079 + 0.230472i \(0.925973\pi\)
\(242\) 3.92282i 0.252168i
\(243\) 2.26371 3.92086i 0.145217 0.251523i
\(244\) −13.7635 23.8391i −0.881119 1.52614i
\(245\) −5.96658 + 3.44481i −0.381191 + 0.220081i
\(246\) −1.31197 −0.0836483
\(247\) 6.27387 + 5.24455i 0.399197 + 0.333702i
\(248\) 4.74363 0.301221
\(249\) 5.90869 3.41139i 0.374448 0.216188i
\(250\) −0.109843 0.190254i −0.00694711 0.0120327i
\(251\) −3.38418 + 5.86157i −0.213608 + 0.369979i −0.952841 0.303470i \(-0.901855\pi\)
0.739233 + 0.673449i \(0.235188\pi\)
\(252\) 0.284915i 0.0179480i
\(253\) −13.2082 7.62577i −0.830394 0.479428i
\(254\) −0.616417 0.355888i −0.0386774 0.0223304i
\(255\) 8.10387i 0.507484i
\(256\) −6.13860 + 10.6324i −0.383663 + 0.664523i
\(257\) −5.12691 8.88007i −0.319808 0.553924i 0.660640 0.750703i \(-0.270285\pi\)
−0.980448 + 0.196779i \(0.936952\pi\)
\(258\) 1.54180 0.890157i 0.0959881 0.0554187i
\(259\) 1.98418 0.123291
\(260\) −5.39913 4.51332i −0.334840 0.279904i
\(261\) 1.27571 0.0789645
\(262\) −0.0334208 + 0.0192955i −0.00206474 + 0.00119208i
\(263\) −9.32850 16.1574i −0.575220 0.996310i −0.996018 0.0891555i \(-0.971583\pi\)
0.420798 0.907154i \(-0.361750\pi\)
\(264\) 3.73127 6.46275i 0.229644 0.397754i
\(265\) 1.56063i 0.0958685i
\(266\) −0.143360 0.0827690i −0.00878998 0.00507489i
\(267\) −4.47040 2.58098i −0.273584 0.157954i
\(268\) 20.1658i 1.23182i
\(269\) −8.97894 + 15.5520i −0.547456 + 0.948221i 0.450992 + 0.892528i \(0.351070\pi\)
−0.998448 + 0.0556934i \(0.982263\pi\)
\(270\) 0.604542 + 1.04710i 0.0367913 + 0.0637243i
\(271\) −26.7582 + 15.4488i −1.62544 + 0.938450i −0.640014 + 0.768363i \(0.721071\pi\)
−0.985429 + 0.170086i \(0.945595\pi\)
\(272\) 18.8025 1.14007
\(273\) −0.329358 + 1.88842i −0.0199337 + 0.114292i
\(274\) 3.95060 0.238665
\(275\) −4.65213 + 2.68591i −0.280534 + 0.161966i
\(276\) 4.43361 + 7.67923i 0.266872 + 0.462235i
\(277\) 13.2522 22.9536i 0.796250 1.37915i −0.125792 0.992057i \(-0.540147\pi\)
0.922042 0.387089i \(-0.126519\pi\)
\(278\) 2.63320i 0.157929i
\(279\) 2.07914 + 1.20039i 0.124475 + 0.0718656i
\(280\) 0.249795 + 0.144219i 0.0149281 + 0.00861874i
\(281\) 4.97766i 0.296942i −0.988917 0.148471i \(-0.952565\pi\)
0.988917 0.148471i \(-0.0474352\pi\)
\(282\) −1.46643 + 2.53993i −0.0873247 + 0.151251i
\(283\) −6.29317 10.9001i −0.374090 0.647943i 0.616100 0.787668i \(-0.288712\pi\)
−0.990190 + 0.139725i \(0.955378\pi\)
\(284\) 21.6307 12.4885i 1.28355 0.741057i
\(285\) −3.62916 −0.214973
\(286\) 2.72898 3.26458i 0.161368 0.193039i
\(287\) −1.23996 −0.0731926
\(288\) 0.971033 0.560626i 0.0572187 0.0330352i
\(289\) −4.32355 7.48861i −0.254327 0.440507i
\(290\) −0.318928 + 0.552399i −0.0187281 + 0.0324380i
\(291\) 4.01315i 0.235255i
\(292\) −16.3772 9.45541i −0.958406 0.553336i
\(293\) 14.6511 + 8.45880i 0.855925 + 0.494168i 0.862645 0.505809i \(-0.168806\pi\)
−0.00672072 + 0.999977i \(0.502139\pi\)
\(294\) 2.42199i 0.141253i
\(295\) 1.35366 2.34461i 0.0788132 0.136508i
\(296\) 2.59229 + 4.48997i 0.150674 + 0.260974i
\(297\) 25.6038 14.7824i 1.48568 0.857759i
\(298\) −0.749222 −0.0434012
\(299\) 3.51908 + 9.61292i 0.203514 + 0.555929i
\(300\) 3.12316 0.180316
\(301\) 1.45717 0.841298i 0.0839899 0.0484916i
\(302\) 0.874509 + 1.51469i 0.0503223 + 0.0871608i
\(303\) −9.95859 + 17.2488i −0.572106 + 0.990917i
\(304\) 8.42034i 0.482940i
\(305\) 12.2143 + 7.05193i 0.699389 + 0.403793i
\(306\) −0.423339 0.244415i −0.0242007 0.0139723i
\(307\) 4.30426i 0.245657i 0.992428 + 0.122828i \(0.0391965\pi\)
−0.992428 + 0.122828i \(0.960803\pi\)
\(308\) 1.74170 3.01671i 0.0992425 0.171893i
\(309\) 12.0213 + 20.8214i 0.683865 + 1.18449i
\(310\) −1.03957 + 0.600196i −0.0590436 + 0.0340888i
\(311\) 2.22512 0.126175 0.0630875 0.998008i \(-0.479905\pi\)
0.0630875 + 0.998008i \(0.479905\pi\)
\(312\) −4.70357 + 1.72188i −0.266287 + 0.0974820i
\(313\) 7.20887 0.407469 0.203735 0.979026i \(-0.434692\pi\)
0.203735 + 0.979026i \(0.434692\pi\)
\(314\) 3.12642 1.80504i 0.176434 0.101864i
\(315\) 0.0729902 + 0.126423i 0.00411253 + 0.00712311i
\(316\) −4.40948 + 7.63744i −0.248052 + 0.429639i
\(317\) 0.321644i 0.0180653i −0.999959 0.00903266i \(-0.997125\pi\)
0.999959 0.00903266i \(-0.00287522\pi\)
\(318\) 0.475124 + 0.274313i 0.0266436 + 0.0153827i
\(319\) 13.5073 + 7.79847i 0.756266 + 0.436630i
\(320\) 6.86488i 0.383759i
\(321\) −10.4527 + 18.1046i −0.583414 + 1.01050i
\(322\) −0.103616 0.179468i −0.00577430 0.0100014i
\(323\) 9.94679 5.74278i 0.553454 0.319537i
\(324\) −14.6162 −0.812013
\(325\) 3.55193 + 0.619491i 0.197026 + 0.0343632i
\(326\) −3.91201 −0.216666
\(327\) 15.5661 8.98707i 0.860805 0.496986i
\(328\) −1.61998 2.80589i −0.0894485 0.154929i
\(329\) −1.38594 + 2.40052i −0.0764094 + 0.132345i
\(330\) 1.88842i 0.103954i
\(331\) −14.4037 8.31600i −0.791701 0.457089i 0.0488600 0.998806i \(-0.484441\pi\)
−0.840561 + 0.541717i \(0.817775\pi\)
\(332\) 7.20676 + 4.16082i 0.395522 + 0.228355i
\(333\) 2.62395i 0.143791i
\(334\) −0.691317 + 1.19740i −0.0378272 + 0.0655186i
\(335\) −5.16612 8.94799i −0.282255 0.488881i
\(336\) −1.70947 + 0.986961i −0.0932590 + 0.0538431i
\(337\) −24.2186 −1.31927 −0.659636 0.751586i \(-0.729289\pi\)
−0.659636 + 0.751586i \(0.729289\pi\)
\(338\) −2.81068 + 0.506387i −0.152881 + 0.0275438i
\(339\) 29.3537 1.59427
\(340\) −8.55995 + 4.94209i −0.464229 + 0.268022i
\(341\) 14.6761 + 25.4197i 0.794754 + 1.37655i
\(342\) 0.109456 0.189584i 0.00591873 0.0102515i
\(343\) 4.61478i 0.249174i
\(344\) 3.80752 + 2.19827i 0.205288 + 0.118523i
\(345\) −3.93456 2.27162i −0.211830 0.122300i
\(346\) 3.50952i 0.188673i
\(347\) 3.13680 5.43309i 0.168392 0.291664i −0.769463 0.638692i \(-0.779476\pi\)
0.937855 + 0.347028i \(0.112809\pi\)
\(348\) −4.53401 7.85314i −0.243049 0.420972i
\(349\) −6.12275 + 3.53497i −0.327743 + 0.189223i −0.654839 0.755769i \(-0.727263\pi\)
0.327095 + 0.944991i \(0.393930\pi\)
\(350\) −0.0729902 −0.00390149
\(351\) −19.5487 3.40948i −1.04343 0.181984i
\(352\) 13.7085 0.730666
\(353\) −18.8705 + 10.8949i −1.00438 + 0.579878i −0.909541 0.415615i \(-0.863566\pi\)
−0.0948371 + 0.995493i \(0.530233\pi\)
\(354\) −0.475869 0.824229i −0.0252921 0.0438073i
\(355\) −6.39866 + 11.0828i −0.339606 + 0.588214i
\(356\) 6.29598i 0.333687i
\(357\) 2.33176 + 1.34624i 0.123410 + 0.0712506i
\(358\) −4.49332 2.59422i −0.237479 0.137109i
\(359\) 23.9737i 1.26528i −0.774444 0.632642i \(-0.781971\pi\)
0.774444 0.632642i \(-0.218029\pi\)
\(360\) −0.190720 + 0.330337i −0.0100518 + 0.0174103i
\(361\) −6.92820 12.0000i −0.364642 0.631579i
\(362\) −0.499589 + 0.288438i −0.0262578 + 0.0151600i
\(363\) 28.5737 1.49973
\(364\) −2.19556 + 0.803745i −0.115078 + 0.0421277i
\(365\) 9.68922 0.507157
\(366\) 4.29384 2.47905i 0.224443 0.129582i
\(367\) −3.19566 5.53505i −0.166812 0.288927i 0.770485 0.637458i \(-0.220014\pi\)
−0.937297 + 0.348531i \(0.886681\pi\)
\(368\) −5.27059 + 9.12892i −0.274748 + 0.475878i
\(369\) 1.63977i 0.0853628i
\(370\) −1.13620 0.655986i −0.0590683 0.0341031i
\(371\) 0.449045 + 0.259256i 0.0233133 + 0.0134599i
\(372\) 17.0653i 0.884793i
\(373\) 10.0401 17.3899i 0.519855 0.900414i −0.479879 0.877335i \(-0.659319\pi\)
0.999734 0.0230798i \(-0.00734719\pi\)
\(374\) −2.98823 5.17577i −0.154518 0.267633i
\(375\) −1.38581 + 0.800098i −0.0715629 + 0.0413169i
\(376\) −7.24280 −0.373519
\(377\) −3.59878 9.83062i −0.185346 0.506302i
\(378\) 0.401714 0.0206619
\(379\) −4.73007 + 2.73091i −0.242968 + 0.140277i −0.616540 0.787324i \(-0.711466\pi\)
0.373572 + 0.927601i \(0.378133\pi\)
\(380\) −2.21322 3.83341i −0.113536 0.196650i
\(381\) −2.59229 + 4.48997i −0.132807 + 0.230028i
\(382\) 0.442849i 0.0226581i
\(383\) 4.90842 + 2.83388i 0.250808 + 0.144804i 0.620134 0.784496i \(-0.287078\pi\)
−0.369326 + 0.929300i \(0.620411\pi\)
\(384\) −9.16297 5.29024i −0.467596 0.269966i
\(385\) 1.78477i 0.0909602i
\(386\) 2.50675 4.34181i 0.127590 0.220992i
\(387\) 1.11256 + 1.92701i 0.0565546 + 0.0979554i
\(388\) −4.23901 + 2.44739i −0.215203 + 0.124247i
\(389\) −10.6174 −0.538325 −0.269162 0.963095i \(-0.586747\pi\)
−0.269162 + 0.963095i \(0.586747\pi\)
\(390\) 0.812927 0.972477i 0.0411642 0.0492433i
\(391\) 14.3784 0.727149
\(392\) −5.17986 + 2.99059i −0.261622 + 0.151048i
\(393\) 0.140548 + 0.243436i 0.00708971 + 0.0122797i
\(394\) 0.0706321 0.122338i 0.00355840 0.00616332i
\(395\) 4.51851i 0.227351i
\(396\) 3.98940 + 2.30328i 0.200475 + 0.115744i
\(397\) 24.2780 + 14.0169i 1.21848 + 0.703487i 0.964592 0.263748i \(-0.0849586\pi\)
0.253884 + 0.967235i \(0.418292\pi\)
\(398\) 0.673745i 0.0337718i
\(399\) −0.602888 + 1.04423i −0.0301822 + 0.0522770i
\(400\) 1.85638 + 3.21534i 0.0928189 + 0.160767i
\(401\) 19.4979 11.2571i 0.973680 0.562155i 0.0733241 0.997308i \(-0.476639\pi\)
0.900356 + 0.435154i \(0.143306\pi\)
\(402\) −3.63222 −0.181159
\(403\) 3.38496 19.4081i 0.168617 0.966788i
\(404\) −24.2927 −1.20861
\(405\) 6.48552 3.74441i 0.322268 0.186061i
\(406\) 0.105963 + 0.183533i 0.00525884 + 0.00910857i
\(407\) −16.0403 + 27.7826i −0.795087 + 1.37713i
\(408\) 7.03533i 0.348301i
\(409\) −3.71328 2.14386i −0.183610 0.106007i 0.405378 0.914149i \(-0.367140\pi\)
−0.588988 + 0.808142i \(0.700473\pi\)
\(410\) 0.710039 + 0.409941i 0.0350663 + 0.0202456i
\(411\) 28.7761i 1.41942i
\(412\) −14.6622 + 25.3956i −0.722353 + 1.25115i
\(413\) −0.449749 0.778989i −0.0221307 0.0383315i
\(414\) 0.237335 0.137025i 0.0116644 0.00673443i
\(415\) −4.26371 −0.209297
\(416\) −7.05946 5.90125i −0.346119 0.289333i
\(417\) −19.1802 −0.939257
\(418\) 2.31787 1.33822i 0.113371 0.0654546i
\(419\) −8.85578 15.3387i −0.432633 0.749343i 0.564466 0.825456i \(-0.309082\pi\)
−0.997099 + 0.0761137i \(0.975749\pi\)
\(420\) 0.518830 0.898640i 0.0253163 0.0438491i
\(421\) 12.8787i 0.627672i 0.949477 + 0.313836i \(0.101614\pi\)
−0.949477 + 0.313836i \(0.898386\pi\)
\(422\) −1.56016 0.900759i −0.0759474 0.0438483i
\(423\) −3.17453 1.83281i −0.154351 0.0891145i
\(424\) 1.35485i 0.0657973i
\(425\) 2.53215 4.38581i 0.122827 0.212743i
\(426\) 2.24940 + 3.89607i 0.108984 + 0.188765i
\(427\) 4.05816 2.34298i 0.196388 0.113385i
\(428\) −25.4981 −1.23250
\(429\) −23.7792 19.8778i −1.14807 0.959710i
\(430\) −1.11256 −0.0536524
\(431\) 8.22590 4.74923i 0.396228 0.228762i −0.288627 0.957442i \(-0.593199\pi\)
0.684855 + 0.728679i \(0.259866\pi\)
\(432\) −10.2169 17.6962i −0.491560 0.851408i
\(433\) −0.698141 + 1.20922i −0.0335505 + 0.0581112i −0.882313 0.470663i \(-0.844015\pi\)
0.848763 + 0.528774i \(0.177348\pi\)
\(434\) 0.398826i 0.0191443i
\(435\) 4.02367 + 2.32306i 0.192920 + 0.111382i
\(436\) 18.9857 + 10.9614i 0.909251 + 0.524956i
\(437\) 6.43911i 0.308024i
\(438\) 1.70308 2.94983i 0.0813765 0.140948i
\(439\) 2.08090 + 3.60422i 0.0993159 + 0.172020i 0.911402 0.411518i \(-0.135001\pi\)
−0.812086 + 0.583538i \(0.801668\pi\)
\(440\) −4.03872 + 2.33176i −0.192539 + 0.111162i
\(441\) −3.02711 −0.144148
\(442\) −0.689221 + 3.95174i −0.0327829 + 0.187965i
\(443\) 9.54563 0.453526 0.226763 0.973950i \(-0.427186\pi\)
0.226763 + 0.973950i \(0.427186\pi\)
\(444\) 16.1527 9.32578i 0.766574 0.442582i
\(445\) 1.61292 + 2.79366i 0.0764596 + 0.132432i
\(446\) −1.12526 + 1.94900i −0.0532825 + 0.0922880i
\(447\) 5.45732i 0.258122i
\(448\) −1.97526 1.14042i −0.0933223 0.0538796i
\(449\) 18.8075 + 10.8585i 0.887582 + 0.512446i 0.873151 0.487450i \(-0.162073\pi\)
0.0144310 + 0.999896i \(0.495406\pi\)
\(450\) 0.0965246i 0.00455022i
\(451\) 10.0239 17.3620i 0.472009 0.817544i
\(452\) 17.9012 + 31.0057i 0.842000 + 1.45839i
\(453\) 11.0330 6.36991i 0.518376 0.299284i
\(454\) 1.54743 0.0726246
\(455\) 0.768307 0.919100i 0.0360188 0.0430881i
\(456\) −3.15064 −0.147542
\(457\) 4.08989 2.36130i 0.191317 0.110457i −0.401282 0.915955i \(-0.631435\pi\)
0.592599 + 0.805498i \(0.298102\pi\)
\(458\) 0.145980 + 0.252845i 0.00682122 + 0.0118147i
\(459\) −13.9361 + 24.1381i −0.650482 + 1.12667i
\(460\) 5.54133i 0.258366i
\(461\) 1.54283 + 0.890753i 0.0718568 + 0.0414865i 0.535498 0.844537i \(-0.320124\pi\)
−0.463641 + 0.886023i \(0.653457\pi\)
\(462\) 0.543362 + 0.313710i 0.0252795 + 0.0145951i
\(463\) 6.80200i 0.316116i −0.987430 0.158058i \(-0.949477\pi\)
0.987430 0.158058i \(-0.0505232\pi\)
\(464\) 5.38995 9.33566i 0.250222 0.433397i
\(465\) 4.37182 + 7.57221i 0.202738 + 0.351153i
\(466\) −0.237335 + 0.137025i −0.0109943 + 0.00634758i
\(467\) −18.2374 −0.843927 −0.421963 0.906613i \(-0.638659\pi\)
−0.421963 + 0.906613i \(0.638659\pi\)
\(468\) −1.06290 2.90348i −0.0491325 0.134213i
\(469\) −3.43285 −0.158514
\(470\) 1.58726 0.916407i 0.0732150 0.0422707i
\(471\) −13.1479 22.7728i −0.605823 1.04932i
\(472\) 1.17517 2.03546i 0.0540918 0.0936897i
\(473\) 27.2045i 1.25086i
\(474\) −1.37564 0.794223i −0.0631850 0.0364799i
\(475\) 1.96410 + 1.13397i 0.0901192 + 0.0520303i
\(476\) 3.28398i 0.150521i
\(477\) −0.342849 + 0.593832i −0.0156980 + 0.0271897i
\(478\) 1.09207 + 1.89152i 0.0499502 + 0.0865162i
\(479\) 30.4674 17.5904i 1.39209 0.803724i 0.398544 0.917149i \(-0.369515\pi\)
0.993547 + 0.113425i \(0.0361821\pi\)
\(480\) 4.08359 0.186390
\(481\) 20.2201 7.40214i 0.921957 0.337508i
\(482\) 4.96204 0.226015
\(483\) −1.30724 + 0.754738i −0.0594817 + 0.0343418i
\(484\) 17.4255 + 30.1819i 0.792069 + 1.37190i
\(485\) 1.25396 2.17191i 0.0569392 0.0986215i
\(486\) 0.994615i 0.0451166i
\(487\) 8.92352 + 5.15200i 0.404363 + 0.233459i 0.688365 0.725364i \(-0.258329\pi\)
−0.284002 + 0.958824i \(0.591662\pi\)
\(488\) 10.6038 + 6.12210i 0.480011 + 0.277134i
\(489\) 28.4950i 1.28859i
\(490\) 0.756779 1.31078i 0.0341878 0.0592150i
\(491\) 4.66599 + 8.08174i 0.210573 + 0.364724i 0.951894 0.306427i \(-0.0991336\pi\)
−0.741321 + 0.671151i \(0.765800\pi\)
\(492\) −10.0942 + 5.82790i −0.455083 + 0.262742i
\(493\) −14.7041 −0.662238
\(494\) −1.76971 0.308654i −0.0796230 0.0138870i
\(495\) −2.36023 −0.106085
\(496\) 17.5689 10.1434i 0.788869 0.455454i
\(497\) 2.12593 + 3.68222i 0.0953611 + 0.165170i
\(498\) −0.749437 + 1.29806i −0.0335831 + 0.0581676i
\(499\) 23.9421i 1.07179i 0.844283 + 0.535897i \(0.180026\pi\)
−0.844283 + 0.535897i \(0.819974\pi\)
\(500\) −1.69025 0.975869i −0.0755905 0.0436422i
\(501\) 8.72181 + 5.03554i 0.389662 + 0.224971i
\(502\) 1.48692i 0.0663645i
\(503\) −21.0721 + 36.4980i −0.939560 + 1.62737i −0.173266 + 0.984875i \(0.555432\pi\)
−0.766294 + 0.642490i \(0.777901\pi\)
\(504\) 0.0633661 + 0.109753i 0.00282255 + 0.00488880i
\(505\) 10.7792 6.22336i 0.479667 0.276936i
\(506\) 3.35056 0.148951
\(507\) 3.68852 + 20.4729i 0.163813 + 0.909235i
\(508\) −6.32355 −0.280562
\(509\) −29.0640 + 16.7801i −1.28824 + 0.743765i −0.978340 0.207005i \(-0.933629\pi\)
−0.309899 + 0.950770i \(0.600295\pi\)
\(510\) −0.890157 1.54180i −0.0394168 0.0682719i
\(511\) 1.60960 2.78792i 0.0712047 0.123330i
\(512\) 15.9211i 0.703621i
\(513\) −10.8098 6.24102i −0.477263 0.275548i
\(514\) 1.95084 + 1.12632i 0.0860477 + 0.0496796i
\(515\) 15.0247i 0.662069i
\(516\) 7.90831 13.6976i 0.348144 0.603003i
\(517\) −22.4081 38.8120i −0.985508 1.70695i
\(518\) −0.377499 + 0.217949i −0.0165864 + 0.00957614i
\(519\) 25.5633 1.12210
\(520\) 3.08359 + 0.537808i 0.135224 + 0.0235844i
\(521\) 12.4649 0.546098 0.273049 0.962000i \(-0.411968\pi\)
0.273049 + 0.962000i \(0.411968\pi\)
\(522\) −0.242710 + 0.140128i −0.0106231 + 0.00613326i
\(523\) 2.82978 + 4.90132i 0.123738 + 0.214320i 0.921239 0.388998i \(-0.127179\pi\)
−0.797501 + 0.603317i \(0.793845\pi\)
\(524\) −0.171425 + 0.296916i −0.00748872 + 0.0129708i
\(525\) 0.531659i 0.0232035i
\(526\) 3.54958 + 2.04935i 0.154769 + 0.0893558i
\(527\) −23.9645 13.8359i −1.04391 0.602702i
\(528\) 31.9147i 1.38891i
\(529\) 7.46953 12.9376i 0.324762 0.562505i
\(530\) −0.171425 0.296916i −0.00744621 0.0128972i
\(531\) 1.03016 0.594763i 0.0447051 0.0258105i
\(532\) −1.47067 −0.0637616
\(533\) −12.6360 + 4.62577i −0.547327 + 0.200364i
\(534\) 1.13402 0.0490737
\(535\) 11.3140 6.53215i 0.489147 0.282409i
\(536\) −4.48494 7.76815i −0.193720 0.335533i
\(537\) −18.8963 + 32.7293i −0.815433 + 1.41237i
\(538\) 3.94511i 0.170086i
\(539\) −32.0514 18.5049i −1.38055 0.797061i
\(540\) 9.30260 + 5.37086i 0.400320 + 0.231125i
\(541\) 15.4750i 0.665321i 0.943047 + 0.332660i \(0.107946\pi\)
−0.943047 + 0.332660i \(0.892054\pi\)
\(542\) 3.39391 5.87842i 0.145781 0.252500i
\(543\) 2.10098 + 3.63900i 0.0901616 + 0.156165i
\(544\) −11.1923 + 6.46187i −0.479866 + 0.277051i
\(545\) −11.2325 −0.481146
\(546\) −0.144769 0.395458i −0.00619552 0.0169240i
\(547\) 25.1765 1.07647 0.538234 0.842795i \(-0.319092\pi\)
0.538234 + 0.842795i \(0.319092\pi\)
\(548\) 30.3956 17.5489i 1.29844 0.749653i
\(549\) 3.09843 + 5.36665i 0.132238 + 0.229043i
\(550\) 0.590059 1.02201i 0.0251602 0.0435787i
\(551\) 6.58493i 0.280528i
\(552\) −3.41577 1.97210i −0.145385 0.0839380i
\(553\) −1.30013 0.750630i −0.0552871 0.0319200i
\(554\) 5.82269i 0.247382i
\(555\) −4.77819 + 8.27607i −0.202823 + 0.351300i
\(556\) −11.6969 20.2596i −0.496059 0.859199i
\(557\) −36.6752 + 21.1744i −1.55398 + 0.897190i −0.556167 + 0.831071i \(0.687728\pi\)
−0.997812 + 0.0661194i \(0.978938\pi\)
\(558\) −0.527420 −0.0223275
\(559\) 11.7110 14.0095i 0.495322 0.592537i
\(560\) 1.23355 0.0521270
\(561\) −37.7002 + 21.7662i −1.59171 + 0.918971i
\(562\) 0.546763 + 0.947022i 0.0230638 + 0.0399477i
\(563\) 11.8953 20.6032i 0.501326 0.868322i −0.498673 0.866790i \(-0.666179\pi\)
0.999999 0.00153173i \(-0.000487565\pi\)
\(564\) 26.0561i 1.09716i
\(565\) −15.8862 9.17191i −0.668338 0.385865i
\(566\) 2.39461 + 1.38253i 0.100653 + 0.0581119i
\(567\) 2.48814i 0.104492i
\(568\) −5.55497 + 9.62148i −0.233081 + 0.403709i
\(569\) −13.3710 23.1593i −0.560543 0.970889i −0.997449 0.0713817i \(-0.977259\pi\)
0.436906 0.899507i \(-0.356074\pi\)
\(570\) 0.690464 0.398640i 0.0289204 0.0166972i
\(571\) 16.7159 0.699539 0.349769 0.936836i \(-0.386260\pi\)
0.349769 + 0.936836i \(0.386260\pi\)
\(572\) 6.49498 37.2398i 0.271569 1.55707i
\(573\) 3.22571 0.134756
\(574\) 0.235908 0.136202i 0.00984661 0.00568494i
\(575\) 1.41959 + 2.45880i 0.0592010 + 0.102539i
\(576\) 1.50812 2.61215i 0.0628385 0.108840i
\(577\) 20.6768i 0.860786i −0.902642 0.430393i \(-0.858375\pi\)
0.902642 0.430393i \(-0.141625\pi\)
\(578\) 1.64515 + 0.949828i 0.0684292 + 0.0395076i
\(579\) −31.6257 18.2591i −1.31432 0.758822i
\(580\) 5.66682i 0.235302i
\(581\) −0.708301 + 1.22681i −0.0293853 + 0.0508968i
\(582\) −0.440818 0.763519i −0.0182725 0.0316489i
\(583\) −7.26023 + 4.19170i −0.300688 + 0.173602i
\(584\) 8.41165 0.348076
\(585\) 1.21545 + 1.01603i 0.0502526 + 0.0420079i
\(586\) −3.71657 −0.153530
\(587\) 18.0109 10.3986i 0.743388 0.429196i −0.0799116 0.996802i \(-0.525464\pi\)
0.823300 + 0.567606i \(0.192130\pi\)
\(588\) 10.7587 + 18.6346i 0.443681 + 0.768478i
\(589\) 6.19615 10.7321i 0.255308 0.442206i
\(590\) 0.594763i 0.0244860i
\(591\) −0.891111 0.514483i −0.0366554 0.0211630i
\(592\) 19.2021 + 11.0863i 0.789199 + 0.455644i
\(593\) 21.8475i 0.897169i 0.893740 + 0.448585i \(0.148072\pi\)
−0.893740 + 0.448585i \(0.851928\pi\)
\(594\) −3.24749 + 5.62482i −0.133246 + 0.230789i
\(595\) −0.841298 1.45717i −0.0344898 0.0597381i
\(596\) −5.76446 + 3.32811i −0.236121 + 0.136325i
\(597\) 4.90755 0.200853
\(598\) −1.72544 1.44235i −0.0705583 0.0589822i
\(599\) −3.58040 −0.146291 −0.0731456 0.997321i \(-0.523304\pi\)
−0.0731456 + 0.997321i \(0.523304\pi\)
\(600\) −1.20308 + 0.694601i −0.0491157 + 0.0283570i
\(601\) −10.6743 18.4885i −0.435414 0.754160i 0.561915 0.827195i \(-0.310065\pi\)
−0.997329 + 0.0730352i \(0.976731\pi\)
\(602\) −0.184822 + 0.320121i −0.00753278 + 0.0130472i
\(603\) 4.53972i 0.184872i
\(604\) 13.4568 + 7.76929i 0.547550 + 0.316128i
\(605\) −15.4641 8.92820i −0.628705 0.362983i
\(606\) 4.37554i 0.177744i
\(607\) 1.64988 2.85767i 0.0669665 0.115989i −0.830598 0.556872i \(-0.812001\pi\)
0.897565 + 0.440883i \(0.145335\pi\)
\(608\) −2.89383 5.01226i −0.117360 0.203274i
\(609\) 1.33685 0.771830i 0.0541718 0.0312761i
\(610\) −3.09843 −0.125452
\(611\) −5.16832 + 29.6332i −0.209088 + 1.19883i
\(612\) −4.34285 −0.175549
\(613\) 8.56183 4.94318i 0.345809 0.199653i −0.317029 0.948416i \(-0.602685\pi\)
0.662838 + 0.748763i \(0.269352\pi\)
\(614\) −0.472795 0.818904i −0.0190804 0.0330483i
\(615\) 2.98601 5.17191i 0.120407 0.208552i
\(616\) 1.54944i 0.0624286i
\(617\) 39.5920 + 22.8584i 1.59391 + 0.920246i 0.992626 + 0.121213i \(0.0386785\pi\)
0.601287 + 0.799033i \(0.294655\pi\)
\(618\) −4.57419 2.64091i −0.184001 0.106233i
\(619\) 19.9143i 0.800425i −0.916422 0.400212i \(-0.868936\pi\)
0.916422 0.400212i \(-0.131064\pi\)
\(620\) −5.33225 + 9.23572i −0.214148 + 0.370916i
\(621\) −7.81295 13.5324i −0.313523 0.543038i
\(622\) −0.423339 + 0.244415i −0.0169743 + 0.00980014i
\(623\) 1.07177 0.0429397
\(624\) −13.7386 + 16.4351i −0.549986 + 0.657930i
\(625\) 1.00000 0.0400000
\(626\) −1.37152 + 0.791847i −0.0548169 + 0.0316486i
\(627\) −9.74760 16.8833i −0.389282 0.674255i
\(628\) 16.0363 27.7757i 0.639918 1.10837i
\(629\) 30.2440i 1.20591i
\(630\) −0.0277734 0.0160350i −0.00110652 0.000638849i
\(631\) 12.6403 + 7.29790i 0.503204 + 0.290525i 0.730036 0.683409i \(-0.239503\pi\)
−0.226832 + 0.973934i \(0.572837\pi\)
\(632\) 3.92272i 0.156038i
\(633\) −6.56112 + 11.3642i −0.260781 + 0.451686i
\(634\) 0.0353305 + 0.0611942i 0.00140315 + 0.00243033i
\(635\) 2.80589 1.61998i 0.111348 0.0642870i
\(636\) 4.87409 0.193270
\(637\) 8.53948 + 23.3269i 0.338346 + 0.924246i
\(638\) −3.42644 −0.135654
\(639\) −4.86950 + 2.81140i −0.192634 + 0.111217i
\(640\) 3.30600 + 5.72615i 0.130681 + 0.226346i
\(641\) −7.08183 + 12.2661i −0.279716 + 0.484482i −0.971314 0.237801i \(-0.923573\pi\)
0.691598 + 0.722282i \(0.256907\pi\)
\(642\) 4.59265i 0.181257i
\(643\) −14.5246 8.38581i −0.572796 0.330704i 0.185469 0.982650i \(-0.440620\pi\)
−0.758265 + 0.651946i \(0.773953\pi\)
\(644\) −1.59443 0.920544i −0.0628293 0.0362745i
\(645\) 8.10387i 0.319089i
\(646\) −1.26161 + 2.18518i −0.0496376 + 0.0859748i
\(647\) −1.49584 2.59087i −0.0588075 0.101858i 0.835123 0.550063i \(-0.185396\pi\)
−0.893930 + 0.448206i \(0.852063\pi\)
\(648\) 5.63037 3.25069i 0.221182 0.127699i
\(649\) 14.5432 0.570872
\(650\) −0.743818 + 0.272296i −0.0291749 + 0.0106803i
\(651\) 2.90504 0.113858
\(652\) −30.0987 + 17.3775i −1.17876 + 0.680556i
\(653\) 5.83217 + 10.1016i 0.228230 + 0.395307i 0.957284 0.289150i \(-0.0933727\pi\)
−0.729053 + 0.684457i \(0.760039\pi\)
\(654\) −1.97434 + 3.41966i −0.0772028 + 0.133719i
\(655\) 0.175664i 0.00686374i
\(656\) −11.9998 6.92810i −0.468514 0.270497i
\(657\) 3.68683 + 2.12859i 0.143837 + 0.0830444i
\(658\) 0.608946i 0.0237392i
\(659\) 0.905237 1.56792i 0.0352630 0.0610773i −0.847855 0.530228i \(-0.822106\pi\)
0.883118 + 0.469150i \(0.155440\pi\)
\(660\) 8.38853 + 14.5294i 0.326523 + 0.565554i
\(661\) 10.6872 6.17028i 0.415686 0.239996i −0.277544 0.960713i \(-0.589520\pi\)
0.693230 + 0.720717i \(0.256187\pi\)
\(662\) 3.65383 0.142010
\(663\) 28.7844 + 5.02027i 1.11789 + 0.194971i
\(664\) −3.70152 −0.143647
\(665\) 0.652566 0.376759i 0.0253054 0.0146101i
\(666\) −0.288223 0.499217i −0.0111684 0.0193443i
\(667\) 4.12174 7.13907i 0.159594 0.276426i
\(668\) 12.2836i 0.475265i
\(669\) 14.1965 + 8.19636i 0.548869 + 0.316890i
\(670\) 1.96576 + 1.13493i 0.0759438 + 0.0438461i
\(671\) 75.7634i 2.92481i
\(672\) 0.678380 1.17499i 0.0261691 0.0453262i
\(673\) 4.63313 + 8.02481i 0.178594 + 0.309334i 0.941399 0.337295i \(-0.109512\pi\)
−0.762805 + 0.646628i \(0.776178\pi\)
\(674\) 4.60770 2.66025i 0.177482 0.102469i
\(675\) −5.50367 −0.211836
\(676\) −19.3757 + 16.3814i −0.745220 + 0.630053i
\(677\) 13.8984 0.534158 0.267079 0.963675i \(-0.413941\pi\)
0.267079 + 0.963675i \(0.413941\pi\)
\(678\) −5.58467 + 3.22431i −0.214478 + 0.123829i
\(679\) −0.416622 0.721611i −0.0159885 0.0276929i
\(680\) 2.19827 3.80752i 0.0842999 0.146012i
\(681\) 11.2715i 0.431924i
\(682\) −5.58438 3.22414i −0.213837 0.123459i
\(683\) −32.6935 18.8756i −1.25098 0.722255i −0.279678 0.960094i \(-0.590228\pi\)
−0.971305 + 0.237838i \(0.923561\pi\)
\(684\) 1.94486i 0.0743637i
\(685\) −8.99144 + 15.5736i −0.343545 + 0.595038i
\(686\) −0.506903 0.877981i −0.0193536 0.0335215i
\(687\) 1.84172 1.06332i 0.0702661 0.0405681i
\(688\) 18.8025 0.716838
\(689\) 5.54324 + 0.966794i 0.211181 + 0.0368319i
\(690\) 0.998090 0.0379966
\(691\) −1.43146 + 0.826456i −0.0544554 + 0.0314399i −0.526981 0.849877i \(-0.676676\pi\)
0.472525 + 0.881317i \(0.343343\pi\)
\(692\) 15.5896 + 27.0020i 0.592628 + 1.02646i
\(693\) −0.392090 + 0.679120i −0.0148943 + 0.0257976i
\(694\) 1.37823i 0.0523168i
\(695\) 10.3803 + 5.99307i 0.393747 + 0.227330i
\(696\) 3.49312 + 2.01676i 0.132407 + 0.0764450i
\(697\) 18.9002i 0.715897i
\(698\) 0.776587 1.34509i 0.0293943 0.0509123i
\(699\) 0.998090 + 1.72874i 0.0377512 + 0.0653871i
\(700\) −0.561581 + 0.324229i −0.0212258 + 0.0122547i
\(701\) −20.4819 −0.773590 −0.386795 0.922166i \(-0.626418\pi\)
−0.386795 + 0.922166i \(0.626418\pi\)
\(702\) 4.09373 1.49863i 0.154508 0.0565620i
\(703\) 13.5442 0.510830
\(704\) 31.9363 18.4384i 1.20365 0.694925i
\(705\) −6.67510 11.5616i −0.251399 0.435435i
\(706\) 2.39347 4.14561i 0.0900794 0.156022i
\(707\) 4.13538i 0.155527i
\(708\) −7.32260 4.22770i −0.275200 0.158887i
\(709\) 19.0021 + 10.9709i 0.713639 + 0.412020i 0.812407 0.583091i \(-0.198157\pi\)
−0.0987679 + 0.995110i \(0.531490\pi\)
\(710\) 2.81140i 0.105510i
\(711\) 0.992658 1.71933i 0.0372276 0.0644801i
\(712\) 1.40025 + 2.42530i 0.0524764 + 0.0908919i
\(713\) 13.4351 7.75678i 0.503150 0.290494i
\(714\) −0.591503 −0.0221364
\(715\) 6.65821 + 18.1879i 0.249003 + 0.680191i
\(716\) −46.0950 −1.72265
\(717\) 13.7778 7.95463i 0.514542 0.297071i
\(718\) 2.63335 + 4.56110i 0.0982759 + 0.170219i
\(719\) 19.4237 33.6429i 0.724384 1.25467i −0.234844 0.972033i \(-0.575458\pi\)
0.959227 0.282636i \(-0.0912089\pi\)
\(720\) 1.63129i 0.0607945i
\(721\) −4.32312 2.49596i −0.161002 0.0929543i
\(722\) 2.63624 + 1.52204i 0.0981108 + 0.0566443i
\(723\) 36.1434i 1.34419i
\(724\) −2.56254 + 4.43844i −0.0952359 + 0.164953i
\(725\) −1.45174 2.51448i −0.0539162 0.0933856i
\(726\) −5.43628 + 3.13864i −0.201759 + 0.116486i
\(727\) 30.6598 1.13711 0.568555 0.822645i \(-0.307503\pi\)
0.568555 + 0.822645i \(0.307503\pi\)
\(728\) 0.667002 0.797912i 0.0247207 0.0295726i
\(729\) 29.7112 1.10042
\(730\) −1.84342 + 1.06430i −0.0682279 + 0.0393914i
\(731\) −12.8236 22.2110i −0.474296 0.821505i
\(732\) 22.0243 38.1473i 0.814043 1.40996i
\(733\) 24.3858i 0.900709i 0.892850 + 0.450355i \(0.148702\pi\)
−0.892850 + 0.450355i \(0.851298\pi\)
\(734\) 1.21598 + 0.702045i 0.0448826 + 0.0259130i
\(735\) −9.54769 5.51236i −0.352172 0.203327i
\(736\) 7.24539i 0.267069i
\(737\) 27.7515 48.0669i 1.02224 1.77057i
\(738\) 0.180117 + 0.311973i 0.00663021 + 0.0114839i
\(739\) −33.1504 + 19.1394i −1.21946 + 0.704054i −0.964802 0.262977i \(-0.915296\pi\)
−0.254656 + 0.967032i \(0.581962\pi\)
\(740\) −11.6558 −0.428476
\(741\) −2.24823 + 12.8905i −0.0825909 + 0.473546i
\(742\) −0.113910 −0.00418178
\(743\) −34.6479 + 20.0040i −1.27111 + 0.733874i −0.975196 0.221342i \(-0.928956\pi\)
−0.295910 + 0.955216i \(0.595623\pi\)
\(744\) 3.79537 + 6.57377i 0.139145 + 0.241006i
\(745\) 1.70520 2.95350i 0.0624738 0.108208i
\(746\) 4.41134i 0.161511i
\(747\) −1.62238 0.936681i −0.0593598 0.0342714i
\(748\) −45.9825 26.5480i −1.68129 0.970691i
\(749\) 4.34057i 0.158601i
\(750\) 0.175771 0.304444i 0.00641825 0.0111167i
\(751\) 12.8010 + 22.1720i 0.467115 + 0.809067i 0.999294 0.0375648i \(-0.0119601\pi\)
−0.532179 + 0.846632i \(0.678627\pi\)
\(752\) −26.8251 + 15.4875i −0.978211 + 0.564770i
\(753\) −10.8307 −0.394693
\(754\) 1.76451 + 1.47502i 0.0642597 + 0.0537169i
\(755\) −7.96141 −0.289745
\(756\) 3.09076 1.78445i 0.112410 0.0648998i
\(757\) 0.924239 + 1.60083i 0.0335920 + 0.0581831i 0.882333 0.470626i \(-0.155972\pi\)
−0.848741 + 0.528809i \(0.822639\pi\)
\(758\) 0.599945 1.03914i 0.0217910 0.0377431i
\(759\) 24.4055i 0.885862i
\(760\) 1.70512 + 0.984454i 0.0618514 + 0.0357099i
\(761\) 22.7006 + 13.1062i 0.822896 + 0.475099i 0.851414 0.524494i \(-0.175745\pi\)
−0.0285179 + 0.999593i \(0.509079\pi\)
\(762\) 1.13898i 0.0412610i
\(763\) −1.86597 + 3.23196i −0.0675528 + 0.117005i
\(764\) 1.96718 + 3.40725i 0.0711699 + 0.123270i
\(765\) 1.92701 1.11256i 0.0696712 0.0402247i
\(766\) −1.24513 −0.0449884
\(767\) −7.48932 6.26058i −0.270424 0.226056i
\(768\) −19.6459 −0.708911
\(769\) −38.4078 + 22.1747i −1.38502 + 0.799641i −0.992749 0.120208i \(-0.961644\pi\)
−0.392271 + 0.919850i \(0.628310\pi\)
\(770\) −0.196045 0.339560i −0.00706497 0.0122369i
\(771\) 8.20406 14.2099i 0.295462 0.511755i
\(772\) 44.5408i 1.60306i
\(773\) 20.1471 + 11.6319i 0.724640 + 0.418371i 0.816458 0.577405i \(-0.195935\pi\)
−0.0918181 + 0.995776i \(0.529268\pi\)
\(774\) −0.423339 0.244415i −0.0152166 0.00878531i
\(775\)