Properties

Label 65.2.m
Level 65
Weight 2
Character orbit m
Rep. character \(\chi_{65}(36,\cdot)\)
Character field \(\Q(\zeta_{6})\)
Dimension 8
Newforms 1
Sturm bound 14
Trace bound 0

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 65 = 5 \cdot 13 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 65.m (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 13 \)
Character field: \(\Q(\zeta_{6})\)
Newforms: \( 1 \)
Sturm bound: \(14\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(65, [\chi])\).

Total New Old
Modular forms 20 8 12
Cusp forms 12 8 4
Eisenstein series 8 0 8

Trace form

\( 8q + 2q^{3} + 2q^{4} - 18q^{6} - 6q^{7} - 4q^{9} + O(q^{10}) \) \( 8q + 2q^{3} + 2q^{4} - 18q^{6} - 6q^{7} - 4q^{9} - 2q^{10} + 20q^{12} + 4q^{14} - 6q^{15} - 2q^{16} - 2q^{17} + 12q^{19} + 12q^{20} - 12q^{22} - 10q^{23} - 12q^{24} - 8q^{25} + 10q^{26} - 4q^{27} - 18q^{28} - 8q^{29} + 4q^{30} + 6q^{32} + 42q^{33} + 10q^{35} + 20q^{36} + 6q^{37} - 16q^{38} - 12q^{40} + 12q^{41} + 4q^{42} - 2q^{43} - 42q^{46} + 28q^{48} + 12q^{49} - 8q^{51} - 6q^{52} - 24q^{53} + 18q^{54} + 12q^{56} + 36q^{58} - 12q^{59} - 28q^{61} + 4q^{62} - 24q^{63} - 8q^{64} - 8q^{65} + 12q^{66} + 6q^{67} - 14q^{68} - 16q^{69} - 48q^{72} + 10q^{74} - 2q^{75} + 54q^{76} - 36q^{77} - 56q^{78} - 16q^{79} + 8q^{81} + 4q^{82} - 30q^{84} + 18q^{85} + 22q^{87} - 18q^{88} + 24q^{89} + 40q^{90} + 28q^{91} + 44q^{92} + 32q^{94} - 16q^{95} - 30q^{97} + 72q^{98} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(65, [\chi])\) into irreducible Hecke orbits

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
65.2.m.a \(8\) \(0.519\) 8.0.22581504.2 None \(0\) \(2\) \(0\) \(-6\) \(q+(-1+\beta _{1}+\beta _{2}+\beta _{4}-\beta _{5})q^{2}+(\beta _{2}+\cdots)q^{3}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(65, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(65, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 2}\)