Properties

Label 65.2.l.a.4.3
Level $65$
Weight $2$
Character 65.4
Analytic conductor $0.519$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [65,2,Mod(4,65)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("65.4"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(65, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 65 = 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 65.l (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.519027613138\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.49787136.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 3x^{6} + 5x^{4} + 12x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 4.3
Root \(0.228425 - 1.39564i\) of defining polynomial
Character \(\chi\) \(=\) 65.4
Dual form 65.2.l.a.49.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.228425 - 0.395644i) q^{2} +(0.866025 + 0.500000i) q^{3} +(0.895644 + 1.55130i) q^{4} +(-2.18890 - 0.456850i) q^{5} +(0.395644 - 0.228425i) q^{6} +(-0.866025 - 1.50000i) q^{7} +1.73205 q^{8} +(-1.00000 - 1.73205i) q^{9} +(-0.680750 + 0.761669i) q^{10} +(-2.29129 - 1.32288i) q^{11} +1.79129i q^{12} +(3.46410 + 1.00000i) q^{13} -0.791288 q^{14} +(-1.66722 - 1.49009i) q^{15} +(-1.39564 + 2.41733i) q^{16} +(-3.96863 + 2.29129i) q^{17} -0.913701 q^{18} +(-1.50000 + 0.866025i) q^{19} +(-1.25176 - 3.80482i) q^{20} -1.73205i q^{21} +(-1.04678 + 0.604356i) q^{22} +(3.96863 + 2.29129i) q^{23} +(1.50000 + 0.866025i) q^{24} +(4.58258 + 2.00000i) q^{25} +(1.18693 - 1.14213i) q^{26} -5.00000i q^{27} +(1.55130 - 2.68693i) q^{28} +(2.29129 - 3.96863i) q^{29} +(-0.970381 + 0.319250i) q^{30} +6.20520i q^{31} +(2.36965 + 4.10436i) q^{32} +(-1.32288 - 2.29129i) q^{33} +2.09355i q^{34} +(1.21037 + 3.67900i) q^{35} +(1.79129 - 3.10260i) q^{36} +(3.96863 - 6.87386i) q^{37} +0.791288i q^{38} +(2.50000 + 2.59808i) q^{39} +(-3.79129 - 0.791288i) q^{40} +(2.29129 + 1.32288i) q^{41} +(-0.685275 - 0.395644i) q^{42} +(-9.16478 + 5.29129i) q^{43} -4.73930i q^{44} +(1.39761 + 4.24814i) q^{45} +(1.81307 - 1.04678i) q^{46} +1.82740 q^{47} +(-2.41733 + 1.39564i) q^{48} +(2.00000 - 3.46410i) q^{49} +(1.83806 - 1.35622i) q^{50} -4.58258 q^{51} +(1.55130 + 6.26951i) q^{52} -7.58258i q^{53} +(-1.97822 - 1.14213i) q^{54} +(4.41105 + 3.94242i) q^{55} +(-1.50000 - 2.59808i) q^{56} -1.73205 q^{57} +(-1.04678 - 1.81307i) q^{58} +(-12.0826 + 6.97588i) q^{59} +(0.818350 - 3.92095i) q^{60} +(0.708712 + 1.22753i) q^{61} +(2.45505 + 1.41742i) q^{62} +(-1.73205 + 3.00000i) q^{63} -3.41742 q^{64} +(-7.12573 - 3.77148i) q^{65} -1.20871 q^{66} +(-0.504525 + 0.873864i) q^{67} +(-7.10895 - 4.10436i) q^{68} +(2.29129 + 3.96863i) q^{69} +(1.73205 + 0.361500i) q^{70} +(6.08258 - 3.51178i) q^{71} +(-1.73205 - 3.00000i) q^{72} +(-1.81307 - 3.14033i) q^{74} +(2.96863 + 4.02334i) q^{75} +(-2.68693 - 1.55130i) q^{76} +4.58258i q^{77} +(1.59898 - 0.395644i) q^{78} +6.00000 q^{79} +(4.15928 - 4.65369i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(1.04678 - 0.604356i) q^{82} -6.01450 q^{83} +(2.68693 - 1.55130i) q^{84} +(9.73371 - 3.20233i) q^{85} +4.83465i q^{86} +(3.96863 - 2.29129i) q^{87} +(-3.96863 - 2.29129i) q^{88} +(8.29129 + 4.78698i) q^{89} +(2.00000 + 0.417424i) q^{90} +(-1.50000 - 6.06218i) q^{91} +8.20871i q^{92} +(-3.10260 + 5.37386i) q^{93} +(0.417424 - 0.723000i) q^{94} +(3.67900 - 1.21037i) q^{95} +4.73930i q^{96} +(-5.70068 - 9.87386i) q^{97} +(-0.913701 - 1.58258i) q^{98} +5.29150i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{4} - 6 q^{6} - 8 q^{9} - 4 q^{10} + 12 q^{14} - 6 q^{15} - 2 q^{16} - 12 q^{19} + 24 q^{20} + 12 q^{24} - 18 q^{26} - 10 q^{30} + 6 q^{35} - 4 q^{36} + 20 q^{39} - 12 q^{40} + 12 q^{45} + 42 q^{46}+ \cdots - 6 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/65\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(41\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.228425 0.395644i 0.161521 0.279763i −0.773893 0.633316i \(-0.781693\pi\)
0.935414 + 0.353553i \(0.115027\pi\)
\(3\) 0.866025 + 0.500000i 0.500000 + 0.288675i 0.728714 0.684819i \(-0.240119\pi\)
−0.228714 + 0.973494i \(0.573452\pi\)
\(4\) 0.895644 + 1.55130i 0.447822 + 0.775650i
\(5\) −2.18890 0.456850i −0.978906 0.204310i
\(6\) 0.395644 0.228425i 0.161521 0.0932542i
\(7\) −0.866025 1.50000i −0.327327 0.566947i 0.654654 0.755929i \(-0.272814\pi\)
−0.981981 + 0.188982i \(0.939481\pi\)
\(8\) 1.73205 0.612372
\(9\) −1.00000 1.73205i −0.333333 0.577350i
\(10\) −0.680750 + 0.761669i −0.215272 + 0.240861i
\(11\) −2.29129 1.32288i −0.690849 0.398862i 0.113081 0.993586i \(-0.463928\pi\)
−0.803930 + 0.594724i \(0.797261\pi\)
\(12\) 1.79129i 0.517100i
\(13\) 3.46410 + 1.00000i 0.960769 + 0.277350i
\(14\) −0.791288 −0.211481
\(15\) −1.66722 1.49009i −0.430474 0.384741i
\(16\) −1.39564 + 2.41733i −0.348911 + 0.604332i
\(17\) −3.96863 + 2.29129i −0.962533 + 0.555719i −0.896952 0.442128i \(-0.854224\pi\)
−0.0655816 + 0.997847i \(0.520890\pi\)
\(18\) −0.913701 −0.215361
\(19\) −1.50000 + 0.866025i −0.344124 + 0.198680i −0.662094 0.749421i \(-0.730332\pi\)
0.317970 + 0.948101i \(0.396999\pi\)
\(20\) −1.25176 3.80482i −0.279903 0.850783i
\(21\) 1.73205i 0.377964i
\(22\) −1.04678 + 0.604356i −0.223173 + 0.128849i
\(23\) 3.96863 + 2.29129i 0.827516 + 0.477767i 0.853001 0.521909i \(-0.174780\pi\)
−0.0254855 + 0.999675i \(0.508113\pi\)
\(24\) 1.50000 + 0.866025i 0.306186 + 0.176777i
\(25\) 4.58258 + 2.00000i 0.916515 + 0.400000i
\(26\) 1.18693 1.14213i 0.232776 0.223989i
\(27\) 5.00000i 0.962250i
\(28\) 1.55130 2.68693i 0.293168 0.507782i
\(29\) 2.29129 3.96863i 0.425481 0.736956i −0.570984 0.820961i \(-0.693438\pi\)
0.996465 + 0.0840058i \(0.0267714\pi\)
\(30\) −0.970381 + 0.319250i −0.177167 + 0.0582868i
\(31\) 6.20520i 1.11449i 0.830349 + 0.557244i \(0.188141\pi\)
−0.830349 + 0.557244i \(0.811859\pi\)
\(32\) 2.36965 + 4.10436i 0.418899 + 0.725555i
\(33\) −1.32288 2.29129i −0.230283 0.398862i
\(34\) 2.09355i 0.359041i
\(35\) 1.21037 + 3.67900i 0.204590 + 0.621864i
\(36\) 1.79129 3.10260i 0.298548 0.517100i
\(37\) 3.96863 6.87386i 0.652438 1.13006i −0.330091 0.943949i \(-0.607080\pi\)
0.982529 0.186107i \(-0.0595872\pi\)
\(38\) 0.791288i 0.128364i
\(39\) 2.50000 + 2.59808i 0.400320 + 0.416025i
\(40\) −3.79129 0.791288i −0.599455 0.125114i
\(41\) 2.29129 + 1.32288i 0.357839 + 0.206598i 0.668132 0.744042i \(-0.267094\pi\)
−0.310293 + 0.950641i \(0.600427\pi\)
\(42\) −0.685275 0.395644i −0.105740 0.0610492i
\(43\) −9.16478 + 5.29129i −1.39762 + 0.806914i −0.994142 0.108078i \(-0.965531\pi\)
−0.403473 + 0.914991i \(0.632197\pi\)
\(44\) 4.73930i 0.714477i
\(45\) 1.39761 + 4.24814i 0.208344 + 0.633275i
\(46\) 1.81307 1.04678i 0.267322 0.154339i
\(47\) 1.82740 0.266554 0.133277 0.991079i \(-0.457450\pi\)
0.133277 + 0.991079i \(0.457450\pi\)
\(48\) −2.41733 + 1.39564i −0.348911 + 0.201444i
\(49\) 2.00000 3.46410i 0.285714 0.494872i
\(50\) 1.83806 1.35622i 0.259941 0.191798i
\(51\) −4.58258 −0.641689
\(52\) 1.55130 + 6.26951i 0.215127 + 0.869424i
\(53\) 7.58258i 1.04155i −0.853695 0.520773i \(-0.825644\pi\)
0.853695 0.520773i \(-0.174356\pi\)
\(54\) −1.97822 1.14213i −0.269202 0.155424i
\(55\) 4.41105 + 3.94242i 0.594785 + 0.531596i
\(56\) −1.50000 2.59808i −0.200446 0.347183i
\(57\) −1.73205 −0.229416
\(58\) −1.04678 1.81307i −0.137448 0.238068i
\(59\) −12.0826 + 6.97588i −1.57302 + 0.908182i −0.577221 + 0.816588i \(0.695863\pi\)
−0.995796 + 0.0915940i \(0.970804\pi\)
\(60\) 0.818350 3.92095i 0.105649 0.506193i
\(61\) 0.708712 + 1.22753i 0.0907413 + 0.157169i 0.907823 0.419353i \(-0.137743\pi\)
−0.817082 + 0.576522i \(0.804410\pi\)
\(62\) 2.45505 + 1.41742i 0.311792 + 0.180013i
\(63\) −1.73205 + 3.00000i −0.218218 + 0.377964i
\(64\) −3.41742 −0.427178
\(65\) −7.12573 3.77148i −0.883837 0.467794i
\(66\) −1.20871 −0.148782
\(67\) −0.504525 + 0.873864i −0.0616376 + 0.106759i −0.895198 0.445670i \(-0.852966\pi\)
0.833560 + 0.552429i \(0.186299\pi\)
\(68\) −7.10895 4.10436i −0.862087 0.497726i
\(69\) 2.29129 + 3.96863i 0.275839 + 0.477767i
\(70\) 1.73205 + 0.361500i 0.207020 + 0.0432075i
\(71\) 6.08258 3.51178i 0.721869 0.416771i −0.0935712 0.995613i \(-0.529828\pi\)
0.815440 + 0.578841i \(0.196495\pi\)
\(72\) −1.73205 3.00000i −0.204124 0.353553i
\(73\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(74\) −1.81307 3.14033i −0.210765 0.365056i
\(75\) 2.96863 + 4.02334i 0.342788 + 0.464575i
\(76\) −2.68693 1.55130i −0.308212 0.177946i
\(77\) 4.58258i 0.522233i
\(78\) 1.59898 0.395644i 0.181048 0.0447979i
\(79\) 6.00000 0.675053 0.337526 0.941316i \(-0.390410\pi\)
0.337526 + 0.941316i \(0.390410\pi\)
\(80\) 4.15928 4.65369i 0.465022 0.520298i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 1.04678 0.604356i 0.115597 0.0667400i
\(83\) −6.01450 −0.660177 −0.330089 0.943950i \(-0.607079\pi\)
−0.330089 + 0.943950i \(0.607079\pi\)
\(84\) 2.68693 1.55130i 0.293168 0.169261i
\(85\) 9.73371 3.20233i 1.05577 0.347342i
\(86\) 4.83465i 0.521334i
\(87\) 3.96863 2.29129i 0.425481 0.245652i
\(88\) −3.96863 2.29129i −0.423057 0.244252i
\(89\) 8.29129 + 4.78698i 0.878875 + 0.507419i 0.870287 0.492545i \(-0.163933\pi\)
0.00858752 + 0.999963i \(0.497266\pi\)
\(90\) 2.00000 + 0.417424i 0.210819 + 0.0440004i
\(91\) −1.50000 6.06218i −0.157243 0.635489i
\(92\) 8.20871i 0.855817i
\(93\) −3.10260 + 5.37386i −0.321725 + 0.557244i
\(94\) 0.417424 0.723000i 0.0430540 0.0745718i
\(95\) 3.67900 1.21037i 0.377457 0.124181i
\(96\) 4.73930i 0.483703i
\(97\) −5.70068 9.87386i −0.578816 1.00254i −0.995615 0.0935404i \(-0.970182\pi\)
0.416799 0.908999i \(-0.363152\pi\)
\(98\) −0.913701 1.58258i −0.0922977 0.159864i
\(99\) 5.29150i 0.531816i
\(100\) 1.00175 + 8.90024i 0.100175 + 0.890024i
\(101\) −4.50000 + 7.79423i −0.447767 + 0.775555i −0.998240 0.0592978i \(-0.981114\pi\)
0.550474 + 0.834853i \(0.314447\pi\)
\(102\) −1.04678 + 1.81307i −0.103646 + 0.179521i
\(103\) 3.16515i 0.311872i −0.987767 0.155936i \(-0.950161\pi\)
0.987767 0.155936i \(-0.0498393\pi\)
\(104\) 6.00000 + 1.73205i 0.588348 + 0.169842i
\(105\) −0.791288 + 3.79129i −0.0772218 + 0.369992i
\(106\) −3.00000 1.73205i −0.291386 0.168232i
\(107\) 9.16478 + 5.29129i 0.885993 + 0.511528i 0.872630 0.488383i \(-0.162413\pi\)
0.0133631 + 0.999911i \(0.495746\pi\)
\(108\) 7.75650 4.47822i 0.746370 0.430917i
\(109\) 13.1334i 1.25795i −0.777425 0.628976i \(-0.783474\pi\)
0.777425 0.628976i \(-0.216526\pi\)
\(110\) 2.56739 0.844656i 0.244791 0.0805348i
\(111\) 6.87386 3.96863i 0.652438 0.376685i
\(112\) 4.83465 0.456832
\(113\) 6.42368 3.70871i 0.604289 0.348886i −0.166438 0.986052i \(-0.553227\pi\)
0.770727 + 0.637166i \(0.219893\pi\)
\(114\) −0.395644 + 0.685275i −0.0370554 + 0.0641819i
\(115\) −7.64016 6.82847i −0.712448 0.636758i
\(116\) 8.20871 0.762160
\(117\) −1.73205 7.00000i −0.160128 0.647150i
\(118\) 6.37386i 0.586762i
\(119\) 6.87386 + 3.96863i 0.630126 + 0.363803i
\(120\) −2.88771 2.58092i −0.263610 0.235605i
\(121\) −2.00000 3.46410i −0.181818 0.314918i
\(122\) 0.647551 0.0586265
\(123\) 1.32288 + 2.29129i 0.119280 + 0.206598i
\(124\) −9.62614 + 5.55765i −0.864453 + 0.499092i
\(125\) −9.11710 6.47135i −0.815459 0.578815i
\(126\) 0.791288 + 1.37055i 0.0704935 + 0.122098i
\(127\) −15.3700 8.87386i −1.36387 0.787428i −0.373729 0.927538i \(-0.621921\pi\)
−0.990136 + 0.140110i \(0.955254\pi\)
\(128\) −5.51993 + 9.56080i −0.487897 + 0.845063i
\(129\) −10.5826 −0.931744
\(130\) −3.11986 + 1.95775i −0.273630 + 0.171706i
\(131\) −7.58258 −0.662493 −0.331246 0.943544i \(-0.607469\pi\)
−0.331246 + 0.943544i \(0.607469\pi\)
\(132\) 2.36965 4.10436i 0.206252 0.357238i
\(133\) 2.59808 + 1.50000i 0.225282 + 0.130066i
\(134\) 0.230493 + 0.399225i 0.0199115 + 0.0344878i
\(135\) −2.28425 + 10.9445i −0.196597 + 0.941953i
\(136\) −6.87386 + 3.96863i −0.589429 + 0.340307i
\(137\) 5.24383 + 9.08258i 0.448010 + 0.775977i 0.998256 0.0590258i \(-0.0187994\pi\)
−0.550246 + 0.835003i \(0.685466\pi\)
\(138\) 2.09355 0.178215
\(139\) −10.8739 18.8341i −0.922309 1.59749i −0.795833 0.605517i \(-0.792967\pi\)
−0.126476 0.991970i \(-0.540367\pi\)
\(140\) −4.62317 + 5.17272i −0.390729 + 0.437174i
\(141\) 1.58258 + 0.913701i 0.133277 + 0.0769475i
\(142\) 3.20871i 0.269269i
\(143\) −6.61438 6.87386i −0.553122 0.574821i
\(144\) 5.58258 0.465215
\(145\) −6.82847 + 7.64016i −0.567074 + 0.634480i
\(146\) 0 0
\(147\) 3.46410 2.00000i 0.285714 0.164957i
\(148\) 14.2179 1.16870
\(149\) −14.4564 + 8.34643i −1.18432 + 0.683766i −0.957009 0.290057i \(-0.906326\pi\)
−0.227308 + 0.973823i \(0.572992\pi\)
\(150\) 2.26992 0.255488i 0.185338 0.0208605i
\(151\) 9.66930i 0.786877i −0.919351 0.393438i \(-0.871285\pi\)
0.919351 0.393438i \(-0.128715\pi\)
\(152\) −2.59808 + 1.50000i −0.210732 + 0.121666i
\(153\) 7.93725 + 4.58258i 0.641689 + 0.370479i
\(154\) 1.81307 + 1.04678i 0.146101 + 0.0843516i
\(155\) 2.83485 13.5826i 0.227701 1.09098i
\(156\) −1.79129 + 6.20520i −0.143418 + 0.496814i
\(157\) 9.16515i 0.731459i 0.930721 + 0.365729i \(0.119180\pi\)
−0.930721 + 0.365729i \(0.880820\pi\)
\(158\) 1.37055 2.37386i 0.109035 0.188854i
\(159\) 3.79129 6.56670i 0.300669 0.520773i
\(160\) −3.31186 10.0666i −0.261825 0.795835i
\(161\) 7.93725i 0.625543i
\(162\) 0.228425 + 0.395644i 0.0179468 + 0.0310847i
\(163\) 10.5353 + 18.2477i 0.825191 + 1.42927i 0.901773 + 0.432209i \(0.142266\pi\)
−0.0765827 + 0.997063i \(0.524401\pi\)
\(164\) 4.73930i 0.370077i
\(165\) 1.84887 + 5.61976i 0.143934 + 0.437498i
\(166\) −1.37386 + 2.37960i −0.106632 + 0.184693i
\(167\) −4.78698 + 8.29129i −0.370427 + 0.641599i −0.989631 0.143631i \(-0.954122\pi\)
0.619204 + 0.785230i \(0.287455\pi\)
\(168\) 3.00000i 0.231455i
\(169\) 11.0000 + 6.92820i 0.846154 + 0.532939i
\(170\) 0.956439 4.58258i 0.0733555 0.351468i
\(171\) 3.00000 + 1.73205i 0.229416 + 0.132453i
\(172\) −16.4168 9.47822i −1.25177 0.722707i
\(173\) 14.3609 8.29129i 1.09184 0.630375i 0.157775 0.987475i \(-0.449568\pi\)
0.934066 + 0.357100i \(0.116234\pi\)
\(174\) 2.09355i 0.158712i
\(175\) −0.968627 8.60591i −0.0732213 0.650546i
\(176\) 6.39564 3.69253i 0.482090 0.278335i
\(177\) −13.9518 −1.04868
\(178\) 3.78788 2.18693i 0.283913 0.163917i
\(179\) 9.08258 15.7315i 0.678864 1.17583i −0.296460 0.955045i \(-0.595806\pi\)
0.975323 0.220781i \(-0.0708606\pi\)
\(180\) −5.33838 + 5.97294i −0.397899 + 0.445196i
\(181\) 8.74773 0.650213 0.325107 0.945677i \(-0.394600\pi\)
0.325107 + 0.945677i \(0.394600\pi\)
\(182\) −2.74110 0.791288i −0.203184 0.0586542i
\(183\) 1.41742i 0.104779i
\(184\) 6.87386 + 3.96863i 0.506748 + 0.292571i
\(185\) −11.8273 + 13.2331i −0.869557 + 0.972920i
\(186\) 1.41742 + 2.45505i 0.103931 + 0.180013i
\(187\) 12.1244 0.886621
\(188\) 1.63670 + 2.83485i 0.119369 + 0.206753i
\(189\) −7.50000 + 4.33013i −0.545545 + 0.314970i
\(190\) 0.361500 1.73205i 0.0262260 0.125656i
\(191\) 8.29129 + 14.3609i 0.599937 + 1.03912i 0.992830 + 0.119536i \(0.0381408\pi\)
−0.392893 + 0.919584i \(0.628526\pi\)
\(192\) −2.95958 1.70871i −0.213589 0.123316i
\(193\) 7.43273 12.8739i 0.535020 0.926681i −0.464143 0.885760i \(-0.653638\pi\)
0.999162 0.0409206i \(-0.0130291\pi\)
\(194\) −5.20871 −0.373964
\(195\) −4.28532 6.82906i −0.306878 0.489039i
\(196\) 7.16515 0.511797
\(197\) −7.33738 + 12.7087i −0.522767 + 0.905458i 0.476882 + 0.878967i \(0.341767\pi\)
−0.999649 + 0.0264912i \(0.991567\pi\)
\(198\) 2.09355 + 1.20871i 0.148782 + 0.0858994i
\(199\) 5.29129 + 9.16478i 0.375089 + 0.649674i 0.990340 0.138657i \(-0.0442787\pi\)
−0.615251 + 0.788331i \(0.710945\pi\)
\(200\) 7.93725 + 3.46410i 0.561249 + 0.244949i
\(201\) −0.873864 + 0.504525i −0.0616376 + 0.0355865i
\(202\) 2.05583 + 3.56080i 0.144647 + 0.250537i
\(203\) −7.93725 −0.557086
\(204\) −4.10436 7.10895i −0.287362 0.497726i
\(205\) −4.41105 3.94242i −0.308081 0.275351i
\(206\) −1.25227 0.723000i −0.0872500 0.0503738i
\(207\) 9.16515i 0.637022i
\(208\) −7.25198 + 6.97822i −0.502834 + 0.483852i
\(209\) 4.58258 0.316983
\(210\) 1.31925 + 1.17909i 0.0910369 + 0.0813652i
\(211\) 0.0825757 0.143025i 0.00568475 0.00984627i −0.863169 0.504915i \(-0.831524\pi\)
0.868854 + 0.495069i \(0.164857\pi\)
\(212\) 11.7629 6.79129i 0.807876 0.466428i
\(213\) 7.02355 0.481246
\(214\) 4.18693 2.41733i 0.286213 0.165245i
\(215\) 22.4781 7.39517i 1.53300 0.504347i
\(216\) 8.66025i 0.589256i
\(217\) 9.30780 5.37386i 0.631855 0.364802i
\(218\) −5.19615 3.00000i −0.351928 0.203186i
\(219\) 0 0
\(220\) −2.16515 + 10.3739i −0.145974 + 0.699406i
\(221\) −16.0390 + 3.96863i −1.07890 + 0.266959i
\(222\) 3.62614i 0.243370i
\(223\) −4.33013 + 7.50000i −0.289967 + 0.502237i −0.973801 0.227400i \(-0.926978\pi\)
0.683835 + 0.729637i \(0.260311\pi\)
\(224\) 4.10436 7.10895i 0.274234 0.474987i
\(225\) −1.11847 9.93725i −0.0745649 0.662484i
\(226\) 3.38865i 0.225410i
\(227\) 0.409175 + 0.708712i 0.0271579 + 0.0470389i 0.879285 0.476296i \(-0.158021\pi\)
−0.852127 + 0.523335i \(0.824688\pi\)
\(228\) −1.55130 2.68693i −0.102737 0.177946i
\(229\) 26.2668i 1.73576i 0.496774 + 0.867880i \(0.334518\pi\)
−0.496774 + 0.867880i \(0.665482\pi\)
\(230\) −4.44685 + 1.46299i −0.293216 + 0.0964665i
\(231\) −2.29129 + 3.96863i −0.150756 + 0.261116i
\(232\) 3.96863 6.87386i 0.260553 0.451291i
\(233\) 2.83485i 0.185717i −0.995679 0.0928586i \(-0.970400\pi\)
0.995679 0.0928586i \(-0.0296004\pi\)
\(234\) −3.16515 0.913701i −0.206912 0.0597305i
\(235\) −4.00000 0.834849i −0.260931 0.0544595i
\(236\) −21.6434 12.4958i −1.40886 0.813408i
\(237\) 5.19615 + 3.00000i 0.337526 + 0.194871i
\(238\) 3.14033 1.81307i 0.203557 0.117524i
\(239\) 0.190700i 0.0123354i 0.999981 + 0.00616769i \(0.00196325\pi\)
−0.999981 + 0.00616769i \(0.998037\pi\)
\(240\) 5.92889 1.95057i 0.382708 0.125909i
\(241\) −1.50000 + 0.866025i −0.0966235 + 0.0557856i −0.547533 0.836784i \(-0.684433\pi\)
0.450910 + 0.892570i \(0.351100\pi\)
\(242\) −1.82740 −0.117470
\(243\) −13.8564 + 8.00000i −0.888889 + 0.513200i
\(244\) −1.26951 + 2.19885i −0.0812719 + 0.140767i
\(245\) −5.96038 + 6.66888i −0.380795 + 0.426059i
\(246\) 1.20871 0.0770647
\(247\) −6.06218 + 1.50000i −0.385727 + 0.0954427i
\(248\) 10.7477i 0.682481i
\(249\) −5.20871 3.00725i −0.330089 0.190577i
\(250\) −4.64293 + 2.12891i −0.293644 + 0.134644i
\(251\) 0.0825757 + 0.143025i 0.00521213 + 0.00902768i 0.868620 0.495479i \(-0.165008\pi\)
−0.863408 + 0.504507i \(0.831674\pi\)
\(252\) −6.20520 −0.390891
\(253\) −6.06218 10.5000i −0.381126 0.660129i
\(254\) −7.02178 + 4.05403i −0.440586 + 0.254372i
\(255\) 10.0308 + 2.09355i 0.628153 + 0.131103i
\(256\) −0.895644 1.55130i −0.0559777 0.0969563i
\(257\) 15.7315 + 9.08258i 0.981303 + 0.566556i 0.902663 0.430348i \(-0.141609\pi\)
0.0786397 + 0.996903i \(0.474942\pi\)
\(258\) −2.41733 + 4.18693i −0.150496 + 0.260667i
\(259\) −13.7477 −0.854242
\(260\) −0.531418 14.4320i −0.0329571 0.895037i
\(261\) −9.16515 −0.567309
\(262\) −1.73205 + 3.00000i −0.107006 + 0.185341i
\(263\) 7.79423 + 4.50000i 0.480613 + 0.277482i 0.720672 0.693276i \(-0.243833\pi\)
−0.240059 + 0.970758i \(0.577167\pi\)
\(264\) −2.29129 3.96863i −0.141019 0.244252i
\(265\) −3.46410 + 16.5975i −0.212798 + 1.01958i
\(266\) 1.18693 0.685275i 0.0727755 0.0420169i
\(267\) 4.78698 + 8.29129i 0.292958 + 0.507419i
\(268\) −1.80750 −0.110411
\(269\) −7.50000 12.9904i −0.457283 0.792038i 0.541533 0.840679i \(-0.317844\pi\)
−0.998816 + 0.0486418i \(0.984511\pi\)
\(270\) 3.80835 + 3.40375i 0.231769 + 0.207146i
\(271\) 7.50000 + 4.33013i 0.455593 + 0.263036i 0.710189 0.704011i \(-0.248609\pi\)
−0.254597 + 0.967047i \(0.581943\pi\)
\(272\) 12.7913i 0.775586i
\(273\) 1.73205 6.00000i 0.104828 0.363137i
\(274\) 4.79129 0.289452
\(275\) −7.85425 10.6448i −0.473629 0.641903i
\(276\) −4.10436 + 7.10895i −0.247053 + 0.427909i
\(277\) −6.42368 + 3.70871i −0.385961 + 0.222835i −0.680409 0.732833i \(-0.738198\pi\)
0.294447 + 0.955668i \(0.404864\pi\)
\(278\) −9.93545 −0.595889
\(279\) 10.7477 6.20520i 0.643450 0.371496i
\(280\) 2.09642 + 6.37221i 0.125285 + 0.380812i
\(281\) 3.65480i 0.218027i 0.994040 + 0.109014i \(0.0347692\pi\)
−0.994040 + 0.109014i \(0.965231\pi\)
\(282\) 0.723000 0.417424i 0.0430540 0.0248573i
\(283\) −24.0302 13.8739i −1.42845 0.824716i −0.431451 0.902136i \(-0.641998\pi\)
−0.996998 + 0.0774209i \(0.975331\pi\)
\(284\) 10.8956 + 6.29060i 0.646538 + 0.373279i
\(285\) 3.79129 + 0.791288i 0.224577 + 0.0468718i
\(286\) −4.23049 + 1.04678i −0.250154 + 0.0618971i
\(287\) 4.58258i 0.270501i
\(288\) 4.73930 8.20871i 0.279266 0.483703i
\(289\) 2.00000 3.46410i 0.117647 0.203771i
\(290\) 1.46299 + 4.44685i 0.0859096 + 0.261128i
\(291\) 11.4014i 0.668359i
\(292\) 0 0
\(293\) −9.06943 15.7087i −0.529842 0.917713i −0.999394 0.0348081i \(-0.988918\pi\)
0.469552 0.882905i \(-0.344415\pi\)
\(294\) 1.82740i 0.106576i
\(295\) 29.6345 9.74958i 1.72539 0.567642i
\(296\) 6.87386 11.9059i 0.399535 0.692015i
\(297\) −6.61438 + 11.4564i −0.383805 + 0.664770i
\(298\) 7.62614i 0.441770i
\(299\) 11.4564 + 11.9059i 0.662543 + 0.688535i
\(300\) −3.58258 + 8.20871i −0.206840 + 0.473930i
\(301\) 15.8739 + 9.16478i 0.914954 + 0.528249i
\(302\) −3.82560 2.20871i −0.220139 0.127097i
\(303\) −7.79423 + 4.50000i −0.447767 + 0.258518i
\(304\) 4.83465i 0.277286i
\(305\) −0.990505 3.01071i −0.0567162 0.172393i
\(306\) 3.62614 2.09355i 0.207292 0.119680i
\(307\) 24.2487 1.38395 0.691974 0.721923i \(-0.256741\pi\)
0.691974 + 0.721923i \(0.256741\pi\)
\(308\) −7.10895 + 4.10436i −0.405070 + 0.233867i
\(309\) 1.58258 2.74110i 0.0900296 0.155936i
\(310\) −4.72631 4.22419i −0.268437 0.239918i
\(311\) 7.58258 0.429968 0.214984 0.976618i \(-0.431030\pi\)
0.214984 + 0.976618i \(0.431030\pi\)
\(312\) 4.33013 + 4.50000i 0.245145 + 0.254762i
\(313\) 3.25227i 0.183829i 0.995767 + 0.0919147i \(0.0292987\pi\)
−0.995767 + 0.0919147i \(0.970701\pi\)
\(314\) 3.62614 + 2.09355i 0.204635 + 0.118146i
\(315\) 5.16184 5.77542i 0.290837 0.325408i
\(316\) 5.37386 + 9.30780i 0.302303 + 0.523605i
\(317\) −0.190700 −0.0107108 −0.00535540 0.999986i \(-0.501705\pi\)
−0.00535540 + 0.999986i \(0.501705\pi\)
\(318\) −1.73205 3.00000i −0.0971286 0.168232i
\(319\) −10.5000 + 6.06218i −0.587887 + 0.339417i
\(320\) 7.48040 + 1.56125i 0.418167 + 0.0872766i
\(321\) 5.29129 + 9.16478i 0.295331 + 0.511528i
\(322\) −3.14033 1.81307i −0.175004 0.101038i
\(323\) 3.96863 6.87386i 0.220820 0.382472i
\(324\) −1.79129 −0.0995160
\(325\) 13.8745 + 11.5108i 0.769619 + 0.638503i
\(326\) 9.62614 0.533142
\(327\) 6.56670 11.3739i 0.363140 0.628976i
\(328\) 3.96863 + 2.29129i 0.219131 + 0.126515i
\(329\) −1.58258 2.74110i −0.0872502 0.151122i
\(330\) 2.64575 + 0.552200i 0.145644 + 0.0303976i
\(331\) −3.87386 + 2.23658i −0.212927 + 0.122933i −0.602671 0.797990i \(-0.705897\pi\)
0.389744 + 0.920923i \(0.372563\pi\)
\(332\) −5.38685 9.33030i −0.295642 0.512067i
\(333\) −15.8745 −0.869918
\(334\) 2.18693 + 3.78788i 0.119664 + 0.207263i
\(335\) 1.50358 1.68231i 0.0821494 0.0919143i
\(336\) 4.18693 + 2.41733i 0.228416 + 0.131876i
\(337\) 30.7477i 1.67494i 0.546487 + 0.837468i \(0.315965\pi\)
−0.546487 + 0.837468i \(0.684035\pi\)
\(338\) 5.25378 2.76951i 0.285768 0.150641i
\(339\) 7.41742 0.402859
\(340\) 13.6857 + 12.2318i 0.742212 + 0.663360i
\(341\) 8.20871 14.2179i 0.444527 0.769943i
\(342\) 1.37055 0.791288i 0.0741109 0.0427879i
\(343\) −19.0526 −1.02874
\(344\) −15.8739 + 9.16478i −0.855861 + 0.494132i
\(345\) −3.20233 9.73371i −0.172408 0.524045i
\(346\) 7.57575i 0.407275i
\(347\) −18.4726 + 10.6652i −0.991660 + 0.572535i −0.905770 0.423769i \(-0.860707\pi\)
−0.0858901 + 0.996305i \(0.527373\pi\)
\(348\) 7.10895 + 4.10436i 0.381080 + 0.220017i
\(349\) 2.12614 + 1.22753i 0.113809 + 0.0657079i 0.555824 0.831300i \(-0.312403\pi\)
−0.442015 + 0.897008i \(0.645736\pi\)
\(350\) −3.62614 1.58258i −0.193825 0.0845922i
\(351\) 5.00000 17.3205i 0.266880 0.924500i
\(352\) 12.5390i 0.668332i
\(353\) 3.41643 5.91742i 0.181838 0.314953i −0.760668 0.649141i \(-0.775129\pi\)
0.942506 + 0.334188i \(0.108462\pi\)
\(354\) −3.18693 + 5.51993i −0.169384 + 0.293381i
\(355\) −14.9185 + 4.90811i −0.791792 + 0.260495i
\(356\) 17.1497i 0.908933i
\(357\) 3.96863 + 6.87386i 0.210042 + 0.363803i
\(358\) −4.14938 7.18693i −0.219301 0.379841i
\(359\) 19.5293i 1.03072i −0.856975 0.515359i \(-0.827659\pi\)
0.856975 0.515359i \(-0.172341\pi\)
\(360\) 2.42074 + 7.35799i 0.127584 + 0.387800i
\(361\) −8.00000 + 13.8564i −0.421053 + 0.729285i
\(362\) 1.99820 3.46099i 0.105023 0.181905i
\(363\) 4.00000i 0.209946i
\(364\) 8.06080 7.75650i 0.422500 0.406551i
\(365\) 0 0
\(366\) 0.560795 + 0.323775i 0.0293132 + 0.0169240i
\(367\) 1.51358 + 0.873864i 0.0790080 + 0.0456153i 0.538984 0.842316i \(-0.318808\pi\)
−0.459976 + 0.887932i \(0.652142\pi\)
\(368\) −11.0776 + 6.39564i −0.577459 + 0.333396i
\(369\) 5.29150i 0.275465i
\(370\) 2.53397 + 7.70216i 0.131735 + 0.400416i
\(371\) −11.3739 + 6.56670i −0.590502 + 0.340926i
\(372\) −11.1153 −0.576302
\(373\) 11.2583 6.50000i 0.582934 0.336557i −0.179364 0.983783i \(-0.557404\pi\)
0.762299 + 0.647225i \(0.224071\pi\)
\(374\) 2.76951 4.79693i 0.143208 0.248043i
\(375\) −4.65997 10.1629i −0.240640 0.524810i
\(376\) 3.16515 0.163230
\(377\) 11.9059 11.4564i 0.613184 0.590037i
\(378\) 3.95644i 0.203497i
\(379\) −9.24773 5.33918i −0.475024 0.274255i 0.243317 0.969947i \(-0.421765\pi\)
−0.718340 + 0.695692i \(0.755098\pi\)
\(380\) 5.17272 + 4.62317i 0.265355 + 0.237164i
\(381\) −8.87386 15.3700i −0.454622 0.787428i
\(382\) 7.57575 0.387609
\(383\) 11.8105 + 20.4564i 0.603490 + 1.04528i 0.992288 + 0.123952i \(0.0395570\pi\)
−0.388798 + 0.921323i \(0.627110\pi\)
\(384\) −9.56080 + 5.51993i −0.487897 + 0.281688i
\(385\) 2.09355 10.0308i 0.106697 0.511217i
\(386\) −3.39564 5.88143i −0.172834 0.299357i
\(387\) 18.3296 + 10.5826i 0.931744 + 0.537943i
\(388\) 10.2116 17.6869i 0.518413 0.897918i
\(389\) 3.16515 0.160480 0.0802398 0.996776i \(-0.474431\pi\)
0.0802398 + 0.996776i \(0.474431\pi\)
\(390\) −3.68075 + 0.135533i −0.186382 + 0.00686297i
\(391\) −21.0000 −1.06202
\(392\) 3.46410 6.00000i 0.174964 0.303046i
\(393\) −6.56670 3.79129i −0.331246 0.191245i
\(394\) 3.35208 + 5.80598i 0.168876 + 0.292501i
\(395\) −13.1334 2.74110i −0.660813 0.137920i
\(396\) −8.20871 + 4.73930i −0.412503 + 0.238159i
\(397\) −10.1738 17.6216i −0.510610 0.884402i −0.999924 0.0122949i \(-0.996086\pi\)
0.489315 0.872107i \(-0.337247\pi\)
\(398\) 4.83465 0.242339
\(399\) 1.50000 + 2.59808i 0.0750939 + 0.130066i
\(400\) −11.2303 + 8.28629i −0.561515 + 0.414315i
\(401\) −25.8303 14.9131i −1.28990 0.744726i −0.311267 0.950323i \(-0.600753\pi\)
−0.978637 + 0.205596i \(0.934087\pi\)
\(402\) 0.460985i 0.0229918i
\(403\) −6.20520 + 21.4955i −0.309103 + 1.07076i
\(404\) −16.1216 −0.802079
\(405\) 1.49009 1.66722i 0.0740434 0.0828448i
\(406\) −1.81307 + 3.14033i −0.0899811 + 0.155852i
\(407\) −18.1865 + 10.5000i −0.901473 + 0.520466i
\(408\) −7.93725 −0.392953
\(409\) 7.50000 4.33013i 0.370851 0.214111i −0.302979 0.952997i \(-0.597981\pi\)
0.673830 + 0.738886i \(0.264648\pi\)
\(410\) −2.56739 + 0.844656i −0.126794 + 0.0417146i
\(411\) 10.4877i 0.517318i
\(412\) 4.91010 2.83485i 0.241903 0.139663i
\(413\) 20.9276 + 12.0826i 1.02978 + 0.594545i
\(414\) −3.62614 2.09355i −0.178215 0.102892i
\(415\) 13.1652 + 2.74773i 0.646252 + 0.134881i
\(416\) 4.10436 + 16.5876i 0.201233 + 0.813272i
\(417\) 21.7477i 1.06499i
\(418\) 1.04678 1.81307i 0.0511995 0.0886801i
\(419\) −2.91742 + 5.05313i −0.142526 + 0.246861i −0.928447 0.371465i \(-0.878856\pi\)
0.785922 + 0.618326i \(0.212189\pi\)
\(420\) −6.59014 + 2.16812i −0.321566 + 0.105793i
\(421\) 5.48220i 0.267186i 0.991036 + 0.133593i \(0.0426515\pi\)
−0.991036 + 0.133593i \(0.957348\pi\)
\(422\) −0.0377247 0.0653411i −0.00183641 0.00318076i
\(423\) −1.82740 3.16515i −0.0888513 0.153895i
\(424\) 13.1334i 0.637815i
\(425\) −22.7691 + 2.56275i −1.10446 + 0.124311i
\(426\) 1.60436 2.77883i 0.0777313 0.134635i
\(427\) 1.22753 2.12614i 0.0594041 0.102891i
\(428\) 18.9564i 0.916294i
\(429\) −2.29129 9.26013i −0.110624 0.447083i
\(430\) 2.20871 10.5826i 0.106514 0.510337i
\(431\) 7.33485 + 4.23478i 0.353307 + 0.203982i 0.666141 0.745826i \(-0.267945\pi\)
−0.312834 + 0.949808i \(0.601278\pi\)
\(432\) 12.0866 + 6.97822i 0.581518 + 0.335740i
\(433\) −8.44178 + 4.87386i −0.405686 + 0.234223i −0.688934 0.724824i \(-0.741921\pi\)
0.283248 + 0.959047i \(0.408588\pi\)
\(434\) 4.91010i 0.235692i
\(435\) −9.73371 + 3.20233i −0.466696 + 0.153540i
\(436\) 20.3739 11.7629i 0.975731 0.563339i
\(437\) −7.93725 −0.379690
\(438\) 0 0
\(439\) −7.24773 + 12.5534i −0.345915 + 0.599143i −0.985520 0.169562i \(-0.945765\pi\)
0.639604 + 0.768704i \(0.279098\pi\)
\(440\) 7.64016 + 6.82847i 0.364230 + 0.325535i
\(441\) −8.00000 −0.380952
\(442\) −2.09355 + 7.25227i −0.0995801 + 0.344955i
\(443\) 19.9129i 0.946089i −0.881038 0.473045i \(-0.843155\pi\)
0.881038 0.473045i \(-0.156845\pi\)
\(444\) 12.3131 + 7.10895i 0.584352 + 0.337376i
\(445\) −15.9619 14.2661i −0.756666 0.676278i
\(446\) 1.97822 + 3.42638i 0.0936714 + 0.162244i
\(447\) −16.6929 −0.789545
\(448\) 2.95958 + 5.12614i 0.139827 + 0.242187i
\(449\) 9.54356 5.50998i 0.450388 0.260032i −0.257606 0.966250i \(-0.582934\pi\)
0.707994 + 0.706218i \(0.249600\pi\)
\(450\) −4.18710 1.82740i −0.197382 0.0861445i
\(451\) −3.50000 6.06218i −0.164809 0.285457i
\(452\) 11.5067 + 6.64337i 0.541228 + 0.312478i
\(453\) 4.83465 8.37386i 0.227152 0.393438i
\(454\) 0.373864 0.0175463
\(455\) 0.513844 + 13.9548i 0.0240894 + 0.654210i
\(456\) −3.00000 −0.140488
\(457\) 0.866025 1.50000i 0.0405110 0.0701670i −0.845059 0.534673i \(-0.820435\pi\)
0.885570 + 0.464506i \(0.153768\pi\)
\(458\) 10.3923 + 6.00000i 0.485601 + 0.280362i
\(459\) 11.4564 + 19.8431i 0.534741 + 0.926198i
\(460\) 3.75015 17.9681i 0.174852 0.837765i
\(461\) 31.0390 17.9204i 1.44563 0.834635i 0.447414 0.894327i \(-0.352345\pi\)
0.998217 + 0.0596914i \(0.0190117\pi\)
\(462\) 1.04678 + 1.81307i 0.0487004 + 0.0843516i
\(463\) 39.4002 1.83108 0.915542 0.402223i \(-0.131762\pi\)
0.915542 + 0.402223i \(0.131762\pi\)
\(464\) 6.39564 + 11.0776i 0.296910 + 0.514264i
\(465\) 9.24634 10.3454i 0.428789 0.479758i
\(466\) −1.12159 0.647551i −0.0519567 0.0299972i
\(467\) 24.3303i 1.12587i −0.826500 0.562936i \(-0.809672\pi\)
0.826500 0.562936i \(-0.190328\pi\)
\(468\) 9.30780 8.95644i 0.430253 0.414012i
\(469\) 1.74773 0.0807025
\(470\) −1.24400 + 1.39188i −0.0573816 + 0.0642024i
\(471\) −4.58258 + 7.93725i −0.211154 + 0.365729i
\(472\) −20.9276 + 12.0826i −0.963272 + 0.556146i
\(473\) 27.9989 1.28739
\(474\) 2.37386 1.37055i 0.109035 0.0629515i
\(475\) −8.60591 + 0.968627i −0.394866 + 0.0444437i
\(476\) 14.2179i 0.651677i
\(477\) −13.1334 + 7.58258i −0.601337 + 0.347182i
\(478\) 0.0754495 + 0.0435608i 0.00345098 + 0.00199242i
\(479\) 4.03901 + 2.33193i 0.184547 + 0.106548i 0.589427 0.807821i \(-0.299353\pi\)
−0.404880 + 0.914370i \(0.632687\pi\)
\(480\) 2.16515 10.3739i 0.0988252 0.473500i
\(481\) 20.6216 19.8431i 0.940264 0.904769i
\(482\) 0.791288i 0.0360422i
\(483\) 3.96863 6.87386i 0.180579 0.312772i
\(484\) 3.58258 6.20520i 0.162844 0.282055i
\(485\) 7.96734 + 24.2173i 0.361778 + 1.09965i
\(486\) 7.30960i 0.331570i
\(487\) 5.33918 + 9.24773i 0.241941 + 0.419055i 0.961267 0.275618i \(-0.0888825\pi\)
−0.719326 + 0.694673i \(0.755549\pi\)
\(488\) 1.22753 + 2.12614i 0.0555675 + 0.0962457i
\(489\) 21.0707i 0.952848i
\(490\) 1.27700 + 3.88153i 0.0576890 + 0.175349i
\(491\) −9.70871 + 16.8160i −0.438148 + 0.758895i −0.997547 0.0700041i \(-0.977699\pi\)
0.559399 + 0.828899i \(0.311032\pi\)
\(492\) −2.36965 + 4.10436i −0.106832 + 0.185039i
\(493\) 21.0000i 0.945792i
\(494\) −0.791288 + 2.74110i −0.0356017 + 0.123328i
\(495\) 2.41742 11.5826i 0.108655 0.520598i
\(496\) −15.0000 8.66025i −0.673520 0.388857i
\(497\) −10.5353 6.08258i −0.472574 0.272841i
\(498\) −2.37960 + 1.37386i −0.106632 + 0.0615643i
\(499\) 0.723000i 0.0323659i 0.999869 + 0.0161830i \(0.00515142\pi\)
−0.999869 + 0.0161830i \(0.994849\pi\)
\(500\) 1.87334 19.9394i 0.0837781 0.891717i
\(501\) −8.29129 + 4.78698i −0.370427 + 0.213866i
\(502\) 0.0754495 0.00336747
\(503\) −0.143025 + 0.0825757i −0.00637718 + 0.00368187i −0.503185 0.864179i \(-0.667839\pi\)
0.496808 + 0.867860i \(0.334505\pi\)
\(504\) −3.00000 + 5.19615i −0.133631 + 0.231455i
\(505\) 13.4109 15.0050i 0.596775 0.667712i
\(506\) −5.53901 −0.246239
\(507\) 6.06218 + 11.5000i 0.269231 + 0.510733i
\(508\) 31.7913i 1.41051i
\(509\) −7.33485 4.23478i −0.325111 0.187703i 0.328557 0.944484i \(-0.393438\pi\)
−0.653669 + 0.756781i \(0.726771\pi\)
\(510\) 3.11959 3.49041i 0.138138 0.154558i
\(511\) 0 0
\(512\) −22.8981 −1.01196
\(513\) 4.33013 + 7.50000i 0.191180 + 0.331133i
\(514\) 7.18693 4.14938i 0.317002 0.183021i
\(515\) −1.44600 + 6.92820i −0.0637184 + 0.305293i
\(516\) −9.47822 16.4168i −0.417255 0.722707i
\(517\) −4.18710 2.41742i −0.184149 0.106318i
\(518\) −3.14033 + 5.43920i −0.137978 + 0.238985i
\(519\) 16.5826 0.727894
\(520\) −12.3421 6.53239i −0.541238 0.286464i
\(521\) 27.4955 1.20460 0.602299 0.798271i \(-0.294252\pi\)
0.602299 + 0.798271i \(0.294252\pi\)
\(522\) −2.09355 + 3.62614i −0.0916322 + 0.158712i
\(523\) 0.143025 + 0.0825757i 0.00625406 + 0.00361078i 0.503124 0.864214i \(-0.332184\pi\)
−0.496870 + 0.867825i \(0.665517\pi\)
\(524\) −6.79129 11.7629i −0.296679 0.513863i
\(525\) 3.46410 7.93725i 0.151186 0.346410i
\(526\) 3.56080 2.05583i 0.155258 0.0896383i
\(527\) −14.2179 24.6261i −0.619342 1.07273i
\(528\) 7.38505 0.321393
\(529\) −1.00000 1.73205i −0.0434783 0.0753066i
\(530\) 5.77542 + 5.16184i 0.250868 + 0.224216i
\(531\) 24.1652 + 13.9518i 1.04868 + 0.605455i
\(532\) 5.37386i 0.232987i
\(533\) 6.61438 + 6.87386i 0.286501 + 0.297740i
\(534\) 4.37386 0.189276
\(535\) −17.6435 15.7690i −0.762794 0.681755i
\(536\) −0.873864 + 1.51358i −0.0377452 + 0.0653765i
\(537\) 15.7315 9.08258i 0.678864 0.391942i
\(538\) −6.85275 −0.295443
\(539\) −9.16515 + 5.29150i −0.394771 + 0.227921i
\(540\) −19.0241 + 6.25882i −0.818667 + 0.269337i
\(541\) 10.3923i 0.446800i −0.974727 0.223400i \(-0.928284\pi\)
0.974727 0.223400i \(-0.0717156\pi\)
\(542\) 3.42638 1.97822i 0.147175 0.0849718i
\(543\) 7.57575 + 4.37386i 0.325107 + 0.187700i
\(544\) −18.8085 10.8591i −0.806409 0.465580i
\(545\) −6.00000 + 28.7477i −0.257012 + 1.23142i
\(546\) −1.97822 2.05583i −0.0846600 0.0879812i
\(547\) 28.7477i 1.22916i 0.788853 + 0.614582i \(0.210675\pi\)
−0.788853 + 0.614582i \(0.789325\pi\)
\(548\) −9.39320 + 16.2695i −0.401258 + 0.694999i
\(549\) 1.41742 2.45505i 0.0604942 0.104779i
\(550\) −6.00564 + 0.675957i −0.256081 + 0.0288229i
\(551\) 7.93725i 0.338138i
\(552\) 3.96863 + 6.87386i 0.168916 + 0.292571i
\(553\) −5.19615 9.00000i −0.220963 0.382719i
\(554\) 3.38865i 0.143970i
\(555\) −16.8593 + 5.54661i −0.715636 + 0.235440i
\(556\) 19.4782 33.7373i 0.826061 1.43078i
\(557\) 3.87328 6.70871i 0.164116 0.284257i −0.772225 0.635349i \(-0.780856\pi\)
0.936341 + 0.351092i \(0.114190\pi\)
\(558\) 5.66970i 0.240017i
\(559\) −37.0390 + 9.16478i −1.56658 + 0.387629i
\(560\) −10.5826 2.20871i −0.447195 0.0933351i
\(561\) 10.5000 + 6.06218i 0.443310 + 0.255945i
\(562\) 1.44600 + 0.834849i 0.0609958 + 0.0352160i
\(563\) 7.79423 4.50000i 0.328488 0.189652i −0.326682 0.945134i \(-0.605931\pi\)
0.655169 + 0.755482i \(0.272597\pi\)
\(564\) 3.27340i 0.137835i
\(565\) −15.7551 + 5.18335i −0.662823 + 0.218065i
\(566\) −10.9782 + 6.33828i −0.461449 + 0.266418i
\(567\) 1.73205 0.0727393
\(568\) 10.5353 6.08258i 0.442053 0.255219i
\(569\) 3.87386 6.70973i 0.162401 0.281286i −0.773328 0.634006i \(-0.781410\pi\)
0.935729 + 0.352719i \(0.114743\pi\)
\(570\) 1.17909 1.31925i 0.0493868 0.0552573i
\(571\) −35.0780 −1.46797 −0.733985 0.679166i \(-0.762342\pi\)
−0.733985 + 0.679166i \(0.762342\pi\)
\(572\) 4.73930 16.4174i 0.198160 0.686447i
\(573\) 16.5826i 0.692747i
\(574\) −1.81307 1.04678i −0.0756760 0.0436916i
\(575\) 13.6040 + 18.4373i 0.567324 + 0.768887i
\(576\) 3.41742 + 5.91915i 0.142393 + 0.246631i
\(577\) −6.92820 −0.288425 −0.144212 0.989547i \(-0.546065\pi\)
−0.144212 + 0.989547i \(0.546065\pi\)
\(578\) −0.913701 1.58258i −0.0380049 0.0658265i
\(579\) 12.8739 7.43273i 0.535020 0.308894i
\(580\) −17.9681 3.75015i −0.746083 0.155717i
\(581\) 5.20871 + 9.02175i 0.216094 + 0.374285i
\(582\) −4.51088 2.60436i −0.186982 0.107954i
\(583\) −10.0308 + 17.3739i −0.415433 + 0.719552i
\(584\) 0 0
\(585\) 0.593336 + 16.1136i 0.0245314 + 0.666215i
\(586\) −8.28674 −0.342322
\(587\) 19.7478 34.2042i 0.815078 1.41176i −0.0941934 0.995554i \(-0.530027\pi\)
0.909272 0.416203i \(-0.136639\pi\)
\(588\) 6.20520 + 3.58258i 0.255898 + 0.147743i
\(589\) −5.37386 9.30780i −0.221426 0.383521i
\(590\) 2.91190 13.9518i 0.119881 0.574385i
\(591\) −12.7087 + 7.33738i −0.522767 + 0.301819i
\(592\) 11.0776 + 19.1869i 0.455286 + 0.788578i
\(593\) −21.1660 −0.869184 −0.434592 0.900627i \(-0.643107\pi\)
−0.434592 + 0.900627i \(0.643107\pi\)
\(594\) 3.02178 + 5.23388i 0.123985 + 0.214749i
\(595\) −13.2331 11.8273i −0.542506 0.484870i
\(596\) −25.8956 14.9509i −1.06073 0.612411i
\(597\) 10.5826i 0.433116i
\(598\) 7.32743 1.81307i 0.299641 0.0741419i
\(599\) −15.4955 −0.633127 −0.316564 0.948571i \(-0.602529\pi\)
−0.316564 + 0.948571i \(0.602529\pi\)
\(600\) 5.14181 + 6.96863i 0.209914 + 0.284493i
\(601\) −8.45644 + 14.6470i −0.344945 + 0.597463i −0.985344 0.170580i \(-0.945436\pi\)
0.640398 + 0.768043i \(0.278769\pi\)
\(602\) 7.25198 4.18693i 0.295569 0.170647i
\(603\) 2.01810 0.0821834
\(604\) 15.0000 8.66025i 0.610341 0.352381i
\(605\) 2.79523 + 8.49628i 0.113642 + 0.345423i
\(606\) 4.11165i 0.167024i
\(607\) 6.70973 3.87386i 0.272339 0.157235i −0.357611 0.933871i \(-0.616409\pi\)
0.629950 + 0.776635i \(0.283075\pi\)
\(608\) −7.10895 4.10436i −0.288306 0.166454i
\(609\) −6.87386 3.96863i −0.278543 0.160817i
\(610\) −1.41742 0.295834i −0.0573898 0.0119780i
\(611\) 6.33030 + 1.82740i 0.256097 + 0.0739287i
\(612\) 16.4174i 0.663635i
\(613\) −2.95958 + 5.12614i −0.119536 + 0.207043i −0.919584 0.392894i \(-0.871474\pi\)
0.800048 + 0.599936i \(0.204807\pi\)
\(614\) 5.53901 9.59386i 0.223536 0.387176i
\(615\) −1.84887 5.61976i −0.0745536 0.226611i
\(616\) 7.93725i 0.319801i
\(617\) −6.97588 12.0826i −0.280838 0.486426i 0.690753 0.723091i \(-0.257279\pi\)
−0.971591 + 0.236664i \(0.923946\pi\)
\(618\) −0.723000 1.25227i −0.0290833 0.0503738i
\(619\) 29.7309i 1.19499i −0.801874 0.597493i \(-0.796164\pi\)
0.801874 0.597493i \(-0.203836\pi\)
\(620\) 23.6097 7.76745i 0.948187 0.311948i
\(621\) 11.4564 19.8431i 0.459731 0.796278i
\(622\) 1.73205 3.00000i 0.0694489 0.120289i
\(623\) 16.5826i 0.664367i
\(624\) −9.76951 + 2.41733i −0.391093 + 0.0967705i
\(625\) 17.0000 + 18.3303i 0.680000 + 0.733212i
\(626\) 1.28674 + 0.742901i 0.0514286 + 0.0296923i
\(627\) 3.96863 + 2.29129i 0.158492 + 0.0915052i
\(628\) −14.2179 + 8.20871i −0.567356 + 0.327563i
\(629\) 36.3731i 1.45029i
\(630\) −1.10591 3.36150i −0.0440607 0.133925i
\(631\) −5.12614 + 2.95958i −0.204068 + 0.117819i −0.598552 0.801084i \(-0.704257\pi\)
0.394483 + 0.918903i \(0.370924\pi\)
\(632\) 10.3923 0.413384
\(633\) 0.143025 0.0825757i 0.00568475 0.00328209i
\(634\) −0.0435608 + 0.0754495i −0.00173002 + 0.00299648i
\(635\) 29.5893 + 26.4458i 1.17422 + 1.04947i
\(636\) 13.5826 0.538584
\(637\) 10.3923 10.0000i 0.411758 0.396214i
\(638\) 5.53901i 0.219292i
\(639\) −12.1652 7.02355i −0.481246 0.277847i
\(640\) 16.4504 18.4059i 0.650260 0.727555i
\(641\) −9.08258 15.7315i −0.358740 0.621356i 0.629010 0.777397i \(-0.283460\pi\)
−0.987751 + 0.156041i \(0.950127\pi\)
\(642\) 4.83465 0.190809
\(643\) −10.8968 18.8739i −0.429729 0.744313i 0.567120 0.823635i \(-0.308058\pi\)
−0.996849 + 0.0793227i \(0.974724\pi\)
\(644\) 12.3131 7.10895i 0.485203 0.280132i
\(645\) 23.1642 + 4.83465i 0.912090 + 0.190364i
\(646\) −1.81307 3.14033i −0.0713342 0.123554i
\(647\) −23.3827 13.5000i −0.919268 0.530740i −0.0358667 0.999357i \(-0.511419\pi\)
−0.883402 + 0.468617i \(0.844753\pi\)
\(648\) −0.866025 + 1.50000i −0.0340207 + 0.0589256i
\(649\) 36.9129 1.44896
\(650\) 7.72346 2.86001i 0.302939 0.112179i
\(651\) 10.7477 0.421237
\(652\) −18.8718 + 32.6869i −0.739077 + 1.28012i
\(653\) −37.0882 21.4129i −1.45137 0.837951i −0.452814 0.891605i \(-0.649580\pi\)
−0.998560 + 0.0536545i \(0.982913\pi\)
\(654\) −3.00000 5.19615i −0.117309 0.203186i
\(655\) 16.5975 + 3.46410i 0.648518 + 0.135354i
\(656\) −6.39564 + 3.69253i −0.249708 + 0.144169i
\(657\) 0 0
\(658\) −1.44600 −0.0563710
\(659\) 15.2477 + 26.4098i 0.593967 + 1.02878i 0.993692 + 0.112146i \(0.0357724\pi\)
−0.399725 + 0.916635i \(0.630894\pi\)
\(660\) −7.06201 + 7.90145i −0.274888 + 0.307564i
\(661\) 15.8739 + 9.16478i 0.617422 + 0.356469i 0.775865 0.630900i \(-0.217314\pi\)
−0.158443 + 0.987368i \(0.550647\pi\)
\(662\) 2.04356i 0.0794252i
\(663\) −15.8745 4.58258i −0.616515 0.177972i
\(664\) −10.4174 −0.404274
\(665\) −5.00166 4.47028i −0.193956 0.173350i
\(666\) −3.62614 + 6.28065i −0.140510 + 0.243370i
\(667\) 18.1865 10.5000i 0.704185 0.406562i
\(668\) −17.1497 −0.663542
\(669\) −7.50000 + 4.33013i −0.289967 + 0.167412i
\(670\) −0.322139 0.979164i −0.0124453 0.0378284i
\(671\) 3.75015i 0.144773i
\(672\) 7.10895 4.10436i 0.274234 0.158329i
\(673\) −20.9276 12.0826i −0.806701 0.465749i 0.0391079 0.999235i \(-0.487548\pi\)
−0.845809 + 0.533486i \(0.820882\pi\)
\(674\) 12.1652 + 7.02355i 0.468584 + 0.270537i
\(675\) 10.0000 22.9129i 0.384900 0.881917i
\(676\) −0.895644 + 23.2695i −0.0344478 + 0.894981i
\(677\) 2.83485i 0.108952i −0.998515 0.0544760i \(-0.982651\pi\)
0.998515 0.0544760i \(-0.0173489\pi\)
\(678\) 1.69433 2.93466i 0.0650702 0.112705i
\(679\) −9.87386 + 17.1020i −0.378924 + 0.656316i
\(680\) 16.8593 5.54661i 0.646524 0.212703i
\(681\) 0.818350i 0.0313593i
\(682\) −3.75015 6.49545i −0.143601 0.248724i
\(683\) 16.5498 + 28.6652i 0.633262 + 1.09684i 0.986881 + 0.161452i \(0.0516177\pi\)
−0.353619 + 0.935390i \(0.615049\pi\)
\(684\) 6.20520i 0.237262i
\(685\) −7.32884 22.2765i −0.280021 0.851141i
\(686\) −4.35208 + 7.53803i −0.166163 + 0.287803i
\(687\) −13.1334 + 22.7477i −0.501071 + 0.867880i
\(688\) 29.5390i 1.12616i
\(689\) 7.58258 26.2668i 0.288873 1.00069i
\(690\) −4.58258 0.956439i −0.174456 0.0364110i
\(691\) 17.1261 + 9.88778i 0.651509 + 0.376149i 0.789034 0.614349i \(-0.210581\pi\)
−0.137525 + 0.990498i \(0.543915\pi\)
\(692\) 25.7246 + 14.8521i 0.977901 + 0.564591i
\(693\) 7.93725 4.58258i 0.301511 0.174078i
\(694\) 9.74475i 0.369906i
\(695\) 15.1975 + 46.1937i 0.576472 + 1.75223i
\(696\) 6.87386 3.96863i 0.260553 0.150430i
\(697\) −12.1244 −0.459243
\(698\) 0.971326 0.560795i 0.0367652 0.0212264i
\(699\) 1.41742 2.45505i 0.0536119 0.0928586i
\(700\) 12.4828 9.21047i 0.471806 0.348123i
\(701\) −21.1652 −0.799397 −0.399698 0.916647i \(-0.630885\pi\)
−0.399698 + 0.916647i \(0.630885\pi\)
\(702\) −5.71063 5.93466i −0.215534 0.223989i
\(703\) 13.7477i 0.518505i
\(704\) 7.83030 + 4.52083i 0.295116 + 0.170385i
\(705\) −3.04668 2.72300i −0.114745 0.102554i
\(706\) −1.56080 2.70338i −0.0587413 0.101743i
\(707\) 15.5885 0.586264
\(708\) −12.4958 21.6434i −0.469621 0.813408i
\(709\) 31.5000 18.1865i 1.18301 0.683010i 0.226299 0.974058i \(-0.427337\pi\)
0.956708 + 0.291048i \(0.0940040\pi\)
\(710\) −1.46590 + 7.02355i −0.0550143 + 0.263589i
\(711\) −6.00000 10.3923i −0.225018 0.389742i
\(712\) 14.3609 + 8.29129i 0.538199 + 0.310729i
\(713\) −14.2179 + 24.6261i −0.532465 + 0.922256i
\(714\) 3.62614 0.135705
\(715\) 11.3379 + 18.0680i 0.424013 + 0.675704i
\(716\) 32.5390 1.21604
\(717\) −0.0953502 + 0.165151i −0.00356092 + 0.00616769i
\(718\) −7.72665 4.46099i −0.288356 0.166482i
\(719\) −12.2477 21.2137i −0.456763 0.791137i 0.542025 0.840363i \(-0.317658\pi\)
−0.998788 + 0.0492257i \(0.984325\pi\)
\(720\) −12.2197 2.55040i −0.455402 0.0950478i
\(721\) −4.74773 + 2.74110i −0.176815 + 0.102084i
\(722\) 3.65480 + 6.33030i 0.136018 + 0.235589i
\(723\) −1.73205 −0.0644157
\(724\) 7.83485 + 13.5704i 0.291180 + 0.504338i
\(725\) 18.4373 13.6040i 0.684742 0.505238i
\(726\) −1.58258 0.913701i −0.0587349 0.0339106i
\(727\) 15.2523i 0.565675i −0.959168 0.282838i \(-0.908724\pi\)
0.959168 0.282838i \(-0.0912758\pi\)
\(728\) −2.59808 10.5000i −0.0962911 0.389156i
\(729\) −13.0000 −0.481481
\(730\) 0 0
\(731\) 24.2477 41.9983i 0.896835 1.55336i
\(732\) −2.19885 + 1.26951i −0.0812719 + 0.0469223i
\(733\) 22.8027 0.842237 0.421119 0.907006i \(-0.361638\pi\)
0.421119 + 0.907006i \(0.361638\pi\)
\(734\) 0.691478 0.399225i 0.0255229 0.0147357i
\(735\) −8.49628 + 2.79523i −0.313390 + 0.103103i
\(736\) 21.7182i 0.800544i
\(737\) 2.31203 1.33485i 0.0851646 0.0491698i
\(738\) −2.09355 1.20871i −0.0770647 0.0444933i
\(739\) −14.7523 8.51723i −0.542671 0.313311i 0.203490 0.979077i \(-0.434772\pi\)
−0.746161 + 0.665766i \(0.768105\pi\)
\(740\) −31.1216 6.49545i −1.14405 0.238778i
\(741\) −6.00000 1.73205i −0.220416 0.0636285i
\(742\) 6.00000i 0.220267i
\(743\) 2.86423 4.96099i 0.105078 0.182001i −0.808692 0.588232i \(-0.799824\pi\)
0.913770 + 0.406232i \(0.133157\pi\)
\(744\) −5.37386 + 9.30780i −0.197015 + 0.341241i
\(745\) 35.4568 11.6651i 1.29904 0.427375i
\(746\) 5.93905i 0.217444i
\(747\) 6.01450 + 10.4174i 0.220059 + 0.381154i
\(748\) 10.8591 + 18.8085i 0.397048 + 0.687708i
\(749\) 18.3296i 0.669748i
\(750\) −5.08535 0.477776i −0.185691 0.0174459i
\(751\) −5.87386 + 10.1738i −0.214340 + 0.371248i −0.953068 0.302755i \(-0.902093\pi\)
0.738728 + 0.674004i \(0.235427\pi\)
\(752\) −2.55040 + 4.41742i −0.0930036 + 0.161087i
\(753\) 0.165151i 0.00601845i
\(754\) −1.81307 7.32743i −0.0660281 0.266849i
\(755\) −4.41742 + 21.1652i −0.160767 + 0.770279i
\(756\) −13.4347 7.75650i −0.488614 0.282101i
\(757\) −8.44178 4.87386i −0.306822 0.177144i 0.338682 0.940901i \(-0.390019\pi\)
−0.645503 + 0.763757i \(0.723352\pi\)
\(758\) −4.22483 + 2.43920i −0.153453 + 0.0885959i
\(759\) 12.1244i 0.440086i
\(760\) 6.37221 2.09642i 0.231144 0.0760451i
\(761\) −30.7087 + 17.7297i −1.11319 + 0.642701i −0.939654 0.342127i \(-0.888853\pi\)
−0.173536 + 0.984827i \(0.555519\pi\)
\(762\) −8.10805 −0.293724
\(763\) −19.7001 + 11.3739i −0.713192 + 0.411762i
\(764\) −14.8521 + 25.7246i −0.537330 + 0.930682i
\(765\) −15.2803 13.6569i −0.552461 0.493768i
\(766\) 10.7913 0.389905
\(767\) −48.8311 + 12.0826i −1.76319 + 0.436277i
\(768\) 1.79129i 0.0646375i
\(769\) −13.5000 7.79423i −0.486822 0.281067i 0.236433 0.971648i \(-0.424022\pi\)
−0.723255 + 0.690581i \(0.757355\pi\)
\(770\) −3.49041 3.11959i −0.125786 0.112422i
\(771\) 9.08258 + 15.7315i 0.327101 + 0.566556i
\(772\) 26.6283 0.958374
\(773\) −12.0767 20.9174i −0.434368 0.752347i 0.562876 0.826541i \(-0.309695\pi\)
−0.997244 + 0.0741940i \(0.976362\pi\)
\(774\) 8.37386 4.83465i 0.300992 0.173778i
\(775\) −12.4104 + 28.4358i −0.445795 + 1.02144i
\(776\) −9.87386 17.1020i −0.354451 0.613927i
\(777\) −11.9059 6.87386i −0.427121 0.246598i
\(778\) 0.723000 1.25227i 0.0259208 0.0448962i
\(779\) −4.58258 −0.164188
\(780\) 6.75580 12.7642i 0.241896 0.457033i
\(781\) −18.5826 −0.664937
\(782\) −4.79693 + 8.30852i −0.171538 + 0.297112i
\(783\) −19.8431 11.4564i −0.709136 0.409420i
\(784\) 5.58258 + 9.66930i 0.199378 + 0.345332i
\(785\) 4.18710 20.0616i 0.149444 0.716030i
\(786\) −3.00000 + 1.73205i −0.107006 + 0.0617802i
\(787\) 8.15573 + 14.1261i 0.290720 + 0.503542i 0.973980 0.226633i \(-0.0727717\pi\)
−0.683260 + 0.730175i \(0.739438\pi\)
\(788\) −26.2867 −0.936425
\(789\) 4.50000 + 7.79423i 0.160204 + 0.277482i
\(790\) −4.08450 + 4.57002i −0.145320 + 0.162594i
\(791\) −11.1261 6.42368i −0.395600 0.228400i
\(792\) 9.16515i 0.325669i
\(793\) 1.22753 + 4.96099i 0.0435907 + 0.176170i
\(794\) −9.29583 −0.329897
\(795\) −11.2988 + 12.6418i −0.400726 + 0.448359i
\(796\) −9.47822 + 16.4168i −0.335947 + 0.581877i
\(797\) 38.1727 22.0390i 1.35215 0.780662i 0.363596 0.931557i \(-0.381549\pi\)
0.988550 + 0.150895i \(0.0482154\pi\)
\(798\) 1.37055 0.0485170
\(799\) −7.25227 + 4.18710i −0.256567 + 0.148129i
\(800\) 2.65039 + 23.5478i 0.0937056 + 0.832541i
\(801\) 19.1479i 0.676558i
\(802\) −11.8006 + 6.81307i −0.416693 + 0.240578i
\(803\) 0 0
\(804\) −1.56534 0.903750i −0.0552053 0.0318728i
\(805\) −3.62614 + 17.3739i −0.127805 + 0.612348i
\(806\) 7.08712 + 7.36515i 0.249633 + 0.259426i
\(807\) 15.0000i 0.528025i
\(808\) −7.79423 + 13.5000i −0.274200 + 0.474928i
\(809\) −27.4129 + 47.4805i −0.963785 + 1.66933i −0.250942 + 0.968002i \(0.580740\pi\)
−0.712843 + 0.701323i \(0.752593\pi\)
\(810\) −0.319250 0.970381i −0.0112173 0.0340957i
\(811\) 50.5155i 1.77384i −0.461923 0.886920i \(-0.652840\pi\)
0.461923 0.886920i \(-0.347160\pi\)
\(812\) −7.10895 12.3131i −0.249475 0.432104i
\(813\) 4.33013 + 7.50000i 0.151864 + 0.263036i
\(814\) 9.59386i 0.336264i
\(815\) −14.7243 44.7555i −0.515770 1.56772i
\(816\) 6.39564 11.0776i 0.223892 0.387793i
\(817\) 9.16478 15.8739i 0.320635 0.555356i
\(818\) 3.95644i 0.138334i
\(819\) −9.00000 + 8.66025i −0.314485 + 0.302614i
\(820\) 2.16515 10.3739i 0.0756104 0.362271i
\(821\) 15.7087 + 9.06943i 0.548238 + 0.316525i 0.748411 0.663235i \(-0.230817\pi\)
−0.200173 + 0.979761i \(0.564150\pi\)
\(822\) 4.14938 + 2.39564i 0.144726 + 0.0835577i
\(823\) 27.2083 15.7087i 0.948421 0.547571i 0.0558311 0.998440i \(-0.482219\pi\)
0.892590 + 0.450869i \(0.148886\pi\)
\(824\) 5.48220i 0.190982i
\(825\) −1.47960 13.1458i −0.0515131 0.457676i
\(826\) 9.56080 5.51993i 0.332663 0.192063i
\(827\) 10.7737 0.374638 0.187319 0.982299i \(-0.440020\pi\)
0.187319 + 0.982299i \(0.440020\pi\)
\(828\) 14.2179 8.20871i 0.494106 0.285272i
\(829\) −16.6652 + 28.8649i −0.578805 + 1.00252i 0.416812 + 0.908993i \(0.363147\pi\)
−0.995617 + 0.0935264i \(0.970186\pi\)
\(830\) 4.09437 4.58106i 0.142118 0.159011i
\(831\) −7.41742 −0.257308
\(832\) −11.8383 3.41742i −0.410419 0.118478i
\(833\) 18.3303i 0.635107i
\(834\) −8.60436 4.96773i −0.297944 0.172018i
\(835\) 14.2661 15.9619i 0.493699 0.552384i
\(836\) 4.10436 + 7.10895i 0.141952 + 0.245868i
\(837\) 31.0260 1.07242
\(838\) 1.33283 + 2.30852i 0.0460417 + 0.0797466i
\(839\) 37.8303 21.8413i 1.30605 0.754047i 0.324613 0.945847i \(-0.394766\pi\)
0.981434 + 0.191800i \(0.0614326\pi\)
\(840\) −1.37055 + 6.56670i −0.0472885 + 0.226573i
\(841\) 4.00000 + 6.92820i 0.137931 + 0.238904i
\(842\) 2.16900 + 1.25227i 0.0747487 + 0.0431562i
\(843\) −1.82740 + 3.16515i −0.0629390 + 0.109014i
\(844\) 0.295834 0.0101830
\(845\) −20.9128 20.1905i −0.719421 0.694574i
\(846\) −1.66970 −0.0574054
\(847\) −3.46410 + 6.00000i −0.119028 + 0.206162i
\(848\) 18.3296 + 10.5826i 0.629440 + 0.363407i
\(849\) −13.8739 24.0302i −0.476150 0.824716i
\(850\) −4.18710 + 9.59386i −0.143616 + 0.329067i
\(851\) 31.5000 18.1865i 1.07981 0.623426i
\(852\) 6.29060 + 10.8956i 0.215513 + 0.373279i
\(853\) −5.63310 −0.192874 −0.0964369 0.995339i \(-0.530745\pi\)
−0.0964369 + 0.995339i \(0.530745\pi\)
\(854\) −0.560795 0.971326i −0.0191900 0.0332381i
\(855\) −5.77542 5.16184i −0.197515 0.176531i
\(856\) 15.8739 + 9.16478i 0.542557 + 0.313246i
\(857\) 4.74773i 0.162179i −0.996707 0.0810896i \(-0.974160\pi\)
0.996707 0.0810896i \(-0.0258400\pi\)
\(858\) −4.18710 1.20871i −0.142945 0.0412648i
\(859\) 44.2432 1.50956 0.754779 0.655979i \(-0.227744\pi\)
0.754779 + 0.655979i \(0.227744\pi\)
\(860\) 31.6045 + 28.2469i 1.07771 + 0.963211i
\(861\) 2.29129 3.96863i 0.0780869 0.135250i
\(862\) 3.35093 1.93466i 0.114133 0.0658947i
\(863\) 13.6657 0.465186 0.232593 0.972574i \(-0.425279\pi\)
0.232593 + 0.972574i \(0.425279\pi\)
\(864\) 20.5218 11.8483i 0.698165 0.403086i
\(865\) −35.2225 + 11.5880i −1.19760 + 0.394004i
\(866\) 4.45325i 0.151328i
\(867\) 3.46410 2.00000i 0.117647 0.0679236i
\(868\) 16.6730 + 9.62614i 0.565917 + 0.326732i
\(869\) −13.7477 7.93725i −0.466360 0.269253i
\(870\) −0.956439 + 4.58258i −0.0324263 + 0.155364i
\(871\) −2.62159 + 2.52263i −0.0888292 + 0.0854759i
\(872\) 22.7477i 0.770335i
\(873\) −11.4014 + 19.7477i −0.385877 + 0.668359i
\(874\) −1.81307 + 3.14033i −0.0613279 + 0.106223i
\(875\) −1.81139 + 19.2800i −0.0612360 + 0.651783i
\(876\) 0 0
\(877\) −3.96863 6.87386i −0.134011 0.232114i 0.791208 0.611547i \(-0.209452\pi\)
−0.925219 + 0.379433i \(0.876119\pi\)
\(878\) 3.31113 + 5.73504i 0.111745 + 0.193548i
\(879\) 18.1389i 0.611809i
\(880\) −15.6864 + 5.16072i −0.528787 + 0.173968i
\(881\) −18.2477 + 31.6060i −0.614782 + 1.06483i 0.375641 + 0.926765i \(0.377422\pi\)
−0.990423 + 0.138068i \(0.955911\pi\)
\(882\) −1.82740 + 3.16515i −0.0615318 + 0.106576i
\(883\) 36.2432i 1.21968i −0.792524 0.609840i \(-0.791234\pi\)
0.792524 0.609840i \(-0.208766\pi\)
\(884\) −20.5218 21.3269i −0.690222 0.717300i
\(885\) 30.5390 + 6.37386i 1.02656 + 0.214255i
\(886\) −7.87841 4.54860i −0.264680 0.152813i
\(887\) −47.1944 27.2477i −1.58463 0.914889i −0.994170 0.107826i \(-0.965611\pi\)
−0.590465 0.807064i \(-0.701055\pi\)
\(888\) 11.9059 6.87386i 0.399535 0.230672i
\(889\) 30.7400i 1.03099i
\(890\) −9.29039 + 3.05648i −0.311415 + 0.102454i
\(891\) 2.29129 1.32288i 0.0767610 0.0443180i
\(892\) −15.5130 −0.519414
\(893\) −2.74110 + 1.58258i −0.0917275 + 0.0529589i
\(894\) −3.81307 + 6.60443i −0.127528 + 0.220885i
\(895\) −27.0678 + 30.2853i −0.904776 + 1.01233i
\(896\) 19.1216 0.638808
\(897\) 3.96863 + 16.0390i 0.132509 + 0.535527i
\(898\) 5.03447i 0.168002i
\(899\) 24.6261 + 14.2179i 0.821328 + 0.474194i
\(900\) 14.4139 10.6353i 0.480464 0.354511i
\(901\) 17.3739 + 30.0924i 0.578807 + 1.00252i
\(902\) −3.19795 −0.106480
\(903\) 9.16478 + 15.8739i 0.304985 + 0.528249i
\(904\) 11.1261 6.42368i 0.370050 0.213648i
\(905\) −19.1479 3.99640i −0.636498 0.132845i
\(906\) −2.20871 3.82560i −0.0733795 0.127097i
\(907\) 5.41463 + 3.12614i 0.179790 + 0.103802i 0.587194 0.809446i \(-0.300233\pi\)
−0.407404 + 0.913248i \(0.633566\pi\)
\(908\) −0.732950 + 1.26951i −0.0243238 + 0.0421301i
\(909\) 18.0000 0.597022
\(910\) 5.63850 + 2.98432i 0.186914 + 0.0989294i
\(911\) −7.91288 −0.262165 −0.131083 0.991371i \(-0.541845\pi\)
−0.131083 + 0.991371i \(0.541845\pi\)
\(912\) 2.41733 4.18693i 0.0800457 0.138643i
\(913\) 13.7810 + 7.95644i 0.456083 + 0.263320i
\(914\) −0.395644 0.685275i −0.0130867 0.0226669i
\(915\) 0.647551 3.10260i 0.0214074 0.102569i
\(916\) −40.7477 + 23.5257i −1.34634 + 0.777311i
\(917\) 6.56670 + 11.3739i 0.216852 + 0.375598i
\(918\) 10.4678 0.345487
\(919\) 27.0826 + 46.9084i 0.893372 + 1.54737i 0.835807 + 0.549023i \(0.185000\pi\)
0.0575648 + 0.998342i \(0.481666\pi\)
\(920\) −13.2331 11.8273i −0.436284 0.389933i
\(921\) 21.0000 + 12.1244i 0.691974 + 0.399511i
\(922\) 16.3739i 0.539244i
\(923\) 24.5824 6.08258i 0.809141 0.200210i
\(924\) −8.20871 −0.270047
\(925\) 31.9343 23.5627i 1.04999 0.774738i
\(926\) 9.00000 15.5885i 0.295758 0.512268i
\(927\) −5.48220 + 3.16515i −0.180059 + 0.103957i
\(928\) 21.7182 0.712935
\(929\) 22.8303 13.1811i 0.749038 0.432457i −0.0763082 0.997084i \(-0.524313\pi\)
0.825346 + 0.564627i \(0.190980\pi\)
\(930\) −1.98101 6.02141i −0.0649599 0.197450i
\(931\) 6.92820i 0.227063i
\(932\) 4.39770 2.53901i 0.144052 0.0831682i
\(933\) 6.56670 + 3.79129i 0.214984 + 0.124121i
\(934\) −9.62614 5.55765i −0.314977 0.181852i
\(935\) −26.5390 5.53901i −0.867919 0.181145i
\(936\) −3.00000 12.1244i −0.0980581 0.396297i
\(937\) 31.4955i 1.02891i 0.857517 + 0.514456i \(0.172006\pi\)
−0.857517 + 0.514456i \(0.827994\pi\)
\(938\) 0.399225 0.691478i 0.0130352 0.0225775i
\(939\) −1.62614 + 2.81655i −0.0530670 + 0.0919147i
\(940\) −2.28747 6.95293i −0.0746092 0.226780i
\(941\) 26.4575i 0.862490i −0.902235 0.431245i \(-0.858074\pi\)
0.902235 0.431245i \(-0.141926\pi\)
\(942\) 2.09355 + 3.62614i 0.0682116 + 0.118146i
\(943\) 6.06218 + 10.5000i 0.197412 + 0.341927i
\(944\) 38.9434i 1.26750i
\(945\) 18.3950 6.05184i 0.598389 0.196866i
\(946\) 6.39564 11.0776i 0.207940 0.360163i
\(947\) 7.16658 12.4129i 0.232883 0.403364i −0.725773 0.687935i \(-0.758518\pi\)
0.958655 + 0.284570i \(0.0918509\pi\)
\(948\) 10.7477i 0.349070i
\(949\) 0 0
\(950\) −1.58258 + 3.62614i −0.0513455 + 0.117647i
\(951\) −0.165151 0.0953502i −0.00535540 0.00309194i
\(952\) 11.9059 + 6.87386i 0.385872 + 0.222783i
\(953\) 6.99578 4.03901i 0.226616 0.130837i −0.382394 0.923999i \(-0.624900\pi\)
0.609010 + 0.793163i \(0.291567\pi\)
\(954\) 6.92820i 0.224309i
\(955\) −11.5880 35.2225i −0.374979 1.13977i
\(956\) −0.295834 + 0.170800i −0.00956794 + 0.00552406i
\(957\) −12.1244 −0.391925
\(958\) 1.84522 1.06534i 0.0596165 0.0344196i
\(959\) 9.08258 15.7315i 0.293292 0.507996i
\(960\) 5.69759 + 5.09229i 0.183889 + 0.164353i
\(961\) −7.50455 −0.242082
\(962\) −3.14033 12.6915i −0.101248 0.409190i
\(963\) 21.1652i 0.682037i
\(964\) −2.68693 1.55130i −0.0865402 0.0499640i
\(965\) −22.1509 + 24.7840i −0.713064 + 0.797824i
\(966\) −1.81307 3.14033i −0.0583345 0.101038i
\(967\) −37.3821 −1.20213 −0.601064 0.799201i \(-0.705256\pi\)
−0.601064 + 0.799201i \(0.705256\pi\)
\(968\) −3.46410 6.00000i −0.111340 0.192847i
\(969\) 6.87386 3.96863i 0.220820 0.127491i
\(970\) 11.4014 + 2.37960i 0.366075 + 0.0764044i
\(971\) 9.24773 + 16.0175i 0.296774 + 0.514027i 0.975396 0.220460i \(-0.0707560\pi\)
−0.678622 + 0.734487i \(0.737423\pi\)
\(972\) −24.8208 14.3303i −0.796128 0.459645i
\(973\) −18.8341 + 32.6216i −0.603793 + 1.04580i
\(974\) 4.87841 0.156314
\(975\) 6.26029 + 16.9059i 0.200490 + 0.541421i
\(976\) −3.95644 −0.126643
\(977\) −17.6542 + 30.5780i −0.564809 + 0.978278i 0.432258 + 0.901750i \(0.357717\pi\)
−0.997067 + 0.0765281i \(0.975617\pi\)
\(978\) 8.33648 + 4.81307i 0.266571 + 0.153905i
\(979\) −12.6652 21.9367i −0.404780 0.701100i
\(980\) −15.6838 3.27340i −0.501001 0.104565i
\(981\) −22.7477 + 13.1334i −0.726279 + 0.419317i
\(982\) 4.43543 + 7.68239i 0.141540 + 0.245155i
\(983\) 55.0840 1.75691 0.878454 0.477827i \(-0.158576\pi\)
0.878454 + 0.477827i \(0.158576\pi\)
\(984\) 2.29129 + 3.96863i 0.0730436 + 0.126515i
\(985\) 21.8668 24.4660i 0.696733 0.779553i
\(986\) 8.30852 + 4.79693i 0.264597 + 0.152765i
\(987\) 3.16515i 0.100748i
\(988\) −7.75650 8.06080i −0.246767 0.256448i
\(989\) −48.4955 −1.54207
\(990\) −4.03038 3.60219i −0.128094 0.114485i
\(991\) 6.50000 11.2583i 0.206479 0.357633i −0.744124 0.668042i \(-0.767133\pi\)
0.950603 + 0.310409i \(0.100466\pi\)
\(992\) −25.4684 + 14.7042i −0.808621 + 0.466858i
\(993\) −4.47315 −0.141951
\(994\) −4.81307 + 2.77883i −0.152661 + 0.0881390i
\(995\) −7.39517 22.4781i −0.234443 0.712604i
\(996\) 10.7737i 0.341378i
\(997\) 0.143025 0.0825757i 0.00452966 0.00261520i −0.497733 0.867330i \(-0.665834\pi\)
0.502263 + 0.864715i \(0.332501\pi\)
\(998\) 0.286051 + 0.165151i 0.00905477 + 0.00522778i
\(999\) −34.3693 19.8431i −1.08740 0.627809i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 65.2.l.a.4.3 yes 8
3.2 odd 2 585.2.bf.a.199.2 8
4.3 odd 2 1040.2.df.b.849.1 8
5.2 odd 4 325.2.n.b.251.2 4
5.3 odd 4 325.2.n.c.251.1 4
5.4 even 2 inner 65.2.l.a.4.2 8
13.2 odd 12 845.2.n.c.484.3 8
13.3 even 3 845.2.l.c.699.3 8
13.4 even 6 845.2.d.c.844.5 8
13.5 odd 4 845.2.n.d.529.2 8
13.6 odd 12 845.2.b.f.339.5 8
13.7 odd 12 845.2.b.f.339.3 8
13.8 odd 4 845.2.n.c.529.4 8
13.9 even 3 845.2.d.c.844.3 8
13.10 even 6 inner 65.2.l.a.49.2 yes 8
13.11 odd 12 845.2.n.d.484.1 8
13.12 even 2 845.2.l.c.654.2 8
15.14 odd 2 585.2.bf.a.199.3 8
20.19 odd 2 1040.2.df.b.849.4 8
39.23 odd 6 585.2.bf.a.244.3 8
52.23 odd 6 1040.2.df.b.49.4 8
65.4 even 6 845.2.d.c.844.4 8
65.7 even 12 4225.2.a.bj.1.3 4
65.9 even 6 845.2.d.c.844.6 8
65.19 odd 12 845.2.b.f.339.4 8
65.23 odd 12 325.2.n.c.101.1 4
65.24 odd 12 845.2.n.c.484.4 8
65.29 even 6 845.2.l.c.699.2 8
65.32 even 12 4225.2.a.bj.1.2 4
65.33 even 12 4225.2.a.bk.1.2 4
65.34 odd 4 845.2.n.d.529.1 8
65.44 odd 4 845.2.n.c.529.3 8
65.49 even 6 inner 65.2.l.a.49.3 yes 8
65.54 odd 12 845.2.n.d.484.2 8
65.58 even 12 4225.2.a.bk.1.3 4
65.59 odd 12 845.2.b.f.339.6 8
65.62 odd 12 325.2.n.b.101.2 4
65.64 even 2 845.2.l.c.654.3 8
195.179 odd 6 585.2.bf.a.244.2 8
260.179 odd 6 1040.2.df.b.49.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.l.a.4.2 8 5.4 even 2 inner
65.2.l.a.4.3 yes 8 1.1 even 1 trivial
65.2.l.a.49.2 yes 8 13.10 even 6 inner
65.2.l.a.49.3 yes 8 65.49 even 6 inner
325.2.n.b.101.2 4 65.62 odd 12
325.2.n.b.251.2 4 5.2 odd 4
325.2.n.c.101.1 4 65.23 odd 12
325.2.n.c.251.1 4 5.3 odd 4
585.2.bf.a.199.2 8 3.2 odd 2
585.2.bf.a.199.3 8 15.14 odd 2
585.2.bf.a.244.2 8 195.179 odd 6
585.2.bf.a.244.3 8 39.23 odd 6
845.2.b.f.339.3 8 13.7 odd 12
845.2.b.f.339.4 8 65.19 odd 12
845.2.b.f.339.5 8 13.6 odd 12
845.2.b.f.339.6 8 65.59 odd 12
845.2.d.c.844.3 8 13.9 even 3
845.2.d.c.844.4 8 65.4 even 6
845.2.d.c.844.5 8 13.4 even 6
845.2.d.c.844.6 8 65.9 even 6
845.2.l.c.654.2 8 13.12 even 2
845.2.l.c.654.3 8 65.64 even 2
845.2.l.c.699.2 8 65.29 even 6
845.2.l.c.699.3 8 13.3 even 3
845.2.n.c.484.3 8 13.2 odd 12
845.2.n.c.484.4 8 65.24 odd 12
845.2.n.c.529.3 8 65.44 odd 4
845.2.n.c.529.4 8 13.8 odd 4
845.2.n.d.484.1 8 13.11 odd 12
845.2.n.d.484.2 8 65.54 odd 12
845.2.n.d.529.1 8 65.34 odd 4
845.2.n.d.529.2 8 13.5 odd 4
1040.2.df.b.49.1 8 260.179 odd 6
1040.2.df.b.49.4 8 52.23 odd 6
1040.2.df.b.849.1 8 4.3 odd 2
1040.2.df.b.849.4 8 20.19 odd 2
4225.2.a.bj.1.2 4 65.32 even 12
4225.2.a.bj.1.3 4 65.7 even 12
4225.2.a.bk.1.2 4 65.33 even 12
4225.2.a.bk.1.3 4 65.58 even 12