Properties

Label 65.2.l
Level 65
Weight 2
Character orbit l
Rep. character \(\chi_{65}(4,\cdot)\)
Character field \(\Q(\zeta_{6})\)
Dimension 8
Newforms 1
Sturm bound 14
Trace bound 0

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 65 = 5 \cdot 13 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 65.l (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 65 \)
Character field: \(\Q(\zeta_{6})\)
Newforms: \( 1 \)
Sturm bound: \(14\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(65, [\chi])\).

Total New Old
Modular forms 16 16 0
Cusp forms 8 8 0
Eisenstein series 8 8 0

Trace form

\( 8q - 2q^{4} - 6q^{6} - 8q^{9} + O(q^{10}) \) \( 8q - 2q^{4} - 6q^{6} - 8q^{9} - 4q^{10} + 12q^{14} - 6q^{15} - 2q^{16} - 12q^{19} + 24q^{20} + 12q^{24} - 18q^{26} - 10q^{30} + 6q^{35} - 4q^{36} + 20q^{39} - 12q^{40} + 12q^{45} + 42q^{46} + 16q^{49} - 12q^{50} + 30q^{54} - 14q^{55} - 12q^{56} - 60q^{59} + 24q^{61} - 64q^{64} - 24q^{65} - 28q^{66} + 12q^{71} - 42q^{74} - 8q^{75} + 6q^{76} + 48q^{79} + 18q^{80} - 4q^{81} - 6q^{84} + 42q^{85} + 48q^{89} + 16q^{90} - 12q^{91} + 40q^{94} - 6q^{95} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(65, [\chi])\) into irreducible Hecke orbits

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
65.2.l.a \(8\) \(0.519\) 8.0.49787136.1 None \(0\) \(0\) \(0\) \(0\) \(q+(\beta _{1}+\beta _{5})q^{2}+(\beta _{3}+\beta _{5})q^{3}+(\beta _{2}+\beta _{4}+\cdots)q^{4}+\cdots\)