Properties

Label 65.2.k.a
Level 65
Weight 2
Character orbit 65.k
Analytic conductor 0.519
Analytic rank 0
Dimension 2
CM No
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 65 = 5 \cdot 13 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 65.k (of order \(4\) and degree \(2\))

Newform invariants

Self dual: No
Analytic conductor: \(0.519027613138\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + ( 1 + i ) q^{3} - q^{4} + ( -1 - 2 i ) q^{5} + ( 1 + i ) q^{6} + 2 i q^{7} -3 q^{8} -i q^{9} +O(q^{10})\) \( q + q^{2} + ( 1 + i ) q^{3} - q^{4} + ( -1 - 2 i ) q^{5} + ( 1 + i ) q^{6} + 2 i q^{7} -3 q^{8} -i q^{9} + ( -1 - 2 i ) q^{10} + ( -1 + i ) q^{11} + ( -1 - i ) q^{12} + ( 3 - 2 i ) q^{13} + 2 i q^{14} + ( 1 - 3 i ) q^{15} - q^{16} + ( 1 + i ) q^{17} -i q^{18} + ( -5 + 5 i ) q^{19} + ( 1 + 2 i ) q^{20} + ( -2 + 2 i ) q^{21} + ( -1 + i ) q^{22} + ( 3 - 3 i ) q^{23} + ( -3 - 3 i ) q^{24} + ( -3 + 4 i ) q^{25} + ( 3 - 2 i ) q^{26} + ( 4 - 4 i ) q^{27} -2 i q^{28} + ( 1 - 3 i ) q^{30} + ( 5 + 5 i ) q^{31} + 5 q^{32} -2 q^{33} + ( 1 + i ) q^{34} + ( 4 - 2 i ) q^{35} + i q^{36} + ( -5 + 5 i ) q^{38} + ( 5 + i ) q^{39} + ( 3 + 6 i ) q^{40} + ( -7 - 7 i ) q^{41} + ( -2 + 2 i ) q^{42} + ( -1 + i ) q^{43} + ( 1 - i ) q^{44} + ( -2 + i ) q^{45} + ( 3 - 3 i ) q^{46} -6 i q^{47} + ( -1 - i ) q^{48} + 3 q^{49} + ( -3 + 4 i ) q^{50} + 2 i q^{51} + ( -3 + 2 i ) q^{52} + ( 5 + 5 i ) q^{53} + ( 4 - 4 i ) q^{54} + ( 3 + i ) q^{55} -6 i q^{56} -10 q^{57} + ( -7 - 7 i ) q^{59} + ( -1 + 3 i ) q^{60} -14 q^{61} + ( 5 + 5 i ) q^{62} + 2 q^{63} + 7 q^{64} + ( -7 - 4 i ) q^{65} -2 q^{66} -4 q^{67} + ( -1 - i ) q^{68} + 6 q^{69} + ( 4 - 2 i ) q^{70} + ( 1 + i ) q^{71} + 3 i q^{72} -10 q^{73} + ( -7 + i ) q^{75} + ( 5 - 5 i ) q^{76} + ( -2 - 2 i ) q^{77} + ( 5 + i ) q^{78} + 2 i q^{79} + ( 1 + 2 i ) q^{80} + 5 q^{81} + ( -7 - 7 i ) q^{82} + 6 i q^{83} + ( 2 - 2 i ) q^{84} + ( 1 - 3 i ) q^{85} + ( -1 + i ) q^{86} + ( 3 - 3 i ) q^{88} + ( 5 + 5 i ) q^{89} + ( -2 + i ) q^{90} + ( 4 + 6 i ) q^{91} + ( -3 + 3 i ) q^{92} + 10 i q^{93} -6 i q^{94} + ( 15 + 5 i ) q^{95} + ( 5 + 5 i ) q^{96} + 2 q^{97} + 3 q^{98} + ( 1 + i ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 2q^{2} + 2q^{3} - 2q^{4} - 2q^{5} + 2q^{6} - 6q^{8} + O(q^{10}) \) \( 2q + 2q^{2} + 2q^{3} - 2q^{4} - 2q^{5} + 2q^{6} - 6q^{8} - 2q^{10} - 2q^{11} - 2q^{12} + 6q^{13} + 2q^{15} - 2q^{16} + 2q^{17} - 10q^{19} + 2q^{20} - 4q^{21} - 2q^{22} + 6q^{23} - 6q^{24} - 6q^{25} + 6q^{26} + 8q^{27} + 2q^{30} + 10q^{31} + 10q^{32} - 4q^{33} + 2q^{34} + 8q^{35} - 10q^{38} + 10q^{39} + 6q^{40} - 14q^{41} - 4q^{42} - 2q^{43} + 2q^{44} - 4q^{45} + 6q^{46} - 2q^{48} + 6q^{49} - 6q^{50} - 6q^{52} + 10q^{53} + 8q^{54} + 6q^{55} - 20q^{57} - 14q^{59} - 2q^{60} - 28q^{61} + 10q^{62} + 4q^{63} + 14q^{64} - 14q^{65} - 4q^{66} - 8q^{67} - 2q^{68} + 12q^{69} + 8q^{70} + 2q^{71} - 20q^{73} - 14q^{75} + 10q^{76} - 4q^{77} + 10q^{78} + 2q^{80} + 10q^{81} - 14q^{82} + 4q^{84} + 2q^{85} - 2q^{86} + 6q^{88} + 10q^{89} - 4q^{90} + 8q^{91} - 6q^{92} + 30q^{95} + 10q^{96} + 4q^{97} + 6q^{98} + 2q^{99} + O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/65\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(41\)
\(\chi(n)\) \(-i\) \(i\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
8.1
1.00000i
1.00000i
1.00000 1.00000 + 1.00000i −1.00000 −1.00000 2.00000i 1.00000 + 1.00000i 2.00000i −3.00000 1.00000i −1.00000 2.00000i
57.1 1.00000 1.00000 1.00000i −1.00000 −1.00000 + 2.00000i 1.00000 1.00000i 2.00000i −3.00000 1.00000i −1.00000 + 2.00000i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char. orbit Parity Mult. Self Twist Proved
1.a Even 1 trivial yes
65.k Even 1 yes

Hecke kernels

This newform can be constructed as the kernel of the linear operator \( T_{2} - 1 \) acting on \(S_{2}^{\mathrm{new}}(65, [\chi])\).