# Properties

 Label 65.2.f.b.18.2 Level $65$ Weight $2$ Character 65.18 Analytic conductor $0.519$ Analytic rank $0$ Dimension $8$ Inner twists $2$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [65,2,Mod(18,65)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(65, base_ring=CyclotomicField(4))

chi = DirichletCharacter(H, H._module([3, 3]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("65.18");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$65 = 5 \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 65.f (of order $$4$$, degree $$2$$, minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$0.519027613138$$ Analytic rank: $$0$$ Dimension: $$8$$ Relative dimension: $$4$$ over $$\Q(i)$$ Coefficient field: 8.0.619810816.2 comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{8} - 2x^{5} + 14x^{4} - 8x^{3} + 2x^{2} + 2x + 1$$ x^8 - 2*x^5 + 14*x^4 - 8*x^3 + 2*x^2 + 2*x + 1 Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$2$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

## Embedding invariants

 Embedding label 18.2 Root $$-1.49094 + 1.49094i$$ of defining polynomial Character $$\chi$$ $$=$$ 65.18 Dual form 65.2.f.b.47.3

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q+0.134632i q^{2} +(-2.15558 - 2.15558i) q^{3} +1.98187 q^{4} +(-1.29021 - 1.82630i) q^{5} +(0.290209 - 0.290209i) q^{6} +1.90970 q^{7} +0.536087i q^{8} +6.29303i q^{9} +O(q^{10})$$ $$q+0.134632i q^{2} +(-2.15558 - 2.15558i) q^{3} +1.98187 q^{4} +(-1.29021 - 1.82630i) q^{5} +(0.290209 - 0.290209i) q^{6} +1.90970 q^{7} +0.536087i q^{8} +6.29303i q^{9} +(0.245878 - 0.173703i) q^{10} +(-0.290209 - 0.290209i) q^{11} +(-4.27208 - 4.27208i) q^{12} +(0.173703 + 3.60136i) q^{13} +0.257106i q^{14} +(-1.15558 + 6.71787i) q^{15} +3.89157 q^{16} +(2.53609 + 2.53609i) q^{17} -0.847242 q^{18} +(-3.15558 - 3.15558i) q^{19} +(-2.55703 - 3.61949i) q^{20} +(-4.11651 - 4.11651i) q^{21} +(0.0390714 - 0.0390714i) q^{22} +(2.27208 - 2.27208i) q^{23} +(1.15558 - 1.15558i) q^{24} +(-1.67072 + 4.71261i) q^{25} +(-0.484858 + 0.0233860i) q^{26} +(7.09838 - 7.09838i) q^{27} +3.78478 q^{28} +2.40146i q^{29} +(-0.904440 - 0.155578i) q^{30} +(2.02095 - 2.02095i) q^{31} +1.59610i q^{32} +1.25114i q^{33} +(-0.341438 + 0.341438i) q^{34} +(-2.46391 - 3.48768i) q^{35} +12.4720i q^{36} -5.32928 q^{37} +(0.424841 - 0.424841i) q^{38} +(7.38859 - 8.13745i) q^{39} +(0.979054 - 0.691665i) q^{40} +(-1.51796 + 1.51796i) q^{41} +(0.554213 - 0.554213i) q^{42} +(-0.888754 + 0.888754i) q^{43} +(-0.575159 - 0.575159i) q^{44} +(11.4929 - 8.11933i) q^{45} +(0.305895 + 0.305895i) q^{46} -6.94562 q^{47} +(-8.38859 - 8.38859i) q^{48} -3.35305 q^{49} +(-0.634468 - 0.224932i) q^{50} -10.9335i q^{51} +(0.344258 + 7.13745i) q^{52} +(-1.09030 - 1.09030i) q^{53} +(0.955668 + 0.955668i) q^{54} +(-0.155578 + 0.904440i) q^{55} +1.02377i q^{56} +13.6042i q^{57} -0.323312 q^{58} +(-8.31642 + 8.31642i) q^{59} +(-2.29021 + 13.3140i) q^{60} +7.17300 q^{61} +(0.272084 + 0.272084i) q^{62} +12.0178i q^{63} +7.56826 q^{64} +(6.35305 - 4.96375i) q^{65} -0.168443 q^{66} +0.939983i q^{67} +(5.02621 + 5.02621i) q^{68} -9.79531 q^{69} +(0.469553 - 0.331721i) q^{70} +(-7.37643 + 7.37643i) q^{71} -3.37361 q^{72} -6.63447i q^{73} -0.717491i q^{74} +(13.7598 - 6.55703i) q^{75} +(-6.25396 - 6.25396i) q^{76} +(-0.554213 - 0.554213i) q^{77} +(1.09556 + 0.994740i) q^{78} -4.39982i q^{79} +(-5.02095 - 7.10717i) q^{80} -11.7231 q^{81} +(-0.204366 - 0.204366i) q^{82} +13.4842 q^{83} +(-8.15840 - 8.15840i) q^{84} +(1.35956 - 7.90373i) q^{85} +(-0.119655 - 0.119655i) q^{86} +(5.17652 - 5.17652i) q^{87} +(0.155578 - 0.155578i) q^{88} +(10.0238 - 10.0238i) q^{89} +(1.09312 + 1.54732i) q^{90} +(0.331721 + 6.87753i) q^{91} +(4.50298 - 4.50298i) q^{92} -8.71261 q^{93} -0.935102i q^{94} +(-1.69166 + 9.83438i) q^{95} +(3.44053 - 3.44053i) q^{96} +4.39982i q^{97} -0.451427i q^{98} +(1.82630 - 1.82630i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$8 q - 6 q^{3} - 8 q^{4} - 2 q^{5} - 6 q^{6}+O(q^{10})$$ 8 * q - 6 * q^3 - 8 * q^4 - 2 * q^5 - 6 * q^6 $$8 q - 6 q^{3} - 8 q^{4} - 2 q^{5} - 6 q^{6} + 6 q^{10} + 6 q^{11} - 2 q^{12} + 14 q^{13} + 2 q^{15} - 8 q^{16} + 16 q^{17} + 20 q^{18} - 14 q^{19} - 2 q^{20} - 12 q^{21} + 10 q^{22} - 14 q^{23} - 2 q^{24} - 12 q^{25} + 6 q^{26} + 12 q^{27} - 8 q^{28} - 14 q^{30} + 2 q^{31} - 24 q^{35} - 44 q^{37} - 2 q^{38} + 6 q^{39} + 22 q^{40} + 16 q^{41} + 24 q^{42} - 6 q^{43} - 10 q^{44} + 22 q^{45} + 2 q^{46} + 16 q^{47} - 14 q^{48} + 24 q^{49} + 44 q^{50} - 38 q^{52} - 24 q^{53} + 20 q^{54} + 10 q^{55} + 24 q^{58} - 22 q^{59} - 10 q^{60} + 20 q^{61} - 30 q^{62} + 48 q^{64} - 36 q^{66} + 4 q^{68} + 4 q^{69} - 68 q^{70} - 10 q^{71} - 16 q^{72} + 30 q^{75} + 6 q^{76} - 24 q^{77} + 2 q^{78} - 26 q^{80} - 20 q^{81} + 20 q^{82} + 48 q^{83} - 16 q^{84} + 32 q^{85} - 46 q^{86} + 16 q^{87} - 10 q^{88} + 28 q^{89} - 14 q^{90} + 20 q^{91} + 50 q^{92} - 40 q^{93} + 2 q^{95} + 30 q^{96} + 2 q^{99}+O(q^{100})$$ 8 * q - 6 * q^3 - 8 * q^4 - 2 * q^5 - 6 * q^6 + 6 * q^10 + 6 * q^11 - 2 * q^12 + 14 * q^13 + 2 * q^15 - 8 * q^16 + 16 * q^17 + 20 * q^18 - 14 * q^19 - 2 * q^20 - 12 * q^21 + 10 * q^22 - 14 * q^23 - 2 * q^24 - 12 * q^25 + 6 * q^26 + 12 * q^27 - 8 * q^28 - 14 * q^30 + 2 * q^31 - 24 * q^35 - 44 * q^37 - 2 * q^38 + 6 * q^39 + 22 * q^40 + 16 * q^41 + 24 * q^42 - 6 * q^43 - 10 * q^44 + 22 * q^45 + 2 * q^46 + 16 * q^47 - 14 * q^48 + 24 * q^49 + 44 * q^50 - 38 * q^52 - 24 * q^53 + 20 * q^54 + 10 * q^55 + 24 * q^58 - 22 * q^59 - 10 * q^60 + 20 * q^61 - 30 * q^62 + 48 * q^64 - 36 * q^66 + 4 * q^68 + 4 * q^69 - 68 * q^70 - 10 * q^71 - 16 * q^72 + 30 * q^75 + 6 * q^76 - 24 * q^77 + 2 * q^78 - 26 * q^80 - 20 * q^81 + 20 * q^82 + 48 * q^83 - 16 * q^84 + 32 * q^85 - 46 * q^86 + 16 * q^87 - 10 * q^88 + 28 * q^89 - 14 * q^90 + 20 * q^91 + 50 * q^92 - 40 * q^93 + 2 * q^95 + 30 * q^96 + 2 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/65\mathbb{Z}\right)^\times$$.

 $$n$$ $$27$$ $$41$$ $$\chi(n)$$ $$e\left(\frac{3}{4}\right)$$ $$e\left(\frac{3}{4}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0.134632i 0.0951991i 0.998866 + 0.0475996i $$0.0151571\pi$$
−0.998866 + 0.0475996i $$0.984843\pi$$
$$3$$ −2.15558 2.15558i −1.24452 1.24452i −0.958105 0.286419i $$-0.907535\pi$$
−0.286419 0.958105i $$-0.592465\pi$$
$$4$$ 1.98187 0.990937
$$5$$ −1.29021 1.82630i −0.576999 0.816745i
$$6$$ 0.290209 0.290209i 0.118478 0.118478i
$$7$$ 1.90970 0.721799 0.360899 0.932605i $$-0.382470\pi$$
0.360899 + 0.932605i $$0.382470\pi$$
$$8$$ 0.536087i 0.189535i
$$9$$ 6.29303i 2.09768i
$$10$$ 0.245878 0.173703i 0.0777534 0.0549298i
$$11$$ −0.290209 0.290209i −0.0875014 0.0875014i 0.662001 0.749503i $$-0.269707\pi$$
−0.749503 + 0.662001i $$0.769707\pi$$
$$12$$ −4.27208 4.27208i −1.23324 1.23324i
$$13$$ 0.173703 + 3.60136i 0.0481766 + 0.998839i
$$14$$ 0.257106i 0.0687146i
$$15$$ −1.15558 + 6.71787i −0.298369 + 1.73455i
$$16$$ 3.89157 0.972894
$$17$$ 2.53609 + 2.53609i 0.615091 + 0.615091i 0.944268 0.329177i $$-0.106771\pi$$
−0.329177 + 0.944268i $$0.606771\pi$$
$$18$$ −0.847242 −0.199697
$$19$$ −3.15558 3.15558i −0.723939 0.723939i 0.245466 0.969405i $$-0.421059\pi$$
−0.969405 + 0.245466i $$0.921059\pi$$
$$20$$ −2.55703 3.61949i −0.571770 0.809343i
$$21$$ −4.11651 4.11651i −0.898295 0.898295i
$$22$$ 0.0390714 0.0390714i 0.00833006 0.00833006i
$$23$$ 2.27208 2.27208i 0.473762 0.473762i −0.429368 0.903130i $$-0.641264\pi$$
0.903130 + 0.429368i $$0.141264\pi$$
$$24$$ 1.15558 1.15558i 0.235881 0.235881i
$$25$$ −1.67072 + 4.71261i −0.334144 + 0.942522i
$$26$$ −0.484858 + 0.0233860i −0.0950886 + 0.00458637i
$$27$$ 7.09838 7.09838i 1.36608 1.36608i
$$28$$ 3.78478 0.715257
$$29$$ 2.40146i 0.445939i 0.974825 + 0.222970i $$0.0715750\pi$$
−0.974825 + 0.222970i $$0.928425\pi$$
$$30$$ −0.904440 0.155578i −0.165127 0.0284045i
$$31$$ 2.02095 2.02095i 0.362973 0.362973i −0.501934 0.864906i $$-0.667378\pi$$
0.864906 + 0.501934i $$0.167378\pi$$
$$32$$ 1.59610i 0.282154i
$$33$$ 1.25114i 0.217795i
$$34$$ −0.341438 + 0.341438i −0.0585562 + 0.0585562i
$$35$$ −2.46391 3.48768i −0.416477 0.589525i
$$36$$ 12.4720i 2.07867i
$$37$$ −5.32928 −0.876128 −0.438064 0.898944i $$-0.644336\pi$$
−0.438064 + 0.898944i $$0.644336\pi$$
$$38$$ 0.424841 0.424841i 0.0689184 0.0689184i
$$39$$ 7.38859 8.13745i 1.18312 1.30304i
$$40$$ 0.979054 0.691665i 0.154802 0.109362i
$$41$$ −1.51796 + 1.51796i −0.237066 + 0.237066i −0.815634 0.578568i $$-0.803612\pi$$
0.578568 + 0.815634i $$0.303612\pi$$
$$42$$ 0.554213 0.554213i 0.0855169 0.0855169i
$$43$$ −0.888754 + 0.888754i −0.135534 + 0.135534i −0.771619 0.636085i $$-0.780553\pi$$
0.636085 + 0.771619i $$0.280553\pi$$
$$44$$ −0.575159 0.575159i −0.0867084 0.0867084i
$$45$$ 11.4929 8.11933i 1.71327 1.21036i
$$46$$ 0.305895 + 0.305895i 0.0451017 + 0.0451017i
$$47$$ −6.94562 −1.01312 −0.506562 0.862204i $$-0.669084\pi$$
−0.506562 + 0.862204i $$0.669084\pi$$
$$48$$ −8.38859 8.38859i −1.21079 1.21079i
$$49$$ −3.35305 −0.479007
$$50$$ −0.634468 0.224932i −0.0897273 0.0318102i
$$51$$ 10.9335i 1.53099i
$$52$$ 0.344258 + 7.13745i 0.0477400 + 0.989786i
$$53$$ −1.09030 1.09030i −0.149764 0.149764i 0.628248 0.778013i $$-0.283772\pi$$
−0.778013 + 0.628248i $$0.783772\pi$$
$$54$$ 0.955668 + 0.955668i 0.130050 + 0.130050i
$$55$$ −0.155578 + 0.904440i −0.0209781 + 0.121955i
$$56$$ 1.02377i 0.136806i
$$57$$ 13.6042i 1.80192i
$$58$$ −0.323312 −0.0424530
$$59$$ −8.31642 + 8.31642i −1.08271 + 1.08271i −0.0864488 + 0.996256i $$0.527552\pi$$
−0.996256 + 0.0864488i $$0.972448\pi$$
$$60$$ −2.29021 + 13.3140i −0.295665 + 1.71883i
$$61$$ 7.17300 0.918408 0.459204 0.888331i $$-0.348135\pi$$
0.459204 + 0.888331i $$0.348135\pi$$
$$62$$ 0.272084 + 0.272084i 0.0345547 + 0.0345547i
$$63$$ 12.0178i 1.51410i
$$64$$ 7.56826 0.946033
$$65$$ 6.35305 4.96375i 0.787998 0.615677i
$$66$$ −0.168443 −0.0207339
$$67$$ 0.939983i 0.114837i 0.998350 + 0.0574186i $$0.0182870\pi$$
−0.998350 + 0.0574186i $$0.981713\pi$$
$$68$$ 5.02621 + 5.02621i 0.609517 + 0.609517i
$$69$$ −9.79531 −1.17922
$$70$$ 0.469553 0.331721i 0.0561223 0.0396483i
$$71$$ −7.37643 + 7.37643i −0.875421 + 0.875421i −0.993057 0.117635i $$-0.962469\pi$$
0.117635 + 0.993057i $$0.462469\pi$$
$$72$$ −3.37361 −0.397584
$$73$$ 6.63447i 0.776506i −0.921553 0.388253i $$-0.873079\pi$$
0.921553 0.388253i $$-0.126921\pi$$
$$74$$ 0.717491i 0.0834066i
$$75$$ 13.7598 6.55703i 1.58884 0.757141i
$$76$$ −6.25396 6.25396i −0.717378 0.717378i
$$77$$ −0.554213 0.554213i −0.0631584 0.0631584i
$$78$$ 1.09556 + 0.994740i 0.124048 + 0.112632i
$$79$$ 4.39982i 0.495018i −0.968886 0.247509i $$-0.920388\pi$$
0.968886 0.247509i $$-0.0796120\pi$$
$$80$$ −5.02095 7.10717i −0.561359 0.794606i
$$81$$ −11.7231 −1.30257
$$82$$ −0.204366 0.204366i −0.0225684 0.0225684i
$$83$$ 13.4842 1.48008 0.740039 0.672564i $$-0.234807\pi$$
0.740039 + 0.672564i $$0.234807\pi$$
$$84$$ −8.15840 8.15840i −0.890154 0.890154i
$$85$$ 1.35956 7.90373i 0.147465 0.857280i
$$86$$ −0.119655 0.119655i −0.0129027 0.0129027i
$$87$$ 5.17652 5.17652i 0.554982 0.554982i
$$88$$ 0.155578 0.155578i 0.0165846 0.0165846i
$$89$$ 10.0238 10.0238i 1.06252 1.06252i 0.0646062 0.997911i $$-0.479421\pi$$
0.997911 0.0646062i $$-0.0205791\pi$$
$$90$$ 1.09312 + 1.54732i 0.115225 + 0.163101i
$$91$$ 0.331721 + 6.87753i 0.0347738 + 0.720961i
$$92$$ 4.50298 4.50298i 0.469469 0.469469i
$$93$$ −8.71261 −0.903456
$$94$$ 0.935102i 0.0964484i
$$95$$ −1.69166 + 9.83438i −0.173561 + 1.00899i
$$96$$ 3.44053 3.44053i 0.351147 0.351147i
$$97$$ 4.39982i 0.446734i 0.974734 + 0.223367i $$0.0717048\pi$$
−0.974734 + 0.223367i $$0.928295\pi$$
$$98$$ 0.451427i 0.0456010i
$$99$$ 1.82630 1.82630i 0.183550 0.183550i
$$100$$ −3.31116 + 9.33980i −0.331116 + 0.933980i
$$101$$ 3.55014i 0.353252i −0.984278 0.176626i $$-0.943482\pi$$
0.984278 0.176626i $$-0.0565183\pi$$
$$102$$ 1.47199 0.145749
$$103$$ −7.44861 + 7.44861i −0.733933 + 0.733933i −0.971396 0.237463i $$-0.923684\pi$$
0.237463 + 0.971396i $$0.423684\pi$$
$$104$$ −1.93065 + 0.0931201i −0.189315 + 0.00913118i
$$105$$ −2.20681 + 12.8291i −0.215362 + 1.25199i
$$106$$ 0.146789 0.146789i 0.0142574 0.0142574i
$$107$$ 9.56511 9.56511i 0.924694 0.924694i −0.0726622 0.997357i $$-0.523150\pi$$
0.997357 + 0.0726622i $$0.0231495\pi$$
$$108$$ 14.0681 14.0681i 1.35370 1.35370i
$$109$$ −8.08622 8.08622i −0.774520 0.774520i 0.204373 0.978893i $$-0.434484\pi$$
−0.978893 + 0.204373i $$0.934484\pi$$
$$110$$ −0.121766 0.0209457i −0.0116100 0.00199709i
$$111$$ 11.4877 + 11.4877i 1.09036 + 1.09036i
$$112$$ 7.43174 0.702233
$$113$$ 4.97943 + 4.97943i 0.468426 + 0.468426i 0.901404 0.432979i $$-0.142537\pi$$
−0.432979 + 0.901404i $$0.642537\pi$$
$$114$$ −1.83156 −0.171541
$$115$$ −7.08096 1.21804i −0.660303 0.113582i
$$116$$ 4.75938i 0.441898i
$$117$$ −22.6635 + 1.09312i −2.09524 + 0.101059i
$$118$$ −1.11965 1.11965i −0.103073 0.103073i
$$119$$ 4.84317 + 4.84317i 0.443972 + 0.443972i
$$120$$ −3.60136 0.619490i −0.328758 0.0565515i
$$121$$ 10.8316i 0.984687i
$$122$$ 0.965714i 0.0874316i
$$123$$ 6.54417 0.590068
$$124$$ 4.00526 4.00526i 0.359683 0.359683i
$$125$$ 10.7622 3.02903i 0.962601 0.270924i
$$126$$ −1.61798 −0.144141
$$127$$ −7.01742 7.01742i −0.622695 0.622695i 0.323525 0.946220i $$-0.395132\pi$$
−0.946220 + 0.323525i $$0.895132\pi$$
$$128$$ 4.21114i 0.372216i
$$129$$ 3.83156 0.337350
$$130$$ 0.668279 + 0.855323i 0.0586119 + 0.0750168i
$$131$$ −11.3052 −0.987739 −0.493869 0.869536i $$-0.664418\pi$$
−0.493869 + 0.869536i $$0.664418\pi$$
$$132$$ 2.47960i 0.215821i
$$133$$ −6.02621 6.02621i −0.522538 0.522538i
$$134$$ −0.126552 −0.0109324
$$135$$ −22.1221 3.80535i −1.90397 0.327512i
$$136$$ −1.35956 + 1.35956i −0.116582 + 0.116582i
$$137$$ 1.92186 0.164195 0.0820977 0.996624i $$-0.473838\pi$$
0.0820977 + 0.996624i $$0.473838\pi$$
$$138$$ 1.31876i 0.112260i
$$139$$ 15.2914i 1.29700i 0.761215 + 0.648499i $$0.224603\pi$$
−0.761215 + 0.648499i $$0.775397\pi$$
$$140$$ −4.88317 6.91214i −0.412703 0.584182i
$$141$$ 14.9718 + 14.9718i 1.26086 + 1.26086i
$$142$$ −0.993103 0.993103i −0.0833394 0.0833394i
$$143$$ 0.994740 1.09556i 0.0831843 0.0916154i
$$144$$ 24.4898i 2.04082i
$$145$$ 4.38577 3.09838i 0.364218 0.257306i
$$146$$ 0.893211 0.0739227
$$147$$ 7.22775 + 7.22775i 0.596135 + 0.596135i
$$148$$ −10.5620 −0.868188
$$149$$ 13.8291 + 13.8291i 1.13293 + 1.13293i 0.989688 + 0.143237i $$0.0457511\pi$$
0.143237 + 0.989688i $$0.454249\pi$$
$$150$$ 0.882786 + 1.85250i 0.0720791 + 0.151256i
$$151$$ −8.55106 8.55106i −0.695876 0.695876i 0.267643 0.963518i $$-0.413755\pi$$
−0.963518 + 0.267643i $$0.913755\pi$$
$$152$$ 1.69166 1.69166i 0.137212 0.137212i
$$153$$ −15.9597 + 15.9597i −1.29026 + 1.29026i
$$154$$ 0.0746147 0.0746147i 0.00601263 0.00601263i
$$155$$ −6.29829 1.08340i −0.505891 0.0870210i
$$156$$ 14.6433 16.1274i 1.17240 1.29123i
$$157$$ −4.00808 + 4.00808i −0.319880 + 0.319880i −0.848721 0.528841i $$-0.822627\pi$$
0.528841 + 0.848721i $$0.322627\pi$$
$$158$$ 0.592356 0.0471253
$$159$$ 4.70045i 0.372770i
$$160$$ 2.91496 2.05931i 0.230448 0.162803i
$$161$$ 4.33900 4.33900i 0.341961 0.341961i
$$162$$ 1.57831i 0.124004i
$$163$$ 13.2930i 1.04119i −0.853804 0.520595i $$-0.825710\pi$$
0.853804 0.520595i $$-0.174290\pi$$
$$164$$ −3.00841 + 3.00841i −0.234917 + 0.234917i
$$165$$ 2.28495 1.61423i 0.177883 0.125668i
$$166$$ 1.81540i 0.140902i
$$167$$ −12.9980 −1.00582 −0.502909 0.864339i $$-0.667737\pi$$
−0.502909 + 0.864339i $$0.667737\pi$$
$$168$$ 2.20681 2.20681i 0.170259 0.170259i
$$169$$ −12.9397 + 1.25114i −0.995358 + 0.0962414i
$$170$$ 1.06409 + 0.183041i 0.0816123 + 0.0140386i
$$171$$ 19.8581 19.8581i 1.51859 1.51859i
$$172$$ −1.76140 + 1.76140i −0.134305 + 0.134305i
$$173$$ −10.3052 + 10.3052i −0.783489 + 0.783489i −0.980418 0.196929i $$-0.936903\pi$$
0.196929 + 0.980418i $$0.436903\pi$$
$$174$$ 0.696925 + 0.696925i 0.0528338 + 0.0528338i
$$175$$ −3.19057 + 8.99967i −0.241185 + 0.680311i
$$176$$ −1.12937 1.12937i −0.0851296 0.0851296i
$$177$$ 35.8534 2.69490
$$178$$ 1.34952 + 1.34952i 0.101151 + 0.101151i
$$179$$ 6.59094 0.492630 0.246315 0.969190i $$-0.420780\pi$$
0.246315 + 0.969190i $$0.420780\pi$$
$$180$$ 22.7776 16.0915i 1.69774 1.19939i
$$181$$ 15.7953i 1.17406i 0.809567 + 0.587028i $$0.199702\pi$$
−0.809567 + 0.587028i $$0.800298\pi$$
$$182$$ −0.925934 + 0.0446602i −0.0686348 + 0.00331044i
$$183$$ −15.4619 15.4619i −1.14298 1.14298i
$$184$$ 1.21804 + 1.21804i 0.0897947 + 0.0897947i
$$185$$ 6.87589 + 9.73285i 0.505525 + 0.715573i
$$186$$ 1.17300i 0.0860082i
$$187$$ 1.47199i 0.107643i
$$188$$ −13.7654 −1.00394
$$189$$ 13.5558 13.5558i 0.986038 0.986038i
$$190$$ −1.32402 0.227752i −0.0960546 0.0165229i
$$191$$ −13.0116 −0.941487 −0.470743 0.882270i $$-0.656014\pi$$
−0.470743 + 0.882270i $$0.656014\pi$$
$$192$$ −16.3140 16.3140i −1.17736 1.17736i
$$193$$ 17.4833i 1.25847i −0.777214 0.629237i $$-0.783368\pi$$
0.777214 0.629237i $$-0.216632\pi$$
$$194$$ −0.592356 −0.0425287
$$195$$ −24.3942 2.99474i −1.74691 0.214458i
$$196$$ −6.64532 −0.474665
$$197$$ 14.2749i 1.01704i −0.861049 0.508522i $$-0.830192\pi$$
0.861049 0.508522i $$-0.169808\pi$$
$$198$$ 0.245878 + 0.245878i 0.0174738 + 0.0174738i
$$199$$ 4.76666 0.337900 0.168950 0.985625i $$-0.445962\pi$$
0.168950 + 0.985625i $$0.445962\pi$$
$$200$$ −2.52637 0.895651i −0.178641 0.0633321i
$$201$$ 2.02621 2.02621i 0.142918 0.142918i
$$202$$ 0.477961 0.0336293
$$203$$ 4.58606i 0.321878i
$$204$$ 21.6688i 1.51712i
$$205$$ 4.73074 + 0.813760i 0.330409 + 0.0568354i
$$206$$ −1.00282 1.00282i −0.0698698 0.0698698i
$$207$$ 14.2983 + 14.2983i 0.993800 + 0.993800i
$$208$$ 0.675979 + 14.0150i 0.0468707 + 0.971764i
$$209$$ 1.83156i 0.126691i
$$210$$ −1.72721 0.297106i −0.119189 0.0205023i
$$211$$ 11.6025 0.798752 0.399376 0.916787i $$-0.369227\pi$$
0.399376 + 0.916787i $$0.369227\pi$$
$$212$$ −2.16084 2.16084i −0.148407 0.148407i
$$213$$ 31.8009 2.17896
$$214$$ 1.28777 + 1.28777i 0.0880301 + 0.0880301i
$$215$$ 2.76981 + 0.476450i 0.188899 + 0.0324936i
$$216$$ 3.80535 + 3.80535i 0.258921 + 0.258921i
$$217$$ 3.85940 3.85940i 0.261993 0.261993i
$$218$$ 1.08866 1.08866i 0.0737336 0.0737336i
$$219$$ −14.3011 + 14.3011i −0.966379 + 0.966379i
$$220$$ −0.308335 + 1.79249i −0.0207880 + 0.120849i
$$221$$ −8.69285 + 9.57390i −0.584744 + 0.644010i
$$222$$ −1.54661 + 1.54661i −0.103802 + 0.103802i
$$223$$ 15.2511 1.02129 0.510646 0.859791i $$-0.329406\pi$$
0.510646 + 0.859791i $$0.329406\pi$$
$$224$$ 3.04808i 0.203658i
$$225$$ −29.6566 10.5139i −1.97711 0.700926i
$$226$$ −0.670391 + 0.670391i −0.0445937 + 0.0445937i
$$227$$ 15.4292i 1.02407i −0.858964 0.512037i $$-0.828891\pi$$
0.858964 0.512037i $$-0.171109\pi$$
$$228$$ 26.9618i 1.78559i
$$229$$ −4.10191 + 4.10191i −0.271062 + 0.271062i −0.829528 0.558466i $$-0.811390\pi$$
0.558466 + 0.829528i $$0.311390\pi$$
$$230$$ 0.163986 0.953323i 0.0108129 0.0628603i
$$231$$ 2.38930i 0.157204i
$$232$$ −1.28739 −0.0845213
$$233$$ 18.4776 18.4776i 1.21051 1.21051i 0.239651 0.970859i $$-0.422967\pi$$
0.970859 0.239651i $$-0.0770330\pi$$
$$234$$ −0.147169 3.05123i −0.00962073 0.199465i
$$235$$ 8.96131 + 12.6848i 0.584571 + 0.827463i
$$236$$ −16.4821 + 16.4821i −1.07289 + 1.07289i
$$237$$ −9.48415 + 9.48415i −0.616062 + 0.616062i
$$238$$ −0.652044 + 0.652044i −0.0422658 + 0.0422658i
$$239$$ 7.82819 + 7.82819i 0.506363 + 0.506363i 0.913408 0.407045i $$-0.133441\pi$$
−0.407045 + 0.913408i $$0.633441\pi$$
$$240$$ −4.49702 + 26.1431i −0.290281 + 1.68753i
$$241$$ −9.29059 9.29059i −0.598459 0.598459i 0.341443 0.939902i $$-0.389084\pi$$
−0.939902 + 0.341443i $$0.889084\pi$$
$$242$$ 1.45827 0.0937413
$$243$$ 3.97498 + 3.97498i 0.254995 + 0.254995i
$$244$$ 14.2160 0.910085
$$245$$ 4.32613 + 6.12366i 0.276386 + 0.391226i
$$246$$ 0.881054i 0.0561739i
$$247$$ 10.8163 11.9125i 0.688222 0.757975i
$$248$$ 1.08340 + 1.08340i 0.0687962 + 0.0687962i
$$249$$ −29.0661 29.0661i −1.84199 1.84199i
$$250$$ 0.407803 + 1.44894i 0.0257918 + 0.0916387i
$$251$$ 13.4477i 0.848810i −0.905472 0.424405i $$-0.860483\pi$$
0.905472 0.424405i $$-0.139517\pi$$
$$252$$ 23.8178i 1.50038i
$$253$$ −1.31876 −0.0829098
$$254$$ 0.944768 0.944768i 0.0592800 0.0592800i
$$255$$ −19.9678 + 14.1065i −1.25043 + 0.883381i
$$256$$ 14.5696 0.910598
$$257$$ −2.36553 2.36553i −0.147558 0.147558i 0.629468 0.777026i $$-0.283273\pi$$
−0.777026 + 0.629468i $$0.783273\pi$$
$$258$$ 0.515850i 0.0321154i
$$259$$ −10.1773 −0.632388
$$260$$ 12.5909 9.83753i 0.780857 0.610097i
$$261$$ −15.1124 −0.935436
$$262$$ 1.52204i 0.0940319i
$$263$$ −10.3418 10.3418i −0.637704 0.637704i 0.312285 0.949989i $$-0.398906\pi$$
−0.949989 + 0.312285i $$0.898906\pi$$
$$264$$ −0.670719 −0.0412799
$$265$$ −0.584496 + 3.39793i −0.0359053 + 0.208733i
$$266$$ 0.811319 0.811319i 0.0497452 0.0497452i
$$267$$ −43.2140 −2.64465
$$268$$ 1.86293i 0.113796i
$$269$$ 31.6138i 1.92753i −0.266754 0.963765i $$-0.585951\pi$$
0.266754 0.963765i $$-0.414049\pi$$
$$270$$ 0.512322 2.97835i 0.0311789 0.181256i
$$271$$ 20.1850 + 20.1850i 1.22615 + 1.22615i 0.965409 + 0.260742i $$0.0839671\pi$$
0.260742 + 0.965409i $$0.416033\pi$$
$$272$$ 9.86937 + 9.86937i 0.598419 + 0.598419i
$$273$$ 14.1100 15.5401i 0.853975 0.940529i
$$274$$ 0.258743i 0.0156313i
$$275$$ 1.85250 0.882786i 0.111710 0.0532340i
$$276$$ −19.4131 −1.16853
$$277$$ 9.04189 + 9.04189i 0.543275 + 0.543275i 0.924487 0.381213i $$-0.124493\pi$$
−0.381213 + 0.924487i $$0.624493\pi$$
$$278$$ −2.05871 −0.123473
$$279$$ 12.7179 + 12.7179i 0.761399 + 0.761399i
$$280$$ 1.86970 1.32087i 0.111736 0.0789372i
$$281$$ 6.06213 + 6.06213i 0.361636 + 0.361636i 0.864415 0.502779i $$-0.167689\pi$$
−0.502779 + 0.864415i $$0.667689\pi$$
$$282$$ −2.01569 + 2.01569i −0.120032 + 0.120032i
$$283$$ −10.6076 + 10.6076i −0.630554 + 0.630554i −0.948207 0.317653i $$-0.897105\pi$$
0.317653 + 0.948207i $$0.397105\pi$$
$$284$$ −14.6192 + 14.6192i −0.867488 + 0.867488i
$$285$$ 24.8453 17.5522i 1.47171 1.03971i
$$286$$ 0.147497 + 0.133924i 0.00872170 + 0.00791907i
$$287$$ −2.89885 + 2.89885i −0.171114 + 0.171114i
$$288$$ −10.0443 −0.591868
$$289$$ 4.13652i 0.243325i
$$290$$ 0.417141 + 0.590464i 0.0244953 + 0.0346733i
$$291$$ 9.48415 9.48415i 0.555971 0.555971i
$$292$$ 13.1487i 0.769468i
$$293$$ 21.9991i 1.28520i 0.766201 + 0.642601i $$0.222145\pi$$
−0.766201 + 0.642601i $$0.777855\pi$$
$$294$$ −0.973086 + 0.973086i −0.0567515 + 0.0567515i
$$295$$ 25.9182 + 4.45832i 1.50901 + 0.259574i
$$296$$ 2.85696i 0.166057i
$$297$$ −4.12003 −0.239069
$$298$$ −1.86184 + 1.86184i −0.107853 + 0.107853i
$$299$$ 8.57727 + 7.78793i 0.496036 + 0.450388i
$$300$$ 27.2701 12.9952i 1.57444 0.750279i
$$301$$ −1.69725 + 1.69725i −0.0978281 + 0.0978281i
$$302$$ 1.15125 1.15125i 0.0662468 0.0662468i
$$303$$ −7.65259 + 7.65259i −0.439630 + 0.439630i
$$304$$ −12.2802 12.2802i −0.704316 0.704316i
$$305$$ −9.25467 13.1000i −0.529921 0.750105i
$$306$$ −2.14868 2.14868i −0.122832 0.122832i
$$307$$ 9.59930 0.547861 0.273931 0.961749i $$-0.411676\pi$$
0.273931 + 0.961749i $$0.411676\pi$$
$$308$$ −1.09838 1.09838i −0.0625860 0.0625860i
$$309$$ 32.1121 1.82679
$$310$$ 0.145861 0.847951i 0.00828433 0.0481604i
$$311$$ 4.28684i 0.243084i 0.992586 + 0.121542i $$0.0387840\pi$$
−0.992586 + 0.121542i $$0.961216\pi$$
$$312$$ 4.36238 + 3.96093i 0.246971 + 0.224243i
$$313$$ 5.55258 + 5.55258i 0.313850 + 0.313850i 0.846399 0.532549i $$-0.178766\pi$$
−0.532549 + 0.846399i $$0.678766\pi$$
$$314$$ −0.539615 0.539615i −0.0304523 0.0304523i
$$315$$ 21.9481 15.5055i 1.23663 0.873635i
$$316$$ 8.71989i 0.490532i
$$317$$ 18.5306i 1.04078i 0.853928 + 0.520391i $$0.174214\pi$$
−0.853928 + 0.520391i $$0.825786\pi$$
$$318$$ −0.632831 −0.0354874
$$319$$ 0.696925 0.696925i 0.0390203 0.0390203i
$$320$$ −9.76464 13.8219i −0.545860 0.772667i
$$321$$ −41.2367 −2.30161
$$322$$ 0.584167 + 0.584167i 0.0325544 + 0.0325544i
$$323$$ 16.0056i 0.890578i
$$324$$ −23.2338 −1.29077
$$325$$ −17.2620 5.19827i −0.957526 0.288348i
$$326$$ 1.78967 0.0991204
$$327$$ 34.8610i 1.92782i
$$328$$ −0.813760 0.813760i −0.0449324 0.0449324i
$$329$$ −13.2641 −0.731271
$$330$$ 0.217327 + 0.307627i 0.0119634 + 0.0169343i
$$331$$ 1.66302 1.66302i 0.0914078 0.0914078i −0.659924 0.751332i $$-0.729412\pi$$
0.751332 + 0.659924i $$0.229412\pi$$
$$332$$ 26.7239 1.46666
$$333$$ 33.5373i 1.83783i
$$334$$ 1.74995i 0.0957530i
$$335$$ 1.71669 1.21277i 0.0937927 0.0662610i
$$336$$ −16.0197 16.0197i −0.873946 0.873946i
$$337$$ −7.30111 7.30111i −0.397717 0.397717i 0.479710 0.877427i $$-0.340742\pi$$
−0.877427 + 0.479710i $$0.840742\pi$$
$$338$$ −0.168443 1.74209i −0.00916209 0.0947572i
$$339$$ 21.4671i 1.16593i
$$340$$ 2.69448 15.6642i 0.146129 0.849511i
$$341$$ −1.17300 −0.0635212
$$342$$ 2.67354 + 2.67354i 0.144568 + 0.144568i
$$343$$ −19.7712 −1.06755
$$344$$ −0.476450 0.476450i −0.0256884 0.0256884i
$$345$$ 12.6380 + 17.8891i 0.680407 + 0.963119i
$$346$$ −1.38741 1.38741i −0.0745874 0.0745874i
$$347$$ −9.54455 + 9.54455i −0.512378 + 0.512378i −0.915254 0.402876i $$-0.868010\pi$$
0.402876 + 0.915254i $$0.368010\pi$$
$$348$$ 10.2592 10.2592i 0.549952 0.549952i
$$349$$ 18.1608 18.1608i 0.972127 0.972127i −0.0274946 0.999622i $$-0.508753\pi$$
0.999622 + 0.0274946i $$0.00875290\pi$$
$$350$$ −1.21164 0.429553i −0.0647650 0.0229606i
$$351$$ 26.7969 + 24.3308i 1.43031 + 1.29868i
$$352$$ 0.463205 0.463205i 0.0246889 0.0246889i
$$353$$ 4.19276 0.223158 0.111579 0.993756i $$-0.464409\pi$$
0.111579 + 0.993756i $$0.464409\pi$$
$$354$$ 4.82700i 0.256552i
$$355$$ 22.9887 + 3.95441i 1.22011 + 0.209878i
$$356$$ 19.8658 19.8658i 1.05289 1.05289i
$$357$$ 20.8796i 1.10507i
$$358$$ 0.887351i 0.0468979i
$$359$$ −6.13909 + 6.13909i −0.324009 + 0.324009i −0.850303 0.526294i $$-0.823581\pi$$
0.526294 + 0.850303i $$0.323581\pi$$
$$360$$ 4.35267 + 6.16122i 0.229406 + 0.324725i
$$361$$ 0.915340i 0.0481758i
$$362$$ −2.12655 −0.111769
$$363$$ −23.3483 + 23.3483i −1.22547 + 1.22547i
$$364$$ 0.657430 + 13.6304i 0.0344587 + 0.714427i
$$365$$ −12.1165 + 8.55985i −0.634207 + 0.448043i
$$366$$ 2.08167 2.08167i 0.108811 0.108811i
$$367$$ −4.59729 + 4.59729i −0.239976 + 0.239976i −0.816840 0.576864i $$-0.804276\pi$$
0.576864 + 0.816840i $$0.304276\pi$$
$$368$$ 8.84198 8.84198i 0.460920 0.460920i
$$369$$ −9.55258 9.55258i −0.497287 0.497287i
$$370$$ −1.31035 + 0.925714i −0.0681219 + 0.0481256i
$$371$$ −2.08215 2.08215i −0.108100 0.108100i
$$372$$ −17.2673 −0.895268
$$373$$ 13.6188 + 13.6188i 0.705154 + 0.705154i 0.965512 0.260358i $$-0.0838407\pi$$
−0.260358 + 0.965512i $$0.583841\pi$$
$$374$$ 0.198177 0.0102475
$$375$$ −29.7281 16.6695i −1.53515 0.860807i
$$376$$ 3.72346i 0.192023i
$$377$$ −8.64852 + 0.417141i −0.445421 + 0.0214838i
$$378$$ 1.82504 + 1.82504i 0.0938699 + 0.0938699i
$$379$$ 19.3439 + 19.3439i 0.993631 + 0.993631i 0.999980 0.00634892i $$-0.00202094\pi$$
−0.00634892 + 0.999980i $$0.502021\pi$$
$$380$$ −3.35267 + 19.4905i −0.171988 + 0.999841i
$$381$$ 30.2532i 1.54992i
$$382$$ 1.75178i 0.0896287i
$$383$$ −7.13110 −0.364382 −0.182191 0.983263i $$-0.558319\pi$$
−0.182191 + 0.983263i $$0.558319\pi$$
$$384$$ 9.07743 9.07743i 0.463231 0.463231i
$$385$$ −0.297106 + 1.72721i −0.0151419 + 0.0880267i
$$386$$ 2.35381 0.119806
$$387$$ −5.59296 5.59296i −0.284306 0.284306i
$$388$$ 8.71989i 0.442685i
$$389$$ −25.6987 −1.30298 −0.651488 0.758659i $$-0.725855\pi$$
−0.651488 + 0.758659i $$0.725855\pi$$
$$390$$ 0.403187 3.28424i 0.0204162 0.166304i
$$391$$ 11.5244 0.582814
$$392$$ 1.79753i 0.0907887i
$$393$$ 24.3692 + 24.3692i 1.22926 + 1.22926i
$$394$$ 1.92186 0.0968218
$$395$$ −8.03537 + 5.67669i −0.404304 + 0.285625i
$$396$$ 3.61949 3.61949i 0.181886 0.181886i
$$397$$ −14.8794 −0.746777 −0.373388 0.927675i $$-0.621804\pi$$
−0.373388 + 0.927675i $$0.621804\pi$$
$$398$$ 0.641744i 0.0321677i
$$399$$ 25.9799i 1.30062i
$$400$$ −6.50173 + 18.3395i −0.325086 + 0.916974i
$$401$$ 9.52637 + 9.52637i 0.475724 + 0.475724i 0.903761 0.428037i $$-0.140795\pi$$
−0.428037 + 0.903761i $$0.640795\pi$$
$$402$$ 0.272792 + 0.272792i 0.0136056 + 0.0136056i
$$403$$ 7.62921 + 6.92712i 0.380038 + 0.345064i
$$404$$ 7.03592i 0.350050i
$$405$$ 15.1253 + 21.4099i 0.751582 + 1.06387i
$$406$$ −0.617430 −0.0306425
$$407$$ 1.54661 + 1.54661i 0.0766625 + 0.0766625i
$$408$$ 5.86129 0.290177
$$409$$ 8.19410 + 8.19410i 0.405172 + 0.405172i 0.880051 0.474879i $$-0.157508\pi$$
−0.474879 + 0.880051i $$0.657508\pi$$
$$410$$ −0.109558 + 0.636908i −0.00541068 + 0.0314546i
$$411$$ −4.14271 4.14271i −0.204345 0.204345i
$$412$$ −14.7622 + 14.7622i −0.727282 + 0.727282i
$$413$$ −15.8819 + 15.8819i −0.781495 + 0.781495i
$$414$$ −1.92501 + 1.92501i −0.0946089 + 0.0946089i
$$415$$ −17.3974 24.6261i −0.854004 1.20885i
$$416$$ −5.74815 + 0.277249i −0.281826 + 0.0135932i
$$417$$ 32.9618 32.9618i 1.61415 1.61415i
$$418$$ −0.246586 −0.0120609
$$419$$ 26.7652i 1.30757i −0.756681 0.653784i $$-0.773181\pi$$
0.756681 0.653784i $$-0.226819\pi$$
$$420$$ −4.37361 + 25.4257i −0.213410 + 1.24065i
$$421$$ −25.6977 + 25.6977i −1.25243 + 1.25243i −0.297800 + 0.954628i $$0.596253\pi$$
−0.954628 + 0.297800i $$0.903747\pi$$
$$422$$ 1.56207i 0.0760405i
$$423$$ 43.7090i 2.12520i
$$424$$ 0.584496 0.584496i 0.0283856 0.0283856i
$$425$$ −16.1887 + 7.71450i −0.785266 + 0.374208i
$$426$$ 4.28142i 0.207436i
$$427$$ 13.6983 0.662906
$$428$$ 18.9569 18.9569i 0.916314 0.916314i
$$429$$ −4.50580 + 0.217327i −0.217542 + 0.0104926i
$$430$$ −0.0641453 + 0.372904i −0.00309336 + 0.0179830i
$$431$$ −13.6422 + 13.6422i −0.657120 + 0.657120i −0.954698 0.297578i $$-0.903821\pi$$
0.297578 + 0.954698i $$0.403821\pi$$
$$432$$ 27.6239 27.6239i 1.32905 1.32905i
$$433$$ 25.0267 25.0267i 1.20271 1.20271i 0.229365 0.973340i $$-0.426335\pi$$
0.973340 0.229365i $$-0.0736650\pi$$
$$434$$ 0.519598 + 0.519598i 0.0249415 + 0.0249415i
$$435$$ −16.1327 2.77507i −0.773502 0.133054i
$$436$$ −16.0259 16.0259i −0.767500 0.767500i
$$437$$ −14.3395 −0.685950
$$438$$ −1.92539 1.92539i −0.0919985 0.0919985i
$$439$$ −32.0588 −1.53008 −0.765042 0.643981i $$-0.777282\pi$$
−0.765042 + 0.643981i $$0.777282\pi$$
$$440$$ −0.484858 0.0834032i −0.0231147 0.00397609i
$$441$$ 21.1008i 1.00480i
$$442$$ −1.28895 1.17033i −0.0613092 0.0556671i
$$443$$ 3.91063 + 3.91063i 0.185800 + 0.185800i 0.793877 0.608078i $$-0.208059\pi$$
−0.608078 + 0.793877i $$0.708059\pi$$
$$444$$ 22.7671 + 22.7671i 1.08048 + 1.08048i
$$445$$ −31.2391 5.37361i −1.48088 0.254734i
$$446$$ 2.05329i 0.0972261i
$$447$$ 59.6195i 2.81990i
$$448$$ 14.4531 0.682845
$$449$$ 2.54173 2.54173i 0.119952 0.119952i −0.644583 0.764534i $$-0.722969\pi$$
0.764534 + 0.644583i $$0.222969\pi$$
$$450$$ 1.41550 3.99272i 0.0667275 0.188219i
$$451$$ 0.881054 0.0414872
$$452$$ 9.86861 + 9.86861i 0.464180 + 0.464180i
$$453$$ 36.8650i 1.73207i
$$454$$ 2.07727 0.0974909
$$455$$ 12.1324 9.47927i 0.568776 0.444395i
$$456$$ −7.29303 −0.341527
$$457$$ 23.2189i 1.08613i 0.839689 + 0.543067i $$0.182737\pi$$
−0.839689 + 0.543067i $$0.817263\pi$$
$$458$$ −0.552248 0.552248i −0.0258048 0.0258048i
$$459$$ 36.0042 1.68053
$$460$$ −14.0336 2.41399i −0.654319 0.112553i
$$461$$ 28.8356 28.8356i 1.34301 1.34301i 0.449954 0.893052i $$-0.351440\pi$$
0.893052 0.449954i $$-0.148560\pi$$
$$462$$ −0.321676 −0.0149657
$$463$$ 5.03192i 0.233853i 0.993141 + 0.116927i $$0.0373042\pi$$
−0.993141 + 0.116927i $$0.962696\pi$$
$$464$$ 9.34544i 0.433851i
$$465$$ 11.2411 + 15.9118i 0.521293 + 0.737893i
$$466$$ 2.48768 + 2.48768i 0.115239 + 0.115239i
$$467$$ −4.64570 4.64570i −0.214977 0.214977i 0.591401 0.806378i $$-0.298575\pi$$
−0.806378 + 0.591401i $$0.798575\pi$$
$$468$$ −44.9162 + 2.16643i −2.07625 + 0.100143i
$$469$$ 1.79509i 0.0828893i
$$470$$ −1.70777 + 1.20648i −0.0787737 + 0.0556507i
$$471$$ 17.2795 0.796195
$$472$$ −4.45832 4.45832i −0.205211 0.205211i
$$473$$ 0.515850 0.0237188
$$474$$ −1.27687 1.27687i −0.0586485 0.0586485i
$$475$$ 20.1431 9.59892i 0.924228 0.440429i
$$476$$ 9.59854 + 9.59854i 0.439949 + 0.439949i
$$477$$ 6.86129 6.86129i 0.314157 0.314157i
$$478$$ −1.05392 + 1.05392i −0.0482053 + 0.0482053i
$$479$$ 6.05279 6.05279i 0.276559 0.276559i −0.555175 0.831734i $$-0.687349\pi$$
0.831734 + 0.555175i $$0.187349\pi$$
$$480$$ −10.7224 1.84442i −0.489409 0.0841860i
$$481$$ −0.925714 19.1927i −0.0422089 0.875111i
$$482$$ 1.25081 1.25081i 0.0569728 0.0569728i
$$483$$ −18.7061 −0.851157
$$484$$ 21.4668i 0.975763i
$$485$$ 8.03537 5.67669i 0.364868 0.257765i
$$486$$ −0.535159 + 0.535159i −0.0242753 + 0.0242753i
$$487$$ 8.30574i 0.376369i 0.982134 + 0.188184i $$0.0602603\pi$$
−0.982134 + 0.188184i $$0.939740\pi$$
$$488$$ 3.84535i 0.174071i
$$489$$ −28.6542 + 28.6542i −1.29579 + 1.29579i
$$490$$ −0.824440 + 0.582435i −0.0372444 + 0.0263117i
$$491$$ 4.54905i 0.205296i −0.994718 0.102648i $$-0.967269\pi$$
0.994718 0.102648i $$-0.0327315\pi$$
$$492$$ 12.9697 0.584720
$$493$$ −6.09030 + 6.09030i −0.274293 + 0.274293i
$$494$$ 1.60380 + 1.45621i 0.0721586 + 0.0655181i
$$495$$ −5.69166 0.979054i −0.255821 0.0440052i
$$496$$ 7.86466 7.86466i 0.353134 0.353134i
$$497$$ −14.0868 + 14.0868i −0.631878 + 0.631878i
$$498$$ 3.91323 3.91323i 0.175356 0.175356i
$$499$$ 10.9444 + 10.9444i 0.489937 + 0.489937i 0.908286 0.418349i $$-0.137391\pi$$
−0.418349 + 0.908286i $$0.637391\pi$$
$$500$$ 21.3293 6.00315i 0.953877 0.268469i
$$501$$ 28.0183 + 28.0183i 1.25176 + 1.25176i
$$502$$ 1.81049 0.0808060
$$503$$ −9.60700 9.60700i −0.428355 0.428355i 0.459713 0.888068i $$-0.347952\pi$$
−0.888068 + 0.459713i $$0.847952\pi$$
$$504$$ −6.44259 −0.286976
$$505$$ −6.48360 + 4.58042i −0.288516 + 0.203826i
$$506$$ 0.177547i 0.00789294i
$$507$$ 30.5894 + 25.1955i 1.35852 + 1.11897i
$$508$$ −13.9076 13.9076i −0.617052 0.617052i
$$509$$ −1.01052 1.01052i −0.0447905 0.0447905i 0.684357 0.729147i $$-0.260083\pi$$
−0.729147 + 0.684357i $$0.760083\pi$$
$$510$$ −1.89918 2.68830i −0.0840971 0.119040i
$$511$$ 12.6698i 0.560481i
$$512$$ 10.3838i 0.458904i
$$513$$ −44.7990 −1.97792
$$514$$ 0.318476 0.318476i 0.0140474 0.0140474i
$$515$$ 23.2136 + 3.99310i 1.02291 + 0.175957i
$$516$$ 7.59366 0.334292
$$517$$ 2.01569 + 2.01569i 0.0886497 + 0.0886497i
$$518$$ 1.37019i 0.0602028i
$$519$$ 44.4273 1.95014
$$520$$ 2.66100 + 3.40579i 0.116693 + 0.149354i
$$521$$ 39.4816 1.72972 0.864861 0.502012i $$-0.167406\pi$$
0.864861 + 0.502012i $$0.167406\pi$$
$$522$$ 2.03461i 0.0890527i
$$523$$ −15.7663 15.7663i −0.689411 0.689411i 0.272691 0.962102i $$-0.412086\pi$$
−0.962102 + 0.272691i $$0.912086\pi$$
$$524$$ −22.4055 −0.978787
$$525$$ 26.2770 12.5220i 1.14682 0.546503i
$$526$$ 1.39234 1.39234i 0.0607088 0.0607088i
$$527$$ 10.2506 0.446523
$$528$$ 4.86890i 0.211892i
$$529$$ 12.6753i 0.551099i
$$530$$ −0.457469 0.0786918i −0.0198712 0.00341815i
$$531$$ −52.3354 52.3354i −2.27116 2.27116i
$$532$$ −11.9432 11.9432i −0.517803 0.517803i
$$533$$ −5.73041 5.20306i −0.248212 0.225369i
$$534$$ 5.81798i 0.251769i
$$535$$ −29.8097 5.12773i −1.28879 0.221691i
$$536$$ −0.503913 −0.0217657
$$537$$ −14.2073 14.2073i −0.613089 0.613089i
$$538$$ 4.25623 0.183499
$$539$$ 0.973086 + 0.973086i 0.0419138 + 0.0419138i
$$540$$ −43.8433 7.54173i −1.88672 0.324544i
$$541$$ −22.2954 22.2954i −0.958554 0.958554i 0.0406207 0.999175i $$-0.487066\pi$$
−0.999175 + 0.0406207i $$0.987066\pi$$
$$542$$ −2.71754 + 2.71754i −0.116728 + 0.116728i
$$543$$ 34.0480 34.0480i 1.46114 1.46114i
$$544$$ −4.04786 + 4.04786i −0.173551 + 0.173551i
$$545$$ −4.33492 + 25.2008i −0.185688 + 1.07948i
$$546$$ 2.09219 + 1.89965i 0.0895375 + 0.0812977i
$$547$$ 3.38779 3.38779i 0.144851 0.144851i −0.630962 0.775814i $$-0.717340\pi$$
0.775814 + 0.630962i $$0.217340\pi$$
$$548$$ 3.80888 0.162707
$$549$$ 45.1399i 1.92652i
$$550$$ 0.118851 + 0.249406i 0.00506783 + 0.0106347i
$$551$$ 7.57798 7.57798i 0.322833 0.322833i
$$552$$ 5.25114i 0.223503i
$$553$$ 8.40233i 0.357304i
$$554$$ −1.21733 + 1.21733i −0.0517193 + 0.0517193i
$$555$$ 6.15840 35.8014i 0.261409 1.51969i
$$556$$ 30.3056i 1.28524i
$$557$$ −5.28065 −0.223748 −0.111874 0.993722i $$-0.535685\pi$$
−0.111874 + 0.993722i $$0.535685\pi$$
$$558$$ −1.71223 + 1.71223i −0.0724845 + 0.0724845i
$$559$$ −3.35511 3.04635i −0.141906 0.128847i
$$560$$ −9.58850 13.5726i −0.405188 0.573545i
$$561$$ −3.17300 + 3.17300i −0.133964 + 0.133964i
$$562$$ −0.816156 + 0.816156i −0.0344275 + 0.0344275i
$$563$$ −29.6592 + 29.6592i −1.24999 + 1.24999i −0.294261 + 0.955725i $$0.595073\pi$$
−0.955725 + 0.294261i $$0.904927\pi$$
$$564$$ 29.6723 + 29.6723i 1.24943 + 1.24943i
$$565$$ 2.66941 15.5184i 0.112303 0.652866i
$$566$$ −1.42811 1.42811i −0.0600281 0.0600281i
$$567$$ −22.3877 −0.940193
$$568$$ −3.95441 3.95441i −0.165923 0.165923i
$$569$$ 22.3322 0.936216 0.468108 0.883671i $$-0.344936\pi$$
0.468108 + 0.883671i $$0.344936\pi$$
$$570$$ 2.36309 + 3.34497i 0.0989790 + 0.140105i
$$571$$ 11.9099i 0.498415i 0.968450 + 0.249207i $$0.0801701\pi$$
−0.968450 + 0.249207i $$0.919830\pi$$
$$572$$ 1.97145 2.17126i 0.0824304 0.0907851i
$$573$$ 28.0475 + 28.0475i 1.17170 + 1.17170i
$$574$$ −0.390278 0.390278i −0.0162899 0.0162899i
$$575$$ 6.91143 + 14.5035i 0.288227 + 0.604836i
$$576$$ 47.6273i 1.98447i
$$577$$ 31.5179i 1.31211i 0.754714 + 0.656053i $$0.227775\pi$$
−0.754714 + 0.656053i $$0.772225\pi$$
$$578$$ 0.556908 0.0231643
$$579$$ −37.6866 + 37.6866i −1.56620 + 1.56620i
$$580$$ 8.69204 6.14060i 0.360918 0.254975i
$$581$$ 25.7507 1.06832
$$582$$ 1.27687 + 1.27687i 0.0529279 + 0.0529279i
$$583$$ 0.632831i 0.0262092i
$$584$$ 3.55665 0.147175
$$585$$ 31.2370 + 39.9799i 1.29149 + 1.65297i
$$586$$ −2.96178 −0.122350
$$587$$ 33.0231i 1.36301i −0.731814 0.681505i $$-0.761326\pi$$
0.731814 0.681505i $$-0.238674\pi$$
$$588$$ 14.3245 + 14.3245i 0.590732 + 0.590732i
$$589$$ −12.7545 −0.525540
$$590$$ −0.600233 + 3.48941i −0.0247112 + 0.143657i
$$591$$ −30.7707 + 30.7707i −1.26574 + 1.26574i
$$592$$ −20.7393 −0.852380
$$593$$ 20.1991i 0.829479i 0.909940 + 0.414739i $$0.136127\pi$$
−0.909940 + 0.414739i $$0.863873\pi$$
$$594$$ 0.554688i 0.0227591i
$$595$$ 2.59636 15.0938i 0.106440 0.618784i
$$596$$ 27.4076 + 27.4076i 1.12266 + 1.12266i
$$597$$ −10.2749 10.2749i −0.420524 0.420524i
$$598$$ −1.04850 + 1.15477i −0.0428765 + 0.0472222i
$$599$$ 10.8205i 0.442113i −0.975261 0.221057i $$-0.929049\pi$$
0.975261 0.221057i $$-0.0709505\pi$$
$$600$$ 3.51514 + 7.37643i 0.143505 + 0.301142i
$$601$$ −5.12131 −0.208903 −0.104451 0.994530i $$-0.533309\pi$$
−0.104451 + 0.994530i $$0.533309\pi$$
$$602$$ −0.228504 0.228504i −0.00931315 0.00931315i
$$603$$ −5.91534 −0.240891
$$604$$ −16.9471 16.9471i −0.689569 0.689569i
$$605$$ −19.7816 + 13.9750i −0.804238 + 0.568164i
$$606$$ −1.03028 1.03028i −0.0418524 0.0418524i
$$607$$ 11.3669 11.3669i 0.461370 0.461370i −0.437735 0.899104i $$-0.644219\pi$$
0.899104 + 0.437735i $$0.144219\pi$$
$$608$$ 5.03663 5.03663i 0.204262 0.204262i
$$609$$ 9.88561 9.88561i 0.400585 0.400585i
$$610$$ 1.76368 1.24597i 0.0714093 0.0504480i
$$611$$ −1.20648 25.0137i −0.0488089 1.01195i
$$612$$ −31.6301 + 31.6301i −1.27857 + 1.27857i
$$613$$ 31.0334 1.25343 0.626714 0.779250i $$-0.284400\pi$$
0.626714 + 0.779250i $$0.284400\pi$$
$$614$$ 1.29237i 0.0521559i
$$615$$ −8.44335 11.9516i −0.340469 0.481935i
$$616$$ 0.297106 0.297106i 0.0119708 0.0119708i
$$617$$ 39.2697i 1.58094i 0.612502 + 0.790469i $$0.290163\pi$$
−0.612502 + 0.790469i $$0.709837\pi$$
$$618$$ 4.32331i 0.173909i
$$619$$ 20.7839 20.7839i 0.835374 0.835374i −0.152872 0.988246i $$-0.548852\pi$$
0.988246 + 0.152872i $$0.0488523\pi$$
$$620$$ −12.4824 2.14717i −0.501306 0.0862324i
$$621$$ 32.2562i 1.29440i
$$622$$ −0.577145 −0.0231414
$$623$$ 19.1424 19.1424i 0.766923 0.766923i
$$624$$ 28.7532 31.6675i 1.15105 1.26771i
$$625$$ −19.4174 15.7469i −0.776696 0.629876i
$$626$$ −0.747554 + 0.747554i −0.0298783 + 0.0298783i
$$627$$ 3.94806 3.94806i 0.157670 0.157670i
$$628$$ −7.94351 + 7.94351i −0.316981 + 0.316981i
$$629$$ −13.5155 13.5155i −0.538899 0.538899i
$$630$$ 2.08753 + 2.95491i 0.0831692 + 0.117726i
$$631$$ 13.0898 + 13.0898i 0.521099 + 0.521099i 0.917903 0.396805i $$-0.129881\pi$$
−0.396805 + 0.917903i $$0.629881\pi$$
$$632$$ 2.35869 0.0938235
$$633$$ −25.0102 25.0102i −0.994066 0.994066i
$$634$$ −2.49481 −0.0990815
$$635$$ −3.76195 + 21.8698i −0.149288 + 0.867878i
$$636$$ 9.31571i 0.369392i
$$637$$ −0.582435 12.0755i −0.0230769 0.478450i
$$638$$ 0.0938283 + 0.0938283i 0.00371470 + 0.00371470i
$$639$$ −46.4201 46.4201i −1.83635 1.83635i
$$640$$ 7.69079 5.43325i 0.304005 0.214768i
$$641$$ 41.7149i 1.64764i −0.566853 0.823819i $$-0.691839\pi$$
0.566853 0.823819i $$-0.308161\pi$$
$$642$$ 5.55177i 0.219111i
$$643$$ 38.6757 1.52522 0.762610 0.646858i $$-0.223917\pi$$
0.762610 + 0.646858i $$0.223917\pi$$
$$644$$ 8.59935 8.59935i 0.338862 0.338862i
$$645$$ −4.94351 6.99756i −0.194651 0.275529i
$$646$$ 2.15487 0.0847822
$$647$$ 21.8936 + 21.8936i 0.860726 + 0.860726i 0.991422 0.130697i $$-0.0417214\pi$$
−0.130697 + 0.991422i $$0.541721\pi$$
$$648$$ 6.28462i 0.246883i
$$649$$ 4.82700 0.189477
$$650$$ 0.699853 2.32402i 0.0274505 0.0911556i
$$651$$ −16.6385 −0.652113
$$652$$ 26.3451i 1.03175i
$$653$$ −21.0962 21.0962i −0.825558 0.825558i 0.161341 0.986899i $$-0.448418\pi$$
−0.986899 + 0.161341i $$0.948418\pi$$
$$654$$ −4.69340 −0.183526
$$655$$ 14.5861 + 20.6466i 0.569924 + 0.806730i
$$656$$ −5.90726 + 5.90726i −0.230640 + 0.230640i
$$657$$ 41.7509 1.62886
$$658$$ 1.78576i 0.0696164i
$$659$$ 26.6328i 1.03747i −0.854936 0.518734i $$-0.826404\pi$$
0.854936 0.518734i $$-0.173596\pi$$
$$660$$ 4.52848 3.19920i 0.176271 0.124529i
$$661$$ −6.53609 6.53609i −0.254224 0.254224i 0.568476 0.822700i $$-0.307533\pi$$
−0.822700 + 0.568476i $$0.807533\pi$$
$$662$$ 0.223895 + 0.223895i 0.00870194 + 0.00870194i
$$663$$ 39.3754 1.89918i 1.52921 0.0737580i
$$664$$ 7.22868i 0.280527i
$$665$$ −3.23057 + 18.7807i −0.125276 + 0.728285i
$$666$$ 4.51519 0.174960
$$667$$ 5.45631 + 5.45631i 0.211269 + 0.211269i
$$668$$ −25.7605 −0.996703
$$669$$ −32.8750 32.8750i −1.27102 1.27102i
$$670$$ 0.163278 + 0.231121i 0.00630799 + 0.00892898i
$$671$$ −2.08167 2.08167i −0.0803620 0.0803620i
$$672$$ 6.57037 6.57037i 0.253458 0.253458i
$$673$$ 5.50580 5.50580i 0.212233 0.212233i −0.592982 0.805215i $$-0.702050\pi$$
0.805215 + 0.592982i $$0.202050\pi$$
$$674$$ 0.982962 0.982962i 0.0378623 0.0378623i
$$675$$ 21.5925 + 45.3113i 0.831096 + 1.74403i
$$676$$ −25.6448 + 2.47960i −0.986337 + 0.0953692i
$$677$$ 1.67072 1.67072i 0.0642110 0.0642110i −0.674272 0.738483i $$-0.735542\pi$$
0.738483 + 0.674272i $$0.235542\pi$$
$$678$$ 2.89016 0.110996
$$679$$ 8.40233i 0.322452i
$$680$$ 4.23709 + 0.728845i 0.162485 + 0.0279499i
$$681$$ −33.2589 + 33.2589i −1.27448 + 1.27448i
$$682$$ 0.157923i 0.00604717i
$$683$$ 42.2726i 1.61752i 0.588141 + 0.808758i $$0.299860\pi$$
−0.588141 + 0.808758i $$0.700140\pi$$
$$684$$ 39.3563 39.3563i 1.50483 1.50483i
$$685$$ −2.47960 3.50988i −0.0947406 0.134106i
$$686$$ 2.66184i 0.101629i
$$687$$ 17.6840 0.674685
$$688$$ −3.45865 + 3.45865i −0.131860 + 0.131860i
$$689$$ 3.73718 4.11596i 0.142375 0.156805i
$$690$$ −2.40845 + 1.70148i −0.0916880 + 0.0647741i
$$691$$ −19.9284 + 19.9284i −0.758110 + 0.758110i −0.975978 0.217868i $$-0.930090\pi$$
0.217868 + 0.975978i $$0.430090\pi$$
$$692$$ −20.4236 + 20.4236i −0.776388 + 0.776388i
$$693$$ 3.48768 3.48768i 0.132486 0.132486i
$$694$$ −1.28500 1.28500i −0.0487779 0.0487779i
$$695$$ 27.9266 19.7291i 1.05932 0.748367i
$$696$$ 2.77507 + 2.77507i 0.105189 + 0.105189i
$$697$$ −7.69937 −0.291634
$$698$$ 2.44503 + 2.44503i 0.0925457 + 0.0925457i
$$699$$ −79.6599 −3.01302
$$700$$ −6.32331 + 17.8362i −0.238999 + 0.674146i
$$701$$ 13.2327i 0.499792i −0.968273 0.249896i $$-0.919604\pi$$
0.968273 0.249896i $$-0.0803964\pi$$
$$702$$ −3.27571 + 3.60771i −0.123634 + 0.136164i
$$703$$ 16.8170 + 16.8170i 0.634264 + 0.634264i
$$704$$ −2.19638 2.19638i −0.0827792 0.0827792i
$$705$$ 8.02621 46.6598i 0.302284 1.75731i
$$706$$ 0.564479i 0.0212444i
$$707$$ 6.77969i 0.254977i
$$708$$ 71.0568 2.67048
$$709$$ −5.07651 + 5.07651i −0.190652 + 0.190652i −0.795978 0.605326i $$-0.793043\pi$$
0.605326 + 0.795978i $$0.293043\pi$$
$$710$$ −0.532390 + 3.09501i −0.0199802 + 0.116154i
$$711$$ 27.6882 1.03839
$$712$$ 5.37361 + 5.37361i 0.201385 + 0.201385i
$$713$$ 9.18352i 0.343925i
$$714$$ 2.81106 0.105201
$$715$$ −3.28424 0.403187i −0.122824 0.0150784i
$$716$$ 13.0624 0.488165
$$717$$ 33.7485i 1.26036i
$$718$$ −0.826517 0.826517i −0.0308453 0.0308453i
$$719$$ 21.0560 0.785257 0.392628 0.919697i $$-0.371566\pi$$
0.392628 + 0.919697i $$0.371566\pi$$
$$720$$ 44.7256 31.5970i 1.66683 1.17755i
$$721$$ −14.2246 + 14.2246i −0.529752 + 0.529752i
$$722$$ −0.123234 −0.00458629
$$723$$ 40.0532i 1.48959i
$$724$$ 31.3043i 1.16342i
$$725$$ −11.3171 4.01216i −0.420307 0.149008i
$$726$$ −3.14342 3.14342i −0.116663 0.116663i
$$727$$ 12.7325 + 12.7325i 0.472221 + 0.472221i 0.902633 0.430412i $$-0.141632\pi$$
−0.430412 + 0.902633i $$0.641632\pi$$
$$728$$ −3.68695 + 0.177831i −0.136648 + 0.00659087i
$$729$$ 18.0326i 0.667876i
$$730$$ −1.15243 1.63127i −0.0426533 0.0603759i
$$731$$ −4.50792 −0.166731
$$732$$ −30.6436 30.6436i −1.13262 1.13262i
$$733$$ −21.9710 −0.811517 −0.405759 0.913980i $$-0.632993\pi$$
−0.405759 + 0.913980i $$0.632993\pi$$
$$734$$ −0.618941 0.618941i −0.0228455 0.0228455i
$$735$$ 3.87471 22.5253i 0.142921 0.830859i
$$736$$ 3.62648 + 3.62648i 0.133674 + 0.133674i
$$737$$ 0.272792 0.272792i 0.0100484 0.0100484i
$$738$$ 1.28608 1.28608i 0.0473413 0.0473413i
$$739$$ 2.55220 2.55220i 0.0938841 0.0938841i −0.658605 0.752489i $$-0.728853\pi$$
0.752489 + 0.658605i $$0.228853\pi$$
$$740$$ 13.6271 + 19.2893i 0.500944 + 0.709088i
$$741$$ −48.9936 + 2.36309i −1.79983 + 0.0868104i
$$742$$ 0.280323 0.280323i 0.0102910 0.0102910i
$$743$$ 9.53234 0.349708 0.174854 0.984594i $$-0.444055\pi$$
0.174854 + 0.984594i $$0.444055\pi$$
$$744$$ 4.67072i 0.171237i
$$745$$ 7.41361 43.0985i 0.271614 1.57901i
$$746$$ −1.83352 + 1.83352i −0.0671300 + 0.0671300i
$$747$$ 84.8562i 3.10472i
$$748$$ 2.91731i 0.106667i
$$749$$ 18.2665 18.2665i 0.667443 0.667443i
$$750$$ 2.24424 4.00234i 0.0819481 0.146145i
$$751$$ 3.05948i 0.111642i −0.998441 0.0558210i $$-0.982222\pi$$
0.998441 0.0558210i $$-0.0177776\pi$$
$$752$$ −27.0294 −0.985661
$$753$$ −28.9875 + 28.9875i −1.05636 + 1.05636i
$$754$$ −0.0561604 1.16437i −0.00204524 0.0424037i
$$755$$ −4.58412 + 26.6494i −0.166833 + 0.969873i
$$756$$ 26.8658 26.8658i 0.977101 0.977101i
$$757$$ −12.1746 + 12.1746i −0.442495 + 0.442495i −0.892850 0.450355i $$-0.851297\pi$$
0.450355 + 0.892850i $$0.351297\pi$$
$$758$$ −2.60431 + 2.60431i −0.0945928 + 0.0945928i
$$759$$ 2.84269 + 2.84269i 0.103183 + 0.103183i
$$760$$ −5.27208 0.906880i −0.191239 0.0328960i
$$761$$ −32.0020 32.0020i −1.16007 1.16007i −0.984459 0.175614i $$-0.943809\pi$$
−0.175614 0.984459i $$-0.556191\pi$$
$$762$$ −4.07304 −0.147551
$$763$$ −15.4423 15.4423i −0.559047 0.559047i
$$764$$ −25.7874 −0.932954
$$765$$ 49.7384 + 8.55578i 1.79830 + 0.309335i
$$766$$ 0.960074i 0.0346889i
$$767$$ −31.3950 28.5059i −1.13361 1.02929i
$$768$$ −31.4058 31.4058i −1.13326 1.13326i
$$769$$ 32.4213 + 32.4213i 1.16914 + 1.16914i 0.982411 + 0.186730i $$0.0597891\pi$$
0.186730 + 0.982411i $$0.440211\pi$$