Newspace parameters
Level: | \( N \) | \(=\) | \( 65 = 5 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 65.f (of order \(4\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(0.519027613138\) |
Analytic rank: | \(0\) |
Dimension: | \(8\) |
Relative dimension: | \(4\) over \(\Q(i)\) |
Coefficient field: | 8.0.619810816.2 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{8} - 2x^{5} + 14x^{4} - 8x^{3} + 2x^{2} + 2x + 1 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 2 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{8} - 2x^{5} + 14x^{4} - 8x^{3} + 2x^{2} + 2x + 1 \)
:
\(\beta_{1}\) | \(=\) |
\( ( 64\nu^{7} + 16\nu^{6} + 4\nu^{5} - 127\nu^{4} + 944\nu^{3} - 276\nu^{2} + 378\nu + 63 ) / 319 \)
|
\(\beta_{2}\) | \(=\) |
\( ( -63\nu^{7} + 64\nu^{6} + 16\nu^{5} + 130\nu^{4} - 1009\nu^{3} + 1448\nu^{2} - 402\nu - 67 ) / 319 \)
|
\(\beta_{3}\) | \(=\) |
\( ( -67\nu^{7} + 63\nu^{6} - 64\nu^{5} + 118\nu^{4} - 1068\nu^{3} + 1545\nu^{2} - 1263\nu + 268 ) / 319 \)
|
\(\beta_{4}\) | \(=\) |
\( ( 83\nu^{7} - 59\nu^{6} + 65\nu^{5} - 70\nu^{4} + 1304\nu^{3} - 1614\nu^{2} + 1198\nu + 306 ) / 319 \)
|
\(\beta_{5}\) | \(=\) |
\( ( -172\nu^{7} - 43\nu^{6} + 69\nu^{5} + 441\nu^{4} - 2218\nu^{3} + 662\nu^{2} + 619\nu - 269 ) / 319 \)
|
\(\beta_{6}\) | \(=\) |
\( ( -196\nu^{7} - 49\nu^{6} - 92\nu^{5} + 369\nu^{4} - 2572\nu^{3} + 1244\nu^{2} - 1038\nu - 173 ) / 319 \)
|
\(\beta_{7}\) | \(=\) |
\( \nu^{7} - 2\nu^{4} + 14\nu^{3} - 8\nu^{2} + \nu + 2 \)
|
\(\nu\) | \(=\) |
\( ( -\beta_{7} - \beta_{5} + \beta_{4} + \beta_1 ) / 2 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{6} - \beta_{5} + \beta_{4} - \beta_{3} + 2\beta_{2} \)
|
\(\nu^{3}\) | \(=\) |
\( ( 3\beta_{7} + 5\beta_{5} - 5\beta_{4} - 2\beta_{2} + 3\beta _1 + 2 ) / 2 \)
|
\(\nu^{4}\) | \(=\) |
\( -\beta_{7} - \beta_{5} + 5\beta_{4} + 4\beta_{3} - 7 \)
|
\(\nu^{5}\) | \(=\) |
\( ( 11\beta_{7} + 2\beta_{6} + 9\beta_{5} - 11\beta_{4} - 12\beta_{3} + 12\beta_{2} - 11\beta _1 + 12 ) / 2 \)
|
\(\nu^{6}\) | \(=\) |
\( -15\beta_{6} + 16\beta_{5} - 16\beta_{4} + 16\beta_{3} - 28\beta_{2} + 7\beta_1 \)
|
\(\nu^{7}\) | \(=\) |
\( ( -43\beta_{7} + 16\beta_{6} - 89\beta_{5} + 105\beta_{4} + 60\beta_{2} - 43\beta _1 - 60 ) / 2 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/65\mathbb{Z}\right)^\times\).
\(n\) | \(27\) | \(41\) |
\(\chi(n)\) | \(\beta_{2}\) | \(\beta_{2}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
18.1 |
|
− | 2.03032i | −1.33000 | − | 1.33000i | −2.12221 | 1.70032 | + | 1.45220i | −2.70032 | + | 2.70032i | −1.61845 | 0.248119i | 0.537789i | 2.94844 | − | 3.45220i | |||||||||||||||||||||||||||||||||
18.2 | 0.134632i | −2.15558 | − | 2.15558i | 1.98187 | −1.29021 | − | 1.82630i | 0.290209 | − | 0.290209i | 1.90970 | 0.536087i | 6.29303i | 0.245878 | − | 0.173703i | |||||||||||||||||||||||||||||||||||
18.3 | 1.57942i | 0.725850 | + | 0.725850i | −0.494582 | 0.146426 | − | 2.23127i | −1.14643 | + | 1.14643i | −4.24997 | 2.37769i | − | 1.94628i | 3.52412 | + | 0.231269i | ||||||||||||||||||||||||||||||||||
18.4 | 2.31627i | −0.240275 | − | 0.240275i | −3.36509 | −1.55654 | + | 1.60536i | 0.556540 | − | 0.556540i | 3.95872 | − | 3.16190i | − | 2.88454i | −3.71844 | − | 3.60536i | |||||||||||||||||||||||||||||||||
47.1 | − | 2.31627i | −0.240275 | + | 0.240275i | −3.36509 | −1.55654 | − | 1.60536i | 0.556540 | + | 0.556540i | 3.95872 | 3.16190i | 2.88454i | −3.71844 | + | 3.60536i | ||||||||||||||||||||||||||||||||||
47.2 | − | 1.57942i | 0.725850 | − | 0.725850i | −0.494582 | 0.146426 | + | 2.23127i | −1.14643 | − | 1.14643i | −4.24997 | − | 2.37769i | 1.94628i | 3.52412 | − | 0.231269i | |||||||||||||||||||||||||||||||||
47.3 | − | 0.134632i | −2.15558 | + | 2.15558i | 1.98187 | −1.29021 | + | 1.82630i | 0.290209 | + | 0.290209i | 1.90970 | − | 0.536087i | − | 6.29303i | 0.245878 | + | 0.173703i | ||||||||||||||||||||||||||||||||
47.4 | 2.03032i | −1.33000 | + | 1.33000i | −2.12221 | 1.70032 | − | 1.45220i | −2.70032 | − | 2.70032i | −1.61845 | − | 0.248119i | − | 0.537789i | 2.94844 | + | 3.45220i | |||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
65.f | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 65.2.f.b | ✓ | 8 |
3.b | odd | 2 | 1 | 585.2.n.e | 8 | ||
4.b | odd | 2 | 1 | 1040.2.cd.n | 8 | ||
5.b | even | 2 | 1 | 325.2.f.b | 8 | ||
5.c | odd | 4 | 1 | 65.2.k.b | yes | 8 | |
5.c | odd | 4 | 1 | 325.2.k.b | 8 | ||
13.b | even | 2 | 1 | 845.2.f.b | 8 | ||
13.c | even | 3 | 2 | 845.2.t.c | 16 | ||
13.d | odd | 4 | 1 | 65.2.k.b | yes | 8 | |
13.d | odd | 4 | 1 | 845.2.k.b | 8 | ||
13.e | even | 6 | 2 | 845.2.t.d | 16 | ||
13.f | odd | 12 | 2 | 845.2.o.c | 16 | ||
13.f | odd | 12 | 2 | 845.2.o.d | 16 | ||
15.e | even | 4 | 1 | 585.2.w.e | 8 | ||
20.e | even | 4 | 1 | 1040.2.bg.n | 8 | ||
39.f | even | 4 | 1 | 585.2.w.e | 8 | ||
52.f | even | 4 | 1 | 1040.2.bg.n | 8 | ||
65.f | even | 4 | 1 | inner | 65.2.f.b | ✓ | 8 |
65.g | odd | 4 | 1 | 325.2.k.b | 8 | ||
65.h | odd | 4 | 1 | 845.2.k.b | 8 | ||
65.k | even | 4 | 1 | 325.2.f.b | 8 | ||
65.k | even | 4 | 1 | 845.2.f.b | 8 | ||
65.o | even | 12 | 2 | 845.2.t.d | 16 | ||
65.q | odd | 12 | 2 | 845.2.o.d | 16 | ||
65.r | odd | 12 | 2 | 845.2.o.c | 16 | ||
65.t | even | 12 | 2 | 845.2.t.c | 16 | ||
195.u | odd | 4 | 1 | 585.2.n.e | 8 | ||
260.l | odd | 4 | 1 | 1040.2.cd.n | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
65.2.f.b | ✓ | 8 | 1.a | even | 1 | 1 | trivial |
65.2.f.b | ✓ | 8 | 65.f | even | 4 | 1 | inner |
65.2.k.b | yes | 8 | 5.c | odd | 4 | 1 | |
65.2.k.b | yes | 8 | 13.d | odd | 4 | 1 | |
325.2.f.b | 8 | 5.b | even | 2 | 1 | ||
325.2.f.b | 8 | 65.k | even | 4 | 1 | ||
325.2.k.b | 8 | 5.c | odd | 4 | 1 | ||
325.2.k.b | 8 | 65.g | odd | 4 | 1 | ||
585.2.n.e | 8 | 3.b | odd | 2 | 1 | ||
585.2.n.e | 8 | 195.u | odd | 4 | 1 | ||
585.2.w.e | 8 | 15.e | even | 4 | 1 | ||
585.2.w.e | 8 | 39.f | even | 4 | 1 | ||
845.2.f.b | 8 | 13.b | even | 2 | 1 | ||
845.2.f.b | 8 | 65.k | even | 4 | 1 | ||
845.2.k.b | 8 | 13.d | odd | 4 | 1 | ||
845.2.k.b | 8 | 65.h | odd | 4 | 1 | ||
845.2.o.c | 16 | 13.f | odd | 12 | 2 | ||
845.2.o.c | 16 | 65.r | odd | 12 | 2 | ||
845.2.o.d | 16 | 13.f | odd | 12 | 2 | ||
845.2.o.d | 16 | 65.q | odd | 12 | 2 | ||
845.2.t.c | 16 | 13.c | even | 3 | 2 | ||
845.2.t.c | 16 | 65.t | even | 12 | 2 | ||
845.2.t.d | 16 | 13.e | even | 6 | 2 | ||
845.2.t.d | 16 | 65.o | even | 12 | 2 | ||
1040.2.bg.n | 8 | 20.e | even | 4 | 1 | ||
1040.2.bg.n | 8 | 52.f | even | 4 | 1 | ||
1040.2.cd.n | 8 | 4.b | odd | 2 | 1 | ||
1040.2.cd.n | 8 | 260.l | odd | 4 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{8} + 12T_{2}^{6} + 46T_{2}^{4} + 56T_{2}^{2} + 1 \)
acting on \(S_{2}^{\mathrm{new}}(65, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{8} + 12 T^{6} + 46 T^{4} + 56 T^{2} + \cdots + 1 \)
$3$
\( T^{8} + 6 T^{7} + 18 T^{6} + 20 T^{5} + \cdots + 4 \)
$5$
\( T^{8} + 2 T^{7} + 8 T^{6} + 6 T^{5} + \cdots + 625 \)
$7$
\( (T^{4} - 20 T^{2} + 4 T + 52)^{2} \)
$11$
\( T^{8} - 6 T^{7} + 18 T^{6} - 8 T^{5} + \cdots + 4 \)
$13$
\( T^{8} - 14 T^{7} + 100 T^{6} + \cdots + 28561 \)
$17$
\( T^{8} - 16 T^{7} + 128 T^{6} + \cdots + 13456 \)
$19$
\( T^{8} + 14 T^{7} + 98 T^{6} + \cdots + 100 \)
$23$
\( T^{8} + 14 T^{7} + 98 T^{6} + \cdots + 40804 \)
$29$
\( T^{8} + 44 T^{6} + 680 T^{4} + \cdots + 10000 \)
$31$
\( T^{8} - 2 T^{7} + 2 T^{6} + \cdots + 16900 \)
$37$
\( (T^{4} + 22 T^{3} + 172 T^{2} + 552 T + 580)^{2} \)
$41$
\( T^{8} - 16 T^{7} + 128 T^{6} + \cdots + 13456 \)
$43$
\( T^{8} + 6 T^{7} + 18 T^{6} + \cdots + 8836 \)
$47$
\( (T^{4} - 8 T^{3} - 48 T^{2} + 364 T - 164)^{2} \)
$53$
\( T^{8} + 24 T^{7} + 288 T^{6} + \cdots + 19600 \)
$59$
\( T^{8} + 22 T^{7} + 242 T^{6} + \cdots + 119716 \)
$61$
\( (T^{4} - 10 T^{3} - 120 T^{2} + 1512 T - 3628)^{2} \)
$67$
\( T^{8} + 100 T^{6} + 3032 T^{4} + \cdots + 21904 \)
$71$
\( T^{8} + 10 T^{7} + 50 T^{6} + \cdots + 1223236 \)
$73$
\( T^{8} + 116 T^{6} + 4840 T^{4} + \cdots + 547600 \)
$79$
\( T^{8} + 292 T^{6} + \cdots + 13719616 \)
$83$
\( (T^{4} - 24 T^{3} + 80 T^{2} + 1380 T - 7372)^{2} \)
$89$
\( T^{8} - 28 T^{7} + 392 T^{6} + \cdots + 1795600 \)
$97$
\( T^{8} + 292 T^{6} + \cdots + 13719616 \)
show more
show less