Newspace parameters
Level: | \( N \) | \(=\) | \( 65 = 5 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 65.e (of order \(3\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(0.519027613138\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Relative dimension: | \(2\) over \(\Q(\zeta_{3})\) |
Coefficient field: | \(\Q(\sqrt{-3}, \sqrt{5})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{4} - x^{3} + 2x^{2} + x + 1 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{4} - x^{3} + 2x^{2} + x + 1 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( \nu^{3} + 1 ) / 2 \)
|
\(\beta_{3}\) | \(=\) |
\( ( -\nu^{3} + 2\nu^{2} - 2\nu - 1 ) / 2 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{3} + \beta_{2} + \beta_1 \)
|
\(\nu^{3}\) | \(=\) |
\( 2\beta_{2} - 1 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/65\mathbb{Z}\right)^\times\).
\(n\) | \(27\) | \(41\) |
\(\chi(n)\) | \(1\) | \(\beta_{3}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
16.1 |
|
−0.809017 | − | 1.40126i | 1.11803 | + | 1.93649i | −0.309017 | + | 0.535233i | 1.00000 | 1.80902 | − | 3.13331i | 0.118034 | − | 0.204441i | −2.23607 | −1.00000 | + | 1.73205i | −0.809017 | − | 1.40126i | ||||||||||||||||
16.2 | 0.309017 | + | 0.535233i | −1.11803 | − | 1.93649i | 0.809017 | − | 1.40126i | 1.00000 | 0.690983 | − | 1.19682i | −2.11803 | + | 3.66854i | 2.23607 | −1.00000 | + | 1.73205i | 0.309017 | + | 0.535233i | |||||||||||||||||
61.1 | −0.809017 | + | 1.40126i | 1.11803 | − | 1.93649i | −0.309017 | − | 0.535233i | 1.00000 | 1.80902 | + | 3.13331i | 0.118034 | + | 0.204441i | −2.23607 | −1.00000 | − | 1.73205i | −0.809017 | + | 1.40126i | |||||||||||||||||
61.2 | 0.309017 | − | 0.535233i | −1.11803 | + | 1.93649i | 0.809017 | + | 1.40126i | 1.00000 | 0.690983 | + | 1.19682i | −2.11803 | − | 3.66854i | 2.23607 | −1.00000 | − | 1.73205i | 0.309017 | − | 0.535233i | |||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
13.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 65.2.e.a | ✓ | 4 |
3.b | odd | 2 | 1 | 585.2.j.e | 4 | ||
4.b | odd | 2 | 1 | 1040.2.q.n | 4 | ||
5.b | even | 2 | 1 | 325.2.e.b | 4 | ||
5.c | odd | 4 | 2 | 325.2.o.a | 8 | ||
13.b | even | 2 | 1 | 845.2.e.g | 4 | ||
13.c | even | 3 | 1 | inner | 65.2.e.a | ✓ | 4 |
13.c | even | 3 | 1 | 845.2.a.e | 2 | ||
13.d | odd | 4 | 2 | 845.2.m.e | 8 | ||
13.e | even | 6 | 1 | 845.2.a.b | 2 | ||
13.e | even | 6 | 1 | 845.2.e.g | 4 | ||
13.f | odd | 12 | 2 | 845.2.c.c | 4 | ||
13.f | odd | 12 | 2 | 845.2.m.e | 8 | ||
39.h | odd | 6 | 1 | 7605.2.a.bf | 2 | ||
39.i | odd | 6 | 1 | 585.2.j.e | 4 | ||
39.i | odd | 6 | 1 | 7605.2.a.ba | 2 | ||
52.j | odd | 6 | 1 | 1040.2.q.n | 4 | ||
65.l | even | 6 | 1 | 4225.2.a.y | 2 | ||
65.n | even | 6 | 1 | 325.2.e.b | 4 | ||
65.n | even | 6 | 1 | 4225.2.a.u | 2 | ||
65.q | odd | 12 | 2 | 325.2.o.a | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
65.2.e.a | ✓ | 4 | 1.a | even | 1 | 1 | trivial |
65.2.e.a | ✓ | 4 | 13.c | even | 3 | 1 | inner |
325.2.e.b | 4 | 5.b | even | 2 | 1 | ||
325.2.e.b | 4 | 65.n | even | 6 | 1 | ||
325.2.o.a | 8 | 5.c | odd | 4 | 2 | ||
325.2.o.a | 8 | 65.q | odd | 12 | 2 | ||
585.2.j.e | 4 | 3.b | odd | 2 | 1 | ||
585.2.j.e | 4 | 39.i | odd | 6 | 1 | ||
845.2.a.b | 2 | 13.e | even | 6 | 1 | ||
845.2.a.e | 2 | 13.c | even | 3 | 1 | ||
845.2.c.c | 4 | 13.f | odd | 12 | 2 | ||
845.2.e.g | 4 | 13.b | even | 2 | 1 | ||
845.2.e.g | 4 | 13.e | even | 6 | 1 | ||
845.2.m.e | 8 | 13.d | odd | 4 | 2 | ||
845.2.m.e | 8 | 13.f | odd | 12 | 2 | ||
1040.2.q.n | 4 | 4.b | odd | 2 | 1 | ||
1040.2.q.n | 4 | 52.j | odd | 6 | 1 | ||
4225.2.a.u | 2 | 65.n | even | 6 | 1 | ||
4225.2.a.y | 2 | 65.l | even | 6 | 1 | ||
7605.2.a.ba | 2 | 39.i | odd | 6 | 1 | ||
7605.2.a.bf | 2 | 39.h | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{4} + T_{2}^{3} + 2T_{2}^{2} - T_{2} + 1 \)
acting on \(S_{2}^{\mathrm{new}}(65, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{4} + T^{3} + 2 T^{2} - T + 1 \)
$3$
\( T^{4} + 5T^{2} + 25 \)
$5$
\( (T - 1)^{4} \)
$7$
\( T^{4} + 4 T^{3} + 17 T^{2} - 4 T + 1 \)
$11$
\( T^{4} + 4 T^{3} + 17 T^{2} - 4 T + 1 \)
$13$
\( (T^{2} + 2 T + 13)^{2} \)
$17$
\( T^{4} + 2 T^{3} + 23 T^{2} - 38 T + 361 \)
$19$
\( T^{4} + 4 T^{3} + 17 T^{2} - 4 T + 1 \)
$23$
\( T^{4} + 12 T^{3} + 113 T^{2} + \cdots + 961 \)
$29$
\( T^{4} - 6 T^{3} + 47 T^{2} + 66 T + 121 \)
$31$
\( T^{4} \)
$37$
\( (T^{2} + 3 T + 9)^{2} \)
$41$
\( T^{4} + 6 T^{3} + 107 T^{2} + \cdots + 5041 \)
$43$
\( T^{4} - 8 T^{3} + 53 T^{2} - 88 T + 121 \)
$47$
\( (T^{2} - 8 T - 64)^{2} \)
$53$
\( (T - 6)^{4} \)
$59$
\( T^{4} + 12 T^{3} + 153 T^{2} + \cdots + 81 \)
$61$
\( T^{4} + 2 T^{3} + 183 T^{2} + \cdots + 32041 \)
$67$
\( T^{4} + 8 T^{3} + 93 T^{2} - 232 T + 841 \)
$71$
\( T^{4} - 8 T^{3} + 53 T^{2} - 88 T + 121 \)
$73$
\( (T + 6)^{4} \)
$79$
\( T^{4} \)
$83$
\( (T^{2} - 80)^{2} \)
$89$
\( (T^{2} - 9 T + 81)^{2} \)
$97$
\( T^{4} + 2 T^{3} + 23 T^{2} - 38 T + 361 \)
show more
show less