Properties

Label 65.2.e
Level $65$
Weight $2$
Character orbit 65.e
Rep. character $\chi_{65}(16,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $8$
Newform subspaces $2$
Sturm bound $14$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 65 = 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 65.e (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 2 \)
Sturm bound: \(14\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(65, [\chi])\).

Total New Old
Modular forms 16 8 8
Cusp forms 8 8 0
Eisenstein series 8 0 8

Trace form

\( 8 q - 2 q^{3} - 2 q^{4} + 6 q^{6} - 2 q^{7} - 12 q^{8} - 2 q^{10} - 4 q^{12} - 4 q^{13} - 4 q^{14} + 2 q^{15} + 6 q^{16} - 10 q^{17} + 8 q^{18} + 4 q^{20} + 16 q^{21} + 4 q^{22} - 6 q^{23} - 4 q^{24} + 8 q^{25}+ \cdots + 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(65, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
65.2.e.a 65.e 13.c $4$ $0.519$ \(\Q(\sqrt{-3}, \sqrt{5})\) None 65.2.e.a \(-1\) \(0\) \(4\) \(-4\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{1}q^{2}+(-1+2\beta _{1}-\beta _{3})q^{3}+(\beta _{1}+\cdots)q^{4}+\cdots\)
65.2.e.b 65.e 13.c $4$ $0.519$ \(\Q(\sqrt{-3}, \sqrt{13})\) None 65.2.e.b \(1\) \(-2\) \(-4\) \(2\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{1}q^{2}+(-1-\beta _{2})q^{3}+(-1+\beta _{1}+\cdots)q^{4}+\cdots\)