Defining parameters
Level: | \( N \) | \(=\) | \( 65 = 5 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 65.e (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 13 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(14\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(65, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 16 | 8 | 8 |
Cusp forms | 8 | 8 | 0 |
Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(65, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
65.2.e.a | $4$ | $0.519$ | \(\Q(\sqrt{-3}, \sqrt{5})\) | None | \(-1\) | \(0\) | \(4\) | \(-4\) | \(q-\beta _{1}q^{2}+(-1+2\beta _{1}-\beta _{3})q^{3}+(\beta _{1}+\cdots)q^{4}+\cdots\) |
65.2.e.b | $4$ | $0.519$ | \(\Q(\sqrt{-3}, \sqrt{13})\) | None | \(1\) | \(-2\) | \(-4\) | \(2\) | \(q+\beta _{1}q^{2}+(-1-\beta _{2})q^{3}+(-1+\beta _{1}+\cdots)q^{4}+\cdots\) |