Defining parameters
Level: | \( N \) | \(=\) | \( 65 = 5 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 65.d (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 65 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(14\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(65, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 8 | 8 | 0 |
Cusp forms | 4 | 4 | 0 |
Eisenstein series | 4 | 4 | 0 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(65, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
65.2.d.a | $2$ | $0.519$ | \(\Q(\sqrt{-1}) \) | None | \(-2\) | \(0\) | \(-2\) | \(0\) | \(q-q^{2}+\beta q^{3}-q^{4}+(\beta-1)q^{5}-\beta q^{6}+\cdots\) |
65.2.d.b | $2$ | $0.519$ | \(\Q(\sqrt{-1}) \) | None | \(2\) | \(0\) | \(2\) | \(0\) | \(q+q^{2}+\beta q^{3}-q^{4}+(-\beta+1)q^{5}+\cdots\) |