Properties

Label 65.2.a
Level $65$
Weight $2$
Character orbit 65.a
Rep. character $\chi_{65}(1,\cdot)$
Character field $\Q$
Dimension $5$
Newform subspaces $3$
Sturm bound $14$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 65 = 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 65.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(14\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(65))\).

Total New Old
Modular forms 8 5 3
Cusp forms 5 5 0
Eisenstein series 3 0 3

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(5\)\(13\)FrickeDim
\(+\)\(+\)\(+\)\(1\)
\(+\)\(-\)\(-\)\(2\)
\(-\)\(+\)\(-\)\(2\)
Plus space\(+\)\(1\)
Minus space\(-\)\(4\)

Trace form

\( 5 q - 3 q^{2} + 3 q^{4} - q^{5} + 4 q^{7} - 3 q^{8} + q^{9} - q^{10} - 4 q^{12} - q^{13} - 8 q^{14} - 5 q^{16} - 2 q^{17} - 11 q^{18} - 4 q^{19} + q^{20} + 4 q^{21} - 4 q^{22} + 4 q^{24} + 5 q^{25}+ \cdots - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(65))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 5 13
65.2.a.a 65.a 1.a $1$ $0.519$ \(\Q\) None 65.2.a.a \(-1\) \(-2\) \(-1\) \(-4\) $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}-2q^{3}-q^{4}-q^{5}+2q^{6}-4q^{7}+\cdots\)
65.2.a.b 65.a 1.a $2$ $0.519$ \(\Q(\sqrt{2}) \) None 65.2.a.b \(-2\) \(0\) \(2\) \(4\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta )q^{2}+\beta q^{3}+(1-2\beta )q^{4}+\cdots\)
65.2.a.c 65.a 1.a $2$ $0.519$ \(\Q(\sqrt{3}) \) None 65.2.a.c \(0\) \(2\) \(-2\) \(4\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+(1-\beta )q^{3}+q^{4}-q^{5}+(-3+\cdots)q^{6}+\cdots\)