Properties

 Label 6498.2.a.y Level $6498$ Weight $2$ Character orbit 6498.a Self dual yes Analytic conductor $51.887$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

Related objects

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [6498,2,Mod(1,6498)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(6498, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("6498.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$6498 = 2 \cdot 3^{2} \cdot 19^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 6498.a (trivial)

Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$51.8867912334$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 38) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q + q^{2} + q^{4} + 4 q^{5} + 3 q^{7} + q^{8}+O(q^{10})$$ q + q^2 + q^4 + 4 * q^5 + 3 * q^7 + q^8 $$q + q^{2} + q^{4} + 4 q^{5} + 3 q^{7} + q^{8} + 4 q^{10} - 2 q^{11} + q^{13} + 3 q^{14} + q^{16} - 3 q^{17} + 4 q^{20} - 2 q^{22} + q^{23} + 11 q^{25} + q^{26} + 3 q^{28} - 5 q^{29} + 8 q^{31} + q^{32} - 3 q^{34} + 12 q^{35} + 2 q^{37} + 4 q^{40} - 8 q^{41} + 4 q^{43} - 2 q^{44} + q^{46} - 8 q^{47} + 2 q^{49} + 11 q^{50} + q^{52} - q^{53} - 8 q^{55} + 3 q^{56} - 5 q^{58} + 15 q^{59} + 2 q^{61} + 8 q^{62} + q^{64} + 4 q^{65} - 3 q^{67} - 3 q^{68} + 12 q^{70} + 2 q^{71} + 9 q^{73} + 2 q^{74} - 6 q^{77} + 10 q^{79} + 4 q^{80} - 8 q^{82} + 6 q^{83} - 12 q^{85} + 4 q^{86} - 2 q^{88} + 3 q^{91} + q^{92} - 8 q^{94} + 2 q^{97} + 2 q^{98}+O(q^{100})$$ q + q^2 + q^4 + 4 * q^5 + 3 * q^7 + q^8 + 4 * q^10 - 2 * q^11 + q^13 + 3 * q^14 + q^16 - 3 * q^17 + 4 * q^20 - 2 * q^22 + q^23 + 11 * q^25 + q^26 + 3 * q^28 - 5 * q^29 + 8 * q^31 + q^32 - 3 * q^34 + 12 * q^35 + 2 * q^37 + 4 * q^40 - 8 * q^41 + 4 * q^43 - 2 * q^44 + q^46 - 8 * q^47 + 2 * q^49 + 11 * q^50 + q^52 - q^53 - 8 * q^55 + 3 * q^56 - 5 * q^58 + 15 * q^59 + 2 * q^61 + 8 * q^62 + q^64 + 4 * q^65 - 3 * q^67 - 3 * q^68 + 12 * q^70 + 2 * q^71 + 9 * q^73 + 2 * q^74 - 6 * q^77 + 10 * q^79 + 4 * q^80 - 8 * q^82 + 6 * q^83 - 12 * q^85 + 4 * q^86 - 2 * q^88 + 3 * q^91 + q^92 - 8 * q^94 + 2 * q^97 + 2 * q^98

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
1.00000 0 1.00000 4.00000 0 3.00000 1.00000 0 4.00000
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$3$$ $$-1$$
$$19$$ $$-1$$

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6498.2.a.y 1
3.b odd 2 1 722.2.a.b 1
12.b even 2 1 5776.2.a.d 1
19.b odd 2 1 342.2.a.d 1
57.d even 2 1 38.2.a.b 1
57.f even 6 2 722.2.c.d 2
57.h odd 6 2 722.2.c.f 2
57.j even 18 6 722.2.e.c 6
57.l odd 18 6 722.2.e.d 6
76.d even 2 1 2736.2.a.w 1
95.d odd 2 1 8550.2.a.u 1
228.b odd 2 1 304.2.a.d 1
285.b even 2 1 950.2.a.b 1
285.j odd 4 2 950.2.b.c 2
399.h odd 2 1 1862.2.a.f 1
456.l odd 2 1 1216.2.a.g 1
456.p even 2 1 1216.2.a.n 1
627.b odd 2 1 4598.2.a.a 1
741.d even 2 1 6422.2.a.b 1
1140.p odd 2 1 7600.2.a.h 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
38.2.a.b 1 57.d even 2 1
304.2.a.d 1 228.b odd 2 1
342.2.a.d 1 19.b odd 2 1
722.2.a.b 1 3.b odd 2 1
722.2.c.d 2 57.f even 6 2
722.2.c.f 2 57.h odd 6 2
722.2.e.c 6 57.j even 18 6
722.2.e.d 6 57.l odd 18 6
950.2.a.b 1 285.b even 2 1
950.2.b.c 2 285.j odd 4 2
1216.2.a.g 1 456.l odd 2 1
1216.2.a.n 1 456.p even 2 1
1862.2.a.f 1 399.h odd 2 1
2736.2.a.w 1 76.d even 2 1
4598.2.a.a 1 627.b odd 2 1
5776.2.a.d 1 12.b even 2 1
6422.2.a.b 1 741.d even 2 1
6498.2.a.y 1 1.a even 1 1 trivial
7600.2.a.h 1 1140.p odd 2 1
8550.2.a.u 1 95.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(6498))$$:

 $$T_{5} - 4$$ T5 - 4 $$T_{7} - 3$$ T7 - 3 $$T_{11} + 2$$ T11 + 2 $$T_{13} - 1$$ T13 - 1 $$T_{29} + 5$$ T29 + 5

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T - 1$$
$3$ $$T$$
$5$ $$T - 4$$
$7$ $$T - 3$$
$11$ $$T + 2$$
$13$ $$T - 1$$
$17$ $$T + 3$$
$19$ $$T$$
$23$ $$T - 1$$
$29$ $$T + 5$$
$31$ $$T - 8$$
$37$ $$T - 2$$
$41$ $$T + 8$$
$43$ $$T - 4$$
$47$ $$T + 8$$
$53$ $$T + 1$$
$59$ $$T - 15$$
$61$ $$T - 2$$
$67$ $$T + 3$$
$71$ $$T - 2$$
$73$ $$T - 9$$
$79$ $$T - 10$$
$83$ $$T - 6$$
$89$ $$T$$
$97$ $$T - 2$$