Properties

Label 6498.2.a.bt
Level $6498$
Weight $2$
Character orbit 6498.a
Self dual yes
Analytic conductor $51.887$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 6498 = 2 \cdot 3^{2} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6498.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(51.8867912334\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{18})^+\)
Defining polynomial: \(x^{3} - 3 x - 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 114)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + q^{4} + ( 2 + \beta_{1} ) q^{5} + ( -1 + 2 \beta_{1} - \beta_{2} ) q^{7} + q^{8} +O(q^{10})\) \( q + q^{2} + q^{4} + ( 2 + \beta_{1} ) q^{5} + ( -1 + 2 \beta_{1} - \beta_{2} ) q^{7} + q^{8} + ( 2 + \beta_{1} ) q^{10} + ( 4 - \beta_{1} ) q^{11} + ( 3 \beta_{1} - 4 \beta_{2} ) q^{13} + ( -1 + 2 \beta_{1} - \beta_{2} ) q^{14} + q^{16} + ( 4 + \beta_{2} ) q^{17} + ( 2 + \beta_{1} ) q^{20} + ( 4 - \beta_{1} ) q^{22} + ( 4 + \beta_{1} + 2 \beta_{2} ) q^{23} + ( 1 + 4 \beta_{1} + \beta_{2} ) q^{25} + ( 3 \beta_{1} - 4 \beta_{2} ) q^{26} + ( -1 + 2 \beta_{1} - \beta_{2} ) q^{28} + ( -2 - \beta_{1} - 3 \beta_{2} ) q^{29} + ( 1 - \beta_{1} - \beta_{2} ) q^{31} + q^{32} + ( 4 + \beta_{2} ) q^{34} + ( 1 + 2 \beta_{1} ) q^{35} + ( -1 - 2 \beta_{1} + 2 \beta_{2} ) q^{37} + ( 2 + \beta_{1} ) q^{40} + ( -3 + 3 \beta_{2} ) q^{41} + ( -1 - 3 \beta_{1} ) q^{43} + ( 4 - \beta_{1} ) q^{44} + ( 4 + \beta_{1} + 2 \beta_{2} ) q^{46} + ( 5 - 3 \beta_{1} - \beta_{2} ) q^{47} + ( -7 \beta_{1} + 5 \beta_{2} ) q^{49} + ( 1 + 4 \beta_{1} + \beta_{2} ) q^{50} + ( 3 \beta_{1} - 4 \beta_{2} ) q^{52} + ( -1 + 2 \beta_{1} + 4 \beta_{2} ) q^{53} + ( 6 + 2 \beta_{1} - \beta_{2} ) q^{55} + ( -1 + 2 \beta_{1} - \beta_{2} ) q^{56} + ( -2 - \beta_{1} - 3 \beta_{2} ) q^{58} + ( -2 \beta_{1} - 5 \beta_{2} ) q^{59} + ( -1 + 3 \beta_{1} - 3 \beta_{2} ) q^{61} + ( 1 - \beta_{1} - \beta_{2} ) q^{62} + q^{64} + ( 2 + 2 \beta_{1} - 5 \beta_{2} ) q^{65} + ( 2 - \beta_{1} - 3 \beta_{2} ) q^{67} + ( 4 + \beta_{2} ) q^{68} + ( 1 + 2 \beta_{1} ) q^{70} + ( -3 + 3 \beta_{1} ) q^{71} + ( 1 - 3 \beta_{1} - 7 \beta_{2} ) q^{73} + ( -1 - 2 \beta_{1} + 2 \beta_{2} ) q^{74} + ( -7 + 10 \beta_{1} - 6 \beta_{2} ) q^{77} + ( -3 + 5 \beta_{2} ) q^{79} + ( 2 + \beta_{1} ) q^{80} + ( -3 + 3 \beta_{2} ) q^{82} + ( -1 - 11 \beta_{1} + 6 \beta_{2} ) q^{83} + ( 9 + 5 \beta_{1} + 2 \beta_{2} ) q^{85} + ( -1 - 3 \beta_{1} ) q^{86} + ( 4 - \beta_{1} ) q^{88} + ( 1 - 5 \beta_{1} + 11 \beta_{2} ) q^{89} + ( 9 - 10 \beta_{1} + 6 \beta_{2} ) q^{91} + ( 4 + \beta_{1} + 2 \beta_{2} ) q^{92} + ( 5 - 3 \beta_{1} - \beta_{2} ) q^{94} + ( 4 - \beta_{1} + 8 \beta_{2} ) q^{97} + ( -7 \beta_{1} + 5 \beta_{2} ) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3q + 3q^{2} + 3q^{4} + 6q^{5} - 3q^{7} + 3q^{8} + O(q^{10}) \) \( 3q + 3q^{2} + 3q^{4} + 6q^{5} - 3q^{7} + 3q^{8} + 6q^{10} + 12q^{11} - 3q^{14} + 3q^{16} + 12q^{17} + 6q^{20} + 12q^{22} + 12q^{23} + 3q^{25} - 3q^{28} - 6q^{29} + 3q^{31} + 3q^{32} + 12q^{34} + 3q^{35} - 3q^{37} + 6q^{40} - 9q^{41} - 3q^{43} + 12q^{44} + 12q^{46} + 15q^{47} + 3q^{50} - 3q^{53} + 18q^{55} - 3q^{56} - 6q^{58} - 3q^{61} + 3q^{62} + 3q^{64} + 6q^{65} + 6q^{67} + 12q^{68} + 3q^{70} - 9q^{71} + 3q^{73} - 3q^{74} - 21q^{77} - 9q^{79} + 6q^{80} - 9q^{82} - 3q^{83} + 27q^{85} - 3q^{86} + 12q^{88} + 3q^{89} + 27q^{91} + 12q^{92} + 15q^{94} + 12q^{97} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.53209
−0.347296
1.87939
1.00000 0 1.00000 0.467911 0 −4.41147 1.00000 0 0.467911
1.2 1.00000 0 1.00000 1.65270 0 0.184793 1.00000 0 1.65270
1.3 1.00000 0 1.00000 3.87939 0 1.22668 1.00000 0 3.87939
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)
\(19\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6498.2.a.bt 3
3.b odd 2 1 2166.2.a.n 3
19.b odd 2 1 6498.2.a.bo 3
19.f odd 18 2 342.2.u.d 6
57.d even 2 1 2166.2.a.t 3
57.j even 18 2 114.2.i.b 6
228.u odd 18 2 912.2.bo.c 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
114.2.i.b 6 57.j even 18 2
342.2.u.d 6 19.f odd 18 2
912.2.bo.c 6 228.u odd 18 2
2166.2.a.n 3 3.b odd 2 1
2166.2.a.t 3 57.d even 2 1
6498.2.a.bo 3 19.b odd 2 1
6498.2.a.bt 3 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6498))\):

\( T_{5}^{3} - 6 T_{5}^{2} + 9 T_{5} - 3 \)
\( T_{7}^{3} + 3 T_{7}^{2} - 6 T_{7} + 1 \)
\( T_{11}^{3} - 12 T_{11}^{2} + 45 T_{11} - 51 \)
\( T_{13}^{3} - 39 T_{13} - 19 \)
\( T_{29}^{3} + 6 T_{29}^{2} - 27 T_{29} - 51 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( ( -1 + T )^{3} \)
$3$ \( T^{3} \)
$5$ \( -3 + 9 T - 6 T^{2} + T^{3} \)
$7$ \( 1 - 6 T + 3 T^{2} + T^{3} \)
$11$ \( -51 + 45 T - 12 T^{2} + T^{3} \)
$13$ \( -19 - 39 T + T^{3} \)
$17$ \( -51 + 45 T - 12 T^{2} + T^{3} \)
$19$ \( T^{3} \)
$23$ \( 3 + 27 T - 12 T^{2} + T^{3} \)
$29$ \( -51 - 27 T + 6 T^{2} + T^{3} \)
$31$ \( 17 - 6 T - 3 T^{2} + T^{3} \)
$37$ \( -19 - 9 T + 3 T^{2} + T^{3} \)
$41$ \( -27 + 9 T^{2} + T^{3} \)
$43$ \( 1 - 24 T + 3 T^{2} + T^{3} \)
$47$ \( 159 + 36 T - 15 T^{2} + T^{3} \)
$53$ \( -219 - 81 T + 3 T^{2} + T^{3} \)
$59$ \( 153 - 117 T + T^{3} \)
$61$ \( 1 - 24 T + 3 T^{2} + T^{3} \)
$67$ \( 89 - 27 T - 6 T^{2} + T^{3} \)
$71$ \( -81 + 9 T^{2} + T^{3} \)
$73$ \( 739 - 234 T - 3 T^{2} + T^{3} \)
$79$ \( -73 - 48 T + 9 T^{2} + T^{3} \)
$83$ \( -1893 - 270 T + 3 T^{2} + T^{3} \)
$89$ \( 1893 - 270 T - 3 T^{2} + T^{3} \)
$97$ \( 1277 - 123 T - 12 T^{2} + T^{3} \)
show more
show less