# Properties

 Label 6498.2.a.bs Level $6498$ Weight $2$ Character orbit 6498.a Self dual yes Analytic conductor $51.887$ Analytic rank $1$ Dimension $3$ CM no Inner twists $1$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$6498 = 2 \cdot 3^{2} \cdot 19^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 6498.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$51.8867912334$$ Analytic rank: $$1$$ Dimension: $$3$$ Coefficient field: $$\Q(\zeta_{18})^+$$ Defining polynomial: $$x^{3} - 3x - 1$$ x^3 - 3*x - 1 Coefficient ring: $$\Z[a_1, \ldots, a_{7}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 114) Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\beta_2$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + q^{2} + q^{4} + (\beta_{2} - 2 \beta_1) q^{5} + ( - \beta_{2} + \beta_1 - 1) q^{7} + q^{8}+O(q^{10})$$ q + q^2 + q^4 + (b2 - 2*b1) * q^5 + (-b2 + b1 - 1) * q^7 + q^8 $$q + q^{2} + q^{4} + (\beta_{2} - 2 \beta_1) q^{5} + ( - \beta_{2} + \beta_1 - 1) q^{7} + q^{8} + (\beta_{2} - 2 \beta_1) q^{10} + \beta_{2} q^{11} + (\beta_{2} - 2) q^{13} + ( - \beta_{2} + \beta_1 - 1) q^{14} + q^{16} + ( - \beta_{2} + 3 \beta_1 - 2) q^{17} + (\beta_{2} - 2 \beta_1) q^{20} + \beta_{2} q^{22} + ( - 5 \beta_{2} + 2 \beta_1 - 2) q^{23} + (3 \beta_{2} - 3 \beta_1 + 1) q^{25} + (\beta_{2} - 2) q^{26} + ( - \beta_{2} + \beta_1 - 1) q^{28} + ( - 2 \beta_{2} + 5 \beta_1 + 2) q^{29} + ( - 3 \beta_1 - 3) q^{31} + q^{32} + ( - \beta_{2} + 3 \beta_1 - 2) q^{34} + ( - 2 \beta_{2} + 4 \beta_1 - 3) q^{35} + ( - 6 \beta_{2} + 4 \beta_1 - 3) q^{37} + (\beta_{2} - 2 \beta_1) q^{40} + ( - 3 \beta_{2} - \beta_1 + 3) q^{41} + (\beta_{2} + 2 \beta_1 + 5) q^{43} + \beta_{2} q^{44} + ( - 5 \beta_{2} + 2 \beta_1 - 2) q^{46} + (3 \beta_1 - 1) q^{47} + (2 \beta_{2} - 3 \beta_1 - 4) q^{49} + (3 \beta_{2} - 3 \beta_1 + 1) q^{50} + (\beta_{2} - 2) q^{52} + (6 \beta_{2} + 2 \beta_1 - 1) q^{53} + ( - \beta_{2} - \beta_1) q^{55} + ( - \beta_{2} + \beta_1 - 1) q^{56} + ( - 2 \beta_{2} + 5 \beta_1 + 2) q^{58} + ( - 3 \beta_{2} - 3 \beta_1 - 4) q^{59} + (\beta_1 - 11) q^{61} + ( - 3 \beta_1 - 3) q^{62} + q^{64} + ( - 3 \beta_{2} + 3 \beta_1) q^{65} + (4 \beta_{2} - \beta_1 - 4) q^{67} + ( - \beta_{2} + 3 \beta_1 - 2) q^{68} + ( - 2 \beta_{2} + 4 \beta_1 - 3) q^{70} + (7 \beta_{2} - 6 \beta_1 + 5) q^{71} + (2 \beta_{2} - 7 \beta_1 + 1) q^{73} + ( - 6 \beta_{2} + 4 \beta_1 - 3) q^{74} - q^{77} + (5 \beta_{2} + 5 \beta_1 - 5) q^{79} + (\beta_{2} - 2 \beta_1) q^{80} + ( - 3 \beta_{2} - \beta_1 + 3) q^{82} + (\beta_{2} + 2 \beta_1 - 9) q^{83} + ( - 7 \beta_{2} + 8 \beta_1 - 9) q^{85} + (\beta_{2} + 2 \beta_1 + 5) q^{86} + \beta_{2} q^{88} + ( - 4 \beta_{2} - 3 \beta_1 - 5) q^{89} + (2 \beta_{2} - 2 \beta_1 + 1) q^{91} + ( - 5 \beta_{2} + 2 \beta_1 - 2) q^{92} + (3 \beta_1 - 1) q^{94} + ( - \beta_{2} + 4) q^{97} + (2 \beta_{2} - 3 \beta_1 - 4) q^{98}+O(q^{100})$$ q + q^2 + q^4 + (b2 - 2*b1) * q^5 + (-b2 + b1 - 1) * q^7 + q^8 + (b2 - 2*b1) * q^10 + b2 * q^11 + (b2 - 2) * q^13 + (-b2 + b1 - 1) * q^14 + q^16 + (-b2 + 3*b1 - 2) * q^17 + (b2 - 2*b1) * q^20 + b2 * q^22 + (-5*b2 + 2*b1 - 2) * q^23 + (3*b2 - 3*b1 + 1) * q^25 + (b2 - 2) * q^26 + (-b2 + b1 - 1) * q^28 + (-2*b2 + 5*b1 + 2) * q^29 + (-3*b1 - 3) * q^31 + q^32 + (-b2 + 3*b1 - 2) * q^34 + (-2*b2 + 4*b1 - 3) * q^35 + (-6*b2 + 4*b1 - 3) * q^37 + (b2 - 2*b1) * q^40 + (-3*b2 - b1 + 3) * q^41 + (b2 + 2*b1 + 5) * q^43 + b2 * q^44 + (-5*b2 + 2*b1 - 2) * q^46 + (3*b1 - 1) * q^47 + (2*b2 - 3*b1 - 4) * q^49 + (3*b2 - 3*b1 + 1) * q^50 + (b2 - 2) * q^52 + (6*b2 + 2*b1 - 1) * q^53 + (-b2 - b1) * q^55 + (-b2 + b1 - 1) * q^56 + (-2*b2 + 5*b1 + 2) * q^58 + (-3*b2 - 3*b1 - 4) * q^59 + (b1 - 11) * q^61 + (-3*b1 - 3) * q^62 + q^64 + (-3*b2 + 3*b1) * q^65 + (4*b2 - b1 - 4) * q^67 + (-b2 + 3*b1 - 2) * q^68 + (-2*b2 + 4*b1 - 3) * q^70 + (7*b2 - 6*b1 + 5) * q^71 + (2*b2 - 7*b1 + 1) * q^73 + (-6*b2 + 4*b1 - 3) * q^74 - q^77 + (5*b2 + 5*b1 - 5) * q^79 + (b2 - 2*b1) * q^80 + (-3*b2 - b1 + 3) * q^82 + (b2 + 2*b1 - 9) * q^83 + (-7*b2 + 8*b1 - 9) * q^85 + (b2 + 2*b1 + 5) * q^86 + b2 * q^88 + (-4*b2 - 3*b1 - 5) * q^89 + (2*b2 - 2*b1 + 1) * q^91 + (-5*b2 + 2*b1 - 2) * q^92 + (3*b1 - 1) * q^94 + (-b2 + 4) * q^97 + (2*b2 - 3*b1 - 4) * q^98 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$3 q + 3 q^{2} + 3 q^{4} - 3 q^{7} + 3 q^{8}+O(q^{10})$$ 3 * q + 3 * q^2 + 3 * q^4 - 3 * q^7 + 3 * q^8 $$3 q + 3 q^{2} + 3 q^{4} - 3 q^{7} + 3 q^{8} - 6 q^{13} - 3 q^{14} + 3 q^{16} - 6 q^{17} - 6 q^{23} + 3 q^{25} - 6 q^{26} - 3 q^{28} + 6 q^{29} - 9 q^{31} + 3 q^{32} - 6 q^{34} - 9 q^{35} - 9 q^{37} + 9 q^{41} + 15 q^{43} - 6 q^{46} - 3 q^{47} - 12 q^{49} + 3 q^{50} - 6 q^{52} - 3 q^{53} - 3 q^{56} + 6 q^{58} - 12 q^{59} - 33 q^{61} - 9 q^{62} + 3 q^{64} - 12 q^{67} - 6 q^{68} - 9 q^{70} + 15 q^{71} + 3 q^{73} - 9 q^{74} - 3 q^{77} - 15 q^{79} + 9 q^{82} - 27 q^{83} - 27 q^{85} + 15 q^{86} - 15 q^{89} + 3 q^{91} - 6 q^{92} - 3 q^{94} + 12 q^{97} - 12 q^{98}+O(q^{100})$$ 3 * q + 3 * q^2 + 3 * q^4 - 3 * q^7 + 3 * q^8 - 6 * q^13 - 3 * q^14 + 3 * q^16 - 6 * q^17 - 6 * q^23 + 3 * q^25 - 6 * q^26 - 3 * q^28 + 6 * q^29 - 9 * q^31 + 3 * q^32 - 6 * q^34 - 9 * q^35 - 9 * q^37 + 9 * q^41 + 15 * q^43 - 6 * q^46 - 3 * q^47 - 12 * q^49 + 3 * q^50 - 6 * q^52 - 3 * q^53 - 3 * q^56 + 6 * q^58 - 12 * q^59 - 33 * q^61 - 9 * q^62 + 3 * q^64 - 12 * q^67 - 6 * q^68 - 9 * q^70 + 15 * q^71 + 3 * q^73 - 9 * q^74 - 3 * q^77 - 15 * q^79 + 9 * q^82 - 27 * q^83 - 27 * q^85 + 15 * q^86 - 15 * q^89 + 3 * q^91 - 6 * q^92 - 3 * q^94 + 12 * q^97 - 12 * q^98

Basis of coefficient ring in terms of $$\nu = \zeta_{18} + \zeta_{18}^{-1}$$:

 $$\beta_{1}$$ $$=$$ $$\nu$$ v $$\beta_{2}$$ $$=$$ $$\nu^{2} - 2$$ v^2 - 2
 $$\nu$$ $$=$$ $$\beta_1$$ b1 $$\nu^{2}$$ $$=$$ $$\beta_{2} + 2$$ b2 + 2

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 1.87939 −0.347296 −1.53209
1.00000 0 1.00000 −2.22668 0 −0.652704 1.00000 0 −2.22668
1.2 1.00000 0 1.00000 −1.18479 0 0.532089 1.00000 0 −1.18479
1.3 1.00000 0 1.00000 3.41147 0 −2.87939 1.00000 0 3.41147
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$3$$ $$-1$$
$$19$$ $$1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6498.2.a.bs 3
3.b odd 2 1 2166.2.a.o 3
19.b odd 2 1 6498.2.a.bn 3
19.e even 9 2 342.2.u.a 6
57.d even 2 1 2166.2.a.u 3
57.l odd 18 2 114.2.i.d 6
228.v even 18 2 912.2.bo.f 6

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
114.2.i.d 6 57.l odd 18 2
342.2.u.a 6 19.e even 9 2
912.2.bo.f 6 228.v even 18 2
2166.2.a.o 3 3.b odd 2 1
2166.2.a.u 3 57.d even 2 1
6498.2.a.bn 3 19.b odd 2 1
6498.2.a.bs 3 1.a even 1 1 trivial

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(6498))$$:

 $$T_{5}^{3} - 9T_{5} - 9$$ T5^3 - 9*T5 - 9 $$T_{7}^{3} + 3T_{7}^{2} - 1$$ T7^3 + 3*T7^2 - 1 $$T_{11}^{3} - 3T_{11} + 1$$ T11^3 - 3*T11 + 1 $$T_{13}^{3} + 6T_{13}^{2} + 9T_{13} + 3$$ T13^3 + 6*T13^2 + 9*T13 + 3 $$T_{29}^{3} - 6T_{29}^{2} - 45T_{29} + 213$$ T29^3 - 6*T29^2 - 45*T29 + 213

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$(T - 1)^{3}$$
$3$ $$T^{3}$$
$5$ $$T^{3} - 9T - 9$$
$7$ $$T^{3} + 3T^{2} - 1$$
$11$ $$T^{3} - 3T + 1$$
$13$ $$T^{3} + 6 T^{2} + 9 T + 3$$
$17$ $$T^{3} + 6 T^{2} - 9 T - 17$$
$19$ $$T^{3}$$
$23$ $$T^{3} + 6 T^{2} - 45 T - 269$$
$29$ $$T^{3} - 6 T^{2} - 45 T + 213$$
$31$ $$T^{3} + 9T^{2} - 27$$
$37$ $$T^{3} + 9 T^{2} - 57 T - 361$$
$41$ $$T^{3} - 9 T^{2} - 12 T + 109$$
$43$ $$T^{3} - 15 T^{2} + 54 T - 57$$
$47$ $$T^{3} + 3 T^{2} - 24 T - 53$$
$53$ $$T^{3} + 3 T^{2} - 153 T - 307$$
$59$ $$T^{3} + 12 T^{2} - 33 T - 17$$
$61$ $$T^{3} + 33 T^{2} + 360 T + 1297$$
$67$ $$T^{3} + 12 T^{2} + 9 T - 3$$
$71$ $$T^{3} - 15 T^{2} - 54 T + 449$$
$73$ $$T^{3} - 3 T^{2} - 114 T - 37$$
$79$ $$T^{3} + 15 T^{2} - 150 T - 2125$$
$83$ $$T^{3} + 27 T^{2} + 222 T + 503$$
$89$ $$T^{3} + 15 T^{2} - 36 T - 107$$
$97$ $$T^{3} - 12 T^{2} + 45 T - 53$$