Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [6480,2,Mod(1,6480)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6480, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("6480.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 6480 = 2^{4} \cdot 3^{4} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 6480.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(51.7430605098\) |
Analytic rank: | \(0\) |
Dimension: | \(1\) |
Coefficient field: | \(\mathbb{Q}\) |
Coefficient ring: | \(\mathbb{Z}\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 3240) |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
Embedding invariants
Embedding label | 1.1 | ||
Character | \(\chi\) | \(=\) | 6480.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 1.00000 | 0.447214 | ||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 1.00000 | 0.301511 | 0.150756 | − | 0.988571i | \(-0.451829\pi\) | ||||
0.150756 | + | 0.988571i | \(0.451829\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 7.00000 | 1.60591 | 0.802955 | − | 0.596040i | \(-0.203260\pi\) | ||||
0.802955 | + | 0.596040i | \(0.203260\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 6.00000 | 1.25109 | 0.625543 | − | 0.780189i | \(-0.284877\pi\) | ||||
0.625543 | + | 0.780189i | \(0.284877\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 1.00000 | 0.200000 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | 7.00000 | 1.29987 | 0.649934 | − | 0.759991i | \(-0.274797\pi\) | ||||
0.649934 | + | 0.759991i | \(0.274797\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | −1.00000 | −0.179605 | −0.0898027 | − | 0.995960i | \(-0.528624\pi\) | ||||
−0.0898027 | + | 0.995960i | \(0.528624\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | −2.00000 | −0.328798 | −0.164399 | − | 0.986394i | \(-0.552568\pi\) | ||||
−0.164399 | + | 0.986394i | \(0.552568\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | −9.00000 | −1.40556 | −0.702782 | − | 0.711405i | \(-0.748059\pi\) | ||||
−0.702782 | + | 0.711405i | \(0.748059\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | 6.00000 | 0.914991 | 0.457496 | − | 0.889212i | \(-0.348747\pi\) | ||||
0.457496 | + | 0.889212i | \(0.348747\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | −2.00000 | −0.291730 | −0.145865 | − | 0.989305i | \(-0.546597\pi\) | ||||
−0.145865 | + | 0.989305i | \(0.546597\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | −7.00000 | −1.00000 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 1.00000 | 0.134840 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | 3.00000 | 0.390567 | 0.195283 | − | 0.980747i | \(-0.437437\pi\) | ||||
0.195283 | + | 0.980747i | \(0.437437\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | −10.0000 | −1.28037 | −0.640184 | − | 0.768221i | \(-0.721142\pi\) | ||||
−0.640184 | + | 0.768221i | \(0.721142\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | 2.00000 | 0.244339 | 0.122169 | − | 0.992509i | \(-0.461015\pi\) | ||||
0.122169 | + | 0.992509i | \(0.461015\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 1.00000 | 0.118678 | 0.0593391 | − | 0.998238i | \(-0.481101\pi\) | ||||
0.0593391 | + | 0.998238i | \(0.481101\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 0 | 0 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | −4.00000 | −0.450035 | −0.225018 | − | 0.974355i | \(-0.572244\pi\) | ||||
−0.225018 | + | 0.974355i | \(0.572244\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | −6.00000 | −0.658586 | −0.329293 | − | 0.944228i | \(-0.606810\pi\) | ||||
−0.329293 | + | 0.944228i | \(0.606810\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | 7.00000 | 0.741999 | 0.370999 | − | 0.928633i | \(-0.379015\pi\) | ||||
0.370999 | + | 0.928633i | \(0.379015\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 0 | 0 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 7.00000 | 0.718185 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | 2.00000 | 0.203069 | 0.101535 | − | 0.994832i | \(-0.467625\pi\) | ||||
0.101535 | + | 0.994832i | \(0.467625\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 9.00000 | 0.895533 | 0.447767 | − | 0.894150i | \(-0.352219\pi\) | ||||
0.447767 | + | 0.894150i | \(0.352219\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 6.00000 | 0.591198 | 0.295599 | − | 0.955312i | \(-0.404481\pi\) | ||||
0.295599 | + | 0.955312i | \(0.404481\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | −2.00000 | −0.193347 | −0.0966736 | − | 0.995316i | \(-0.530820\pi\) | ||||
−0.0966736 | + | 0.995316i | \(0.530820\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | 3.00000 | 0.287348 | 0.143674 | − | 0.989625i | \(-0.454108\pi\) | ||||
0.143674 | + | 0.989625i | \(0.454108\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 6.00000 | 0.559503 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 0 | 0 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −10.0000 | −0.909091 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 1.00000 | 0.0894427 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 20.0000 | 1.77471 | 0.887357 | − | 0.461084i | \(-0.152539\pi\) | ||||
0.887357 | + | 0.461084i | \(0.152539\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 11.0000 | 0.961074 | 0.480537 | − | 0.876974i | \(-0.340442\pi\) | ||||
0.480537 | + | 0.876974i | \(0.340442\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 0 | 0 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 20.0000 | 1.70872 | 0.854358 | − | 0.519685i | \(-0.173951\pi\) | ||||
0.854358 | + | 0.519685i | \(0.173951\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | −7.00000 | −0.593732 | −0.296866 | − | 0.954919i | \(-0.595942\pi\) | ||||
−0.296866 | + | 0.954919i | \(0.595942\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 0 | 0 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 7.00000 | 0.581318 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | −10.0000 | −0.819232 | −0.409616 | − | 0.912258i | \(-0.634337\pi\) | ||||
−0.409616 | + | 0.912258i | \(0.634337\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | 11.0000 | 0.895167 | 0.447584 | − | 0.894242i | \(-0.352285\pi\) | ||||
0.447584 | + | 0.894242i | \(0.352285\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | −1.00000 | −0.0803219 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | −18.0000 | −1.43656 | −0.718278 | − | 0.695756i | \(-0.755069\pi\) | ||||
−0.718278 | + | 0.695756i | \(0.755069\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 0 | 0 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | 20.0000 | 1.56652 | 0.783260 | − | 0.621694i | \(-0.213555\pi\) | ||||
0.783260 | + | 0.621694i | \(0.213555\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | 20.0000 | 1.54765 | 0.773823 | − | 0.633402i | \(-0.218342\pi\) | ||||
0.773823 | + | 0.633402i | \(0.218342\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | −13.0000 | −1.00000 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | 14.0000 | 1.06440 | 0.532200 | − | 0.846619i | \(-0.321365\pi\) | ||||
0.532200 | + | 0.846619i | \(0.321365\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | 3.00000 | 0.224231 | 0.112115 | − | 0.993695i | \(-0.464237\pi\) | ||||
0.112115 | + | 0.993695i | \(0.464237\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | 11.0000 | 0.817624 | 0.408812 | − | 0.912619i | \(-0.365943\pi\) | ||||
0.408812 | + | 0.912619i | \(0.365943\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | −2.00000 | −0.147043 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 0 | 0 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 9.00000 | 0.651217 | 0.325609 | − | 0.945505i | \(-0.394431\pi\) | ||||
0.325609 | + | 0.945505i | \(0.394431\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | −14.0000 | −1.00774 | −0.503871 | − | 0.863779i | \(-0.668091\pi\) | ||||
−0.503871 | + | 0.863779i | \(0.668091\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | 20.0000 | 1.42494 | 0.712470 | − | 0.701702i | \(-0.247576\pi\) | ||||
0.712470 | + | 0.701702i | \(0.247576\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 0 | 0 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | −9.00000 | −0.628587 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 7.00000 | 0.484200 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | −9.00000 | −0.619586 | −0.309793 | − | 0.950804i | \(-0.600260\pi\) | ||||
−0.309793 | + | 0.950804i | \(0.600260\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 6.00000 | 0.409197 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 0 | 0 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 0 | 0 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | −20.0000 | −1.33930 | −0.669650 | − | 0.742677i | \(-0.733556\pi\) | ||||
−0.669650 | + | 0.742677i | \(0.733556\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | −20.0000 | −1.32745 | −0.663723 | − | 0.747978i | \(-0.731025\pi\) | ||||
−0.663723 | + | 0.747978i | \(0.731025\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | −10.0000 | −0.660819 | −0.330409 | − | 0.943838i | \(-0.607187\pi\) | ||||
−0.330409 | + | 0.943838i | \(0.607187\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | 14.0000 | 0.917170 | 0.458585 | − | 0.888650i | \(-0.348356\pi\) | ||||
0.458585 | + | 0.888650i | \(0.348356\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | −2.00000 | −0.130466 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | −11.0000 | −0.708572 | −0.354286 | − | 0.935137i | \(-0.615276\pi\) | ||||
−0.354286 | + | 0.935137i | \(0.615276\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | −7.00000 | −0.447214 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | 0 | 0 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | 20.0000 | 1.26239 | 0.631194 | − | 0.775625i | \(-0.282565\pi\) | ||||
0.631194 | + | 0.775625i | \(0.282565\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 6.00000 | 0.377217 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | 22.0000 | 1.37232 | 0.686161 | − | 0.727450i | \(-0.259294\pi\) | ||||
0.686161 | + | 0.727450i | \(0.259294\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 0 | 0 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 6.00000 | 0.369976 | 0.184988 | − | 0.982741i | \(-0.440775\pi\) | ||||
0.184988 | + | 0.982741i | \(0.440775\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0 | 0 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | −3.00000 | −0.182913 | −0.0914566 | − | 0.995809i | \(-0.529152\pi\) | ||||
−0.0914566 | + | 0.995809i | \(0.529152\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 1.00000 | 0.0603023 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | 22.0000 | 1.32185 | 0.660926 | − | 0.750451i | \(-0.270164\pi\) | ||||
0.660926 | + | 0.750451i | \(0.270164\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | −10.0000 | −0.596550 | −0.298275 | − | 0.954480i | \(-0.596411\pi\) | ||||
−0.298275 | + | 0.954480i | \(0.596411\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | −26.0000 | −1.54554 | −0.772770 | − | 0.634686i | \(-0.781129\pi\) | ||||
−0.772770 | + | 0.634686i | \(0.781129\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 0 | 0 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | −17.0000 | −1.00000 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | −14.0000 | −0.817889 | −0.408944 | − | 0.912559i | \(-0.634103\pi\) | ||||
−0.408944 | + | 0.912559i | \(0.634103\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 3.00000 | 0.174667 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 0 | 0 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 0 | 0 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | −10.0000 | −0.572598 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | 22.0000 | 1.25561 | 0.627803 | − | 0.778372i | \(-0.283954\pi\) | ||||
0.627803 | + | 0.778372i | \(0.283954\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | 31.0000 | 1.75785 | 0.878924 | − | 0.476961i | \(-0.158262\pi\) | ||||
0.878924 | + | 0.476961i | \(0.158262\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | −20.0000 | −1.13047 | −0.565233 | − | 0.824931i | \(-0.691214\pi\) | ||||
−0.565233 | + | 0.824931i | \(0.691214\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | −22.0000 | −1.23564 | −0.617822 | − | 0.786318i | \(-0.711985\pi\) | ||||
−0.617822 | + | 0.786318i | \(0.711985\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 7.00000 | 0.391925 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 0 | 0 | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0 | 0 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 0 | 0 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | 31.0000 | 1.70391 | 0.851957 | − | 0.523612i | \(-0.175416\pi\) | ||||
0.851957 | + | 0.523612i | \(0.175416\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 2.00000 | 0.109272 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | 20.0000 | 1.08947 | 0.544735 | − | 0.838608i | \(-0.316630\pi\) | ||||
0.544735 | + | 0.838608i | \(0.316630\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | −1.00000 | −0.0541530 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 0 | 0 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | 17.0000 | 0.909989 | 0.454995 | − | 0.890494i | \(-0.349641\pi\) | ||||
0.454995 | + | 0.890494i | \(0.349641\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 14.0000 | 0.745145 | 0.372572 | − | 0.928003i | \(-0.378476\pi\) | ||||
0.372572 | + | 0.928003i | \(0.378476\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 1.00000 | 0.0530745 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | −3.00000 | −0.158334 | −0.0791670 | − | 0.996861i | \(-0.525226\pi\) | ||||
−0.0791670 | + | 0.996861i | \(0.525226\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | 30.0000 | 1.57895 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | −22.0000 | −1.14839 | −0.574195 | − | 0.818718i | \(-0.694685\pi\) | ||||
−0.574195 | + | 0.818718i | \(0.694685\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 0 | 0 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | −20.0000 | −1.03556 | −0.517780 | − | 0.855514i | \(-0.673242\pi\) | ||||
−0.517780 | + | 0.855514i | \(0.673242\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 0 | 0 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 20.0000 | 1.02733 | 0.513665 | − | 0.857991i | \(-0.328287\pi\) | ||||
0.513665 | + | 0.857991i | \(0.328287\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | 30.0000 | 1.52106 | 0.760530 | − | 0.649303i | \(-0.224939\pi\) | ||||
0.760530 | + | 0.649303i | \(0.224939\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 0 | 0 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | −4.00000 | −0.201262 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | 2.00000 | 0.100377 | 0.0501886 | − | 0.998740i | \(-0.484018\pi\) | ||||
0.0501886 | + | 0.998740i | \(0.484018\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | −2.00000 | −0.0998752 | −0.0499376 | − | 0.998752i | \(-0.515902\pi\) | ||||
−0.0499376 | + | 0.998752i | \(0.515902\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 0 | 0 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | −2.00000 | −0.0991363 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | −10.0000 | −0.494468 | −0.247234 | − | 0.968956i | \(-0.579522\pi\) | ||||
−0.247234 | + | 0.968956i | \(0.579522\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 0 | 0 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | −6.00000 | −0.294528 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | −24.0000 | −1.17248 | −0.586238 | − | 0.810139i | \(-0.699392\pi\) | ||||
−0.586238 | + | 0.810139i | \(0.699392\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | −31.0000 | −1.51085 | −0.755424 | − | 0.655237i | \(-0.772569\pi\) | ||||
−0.755424 | + | 0.655237i | \(0.772569\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 0 | 0 | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | 19.0000 | 0.915198 | 0.457599 | − | 0.889159i | \(-0.348710\pi\) | ||||
0.457599 | + | 0.889159i | \(0.348710\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | 6.00000 | 0.288342 | 0.144171 | − | 0.989553i | \(-0.453949\pi\) | ||||
0.144171 | + | 0.989553i | \(0.453949\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | 42.0000 | 2.00913 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | −37.0000 | −1.76591 | −0.882957 | − | 0.469454i | \(-0.844451\pi\) | ||||
−0.882957 | + | 0.469454i | \(0.844451\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 34.0000 | 1.61539 | 0.807694 | − | 0.589601i | \(-0.200715\pi\) | ||||
0.807694 | + | 0.589601i | \(0.200715\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 7.00000 | 0.331832 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | 33.0000 | 1.55737 | 0.778683 | − | 0.627417i | \(-0.215888\pi\) | ||||
0.778683 | + | 0.627417i | \(0.215888\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | −9.00000 | −0.423793 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | 38.0000 | 1.77757 | 0.888783 | − | 0.458329i | \(-0.151552\pi\) | ||||
0.888783 | + | 0.458329i | \(0.151552\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | −19.0000 | −0.884918 | −0.442459 | − | 0.896789i | \(-0.645894\pi\) | ||||
−0.442459 | + | 0.896789i | \(0.645894\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | −14.0000 | −0.650635 | −0.325318 | − | 0.945605i | \(-0.605471\pi\) | ||||
−0.325318 | + | 0.945605i | \(0.605471\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | −20.0000 | −0.925490 | −0.462745 | − | 0.886492i | \(-0.653135\pi\) | ||||
−0.462745 | + | 0.886492i | \(0.653135\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 0 | 0 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 6.00000 | 0.275880 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 7.00000 | 0.321182 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 17.0000 | 0.776750 | 0.388375 | − | 0.921501i | \(-0.373037\pi\) | ||||
0.388375 | + | 0.921501i | \(0.373037\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 0 | 0 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 2.00000 | 0.0908153 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 20.0000 | 0.906287 | 0.453143 | − | 0.891438i | \(-0.350303\pi\) | ||||
0.453143 | + | 0.891438i | \(0.350303\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | −9.00000 | −0.406164 | −0.203082 | − | 0.979162i | \(-0.565096\pi\) | ||||
−0.203082 | + | 0.979162i | \(0.565096\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | 0 | 0 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 0 | 0 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | −37.0000 | −1.65635 | −0.828174 | − | 0.560471i | \(-0.810620\pi\) | ||||
−0.828174 | + | 0.560471i | \(0.810620\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 40.0000 | 1.78351 | 0.891756 | − | 0.452517i | \(-0.149474\pi\) | ||||
0.891756 | + | 0.452517i | \(0.149474\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 9.00000 | 0.400495 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | 10.0000 | 0.443242 | 0.221621 | − | 0.975133i | \(-0.428865\pi\) | ||||
0.221621 | + | 0.975133i | \(0.428865\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 0 | 0 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 6.00000 | 0.264392 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | −2.00000 | −0.0879599 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | −30.0000 | −1.31432 | −0.657162 | − | 0.753749i | \(-0.728243\pi\) | ||||
−0.657162 | + | 0.753749i | \(0.728243\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | −20.0000 | −0.874539 | −0.437269 | − | 0.899331i | \(-0.644054\pi\) | ||||
−0.437269 | + | 0.899331i | \(0.644054\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 0 | 0 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | 13.0000 | 0.565217 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 0 | 0 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | −2.00000 | −0.0864675 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | −7.00000 | −0.301511 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | 39.0000 | 1.67674 | 0.838370 | − | 0.545101i | \(-0.183509\pi\) | ||||
0.838370 | + | 0.545101i | \(0.183509\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 3.00000 | 0.128506 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | 49.0000 | 2.08747 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 0 | 0 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 0 | 0 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | −34.0000 | −1.43293 | −0.716465 | − | 0.697623i | \(-0.754241\pi\) | ||||
−0.716465 | + | 0.697623i | \(0.754241\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | −3.00000 | −0.125767 | −0.0628833 | − | 0.998021i | \(-0.520030\pi\) | ||||
−0.0628833 | + | 0.998021i | \(0.520030\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | −39.0000 | −1.63210 | −0.816050 | − | 0.577982i | \(-0.803840\pi\) | ||||
−0.816050 | + | 0.577982i | \(0.803840\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 6.00000 | 0.250217 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | 20.0000 | 0.832611 | 0.416305 | − | 0.909225i | \(-0.363325\pi\) | ||||
0.416305 | + | 0.909225i | \(0.363325\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 0 | 0 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 0 | 0 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | −38.0000 | −1.56843 | −0.784214 | − | 0.620491i | \(-0.786934\pi\) | ||||
−0.784214 | + | 0.620491i | \(0.786934\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | −7.00000 | −0.288430 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | 6.00000 | 0.246390 | 0.123195 | − | 0.992382i | \(-0.460686\pi\) | ||||
0.123195 | + | 0.992382i | \(0.460686\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | −17.0000 | −0.694601 | −0.347301 | − | 0.937754i | \(-0.612902\pi\) | ||||
−0.347301 | + | 0.937754i | \(0.612902\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | −19.0000 | −0.775026 | −0.387513 | − | 0.921864i | \(-0.626666\pi\) | ||||
−0.387513 | + | 0.921864i | \(0.626666\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | −10.0000 | −0.406558 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | 38.0000 | 1.54237 | 0.771186 | − | 0.636610i | \(-0.219664\pi\) | ||||
0.771186 | + | 0.636610i | \(0.219664\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 0 | 0 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | −20.0000 | −0.807792 | −0.403896 | − | 0.914805i | \(-0.632344\pi\) | ||||
−0.403896 | + | 0.914805i | \(0.632344\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | 20.0000 | 0.805170 | 0.402585 | − | 0.915383i | \(-0.368112\pi\) | ||||
0.402585 | + | 0.915383i | \(0.368112\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | −20.0000 | −0.803868 | −0.401934 | − | 0.915669i | \(-0.631662\pi\) | ||||
−0.401934 | + | 0.915669i | \(0.631662\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 0 | 0 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 1.00000 | 0.0400000 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | 0 | 0 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | −41.0000 | −1.63218 | −0.816092 | − | 0.577922i | \(-0.803864\pi\) | ||||
−0.816092 | + | 0.577922i | \(0.803864\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 20.0000 | 0.793676 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 0 | 0 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | −21.0000 | −0.829450 | −0.414725 | − | 0.909947i | \(-0.636122\pi\) | ||||
−0.414725 | + | 0.909947i | \(0.636122\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | 14.0000 | 0.552106 | 0.276053 | − | 0.961142i | \(-0.410973\pi\) | ||||
0.276053 | + | 0.961142i | \(0.410973\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | −18.0000 | −0.707653 | −0.353827 | − | 0.935311i | \(-0.615120\pi\) | ||||
−0.353827 | + | 0.935311i | \(0.615120\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 3.00000 | 0.117760 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | 20.0000 | 0.782660 | 0.391330 | − | 0.920250i | \(-0.372015\pi\) | ||||
0.391330 | + | 0.920250i | \(0.372015\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 11.0000 | 0.429806 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | 20.0000 | 0.779089 | 0.389545 | − | 0.921008i | \(-0.372632\pi\) | ||||
0.389545 | + | 0.921008i | \(0.372632\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | 21.0000 | 0.816805 | 0.408403 | − | 0.912802i | \(-0.366086\pi\) | ||||
0.408403 | + | 0.912802i | \(0.366086\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 42.0000 | 1.62625 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | −10.0000 | −0.386046 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | 46.0000 | 1.77317 | 0.886585 | − | 0.462566i | \(-0.153071\pi\) | ||||
0.886585 | + | 0.462566i | \(0.153071\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | 2.00000 | 0.0768662 | 0.0384331 | − | 0.999261i | \(-0.487763\pi\) | ||||
0.0384331 | + | 0.999261i | \(0.487763\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 0 | 0 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | −40.0000 | −1.53056 | −0.765279 | − | 0.643699i | \(-0.777399\pi\) | ||||
−0.765279 | + | 0.643699i | \(0.777399\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 20.0000 | 0.764161 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 0 | 0 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | 20.0000 | 0.760836 | 0.380418 | − | 0.924815i | \(-0.375780\pi\) | ||||
0.380418 | + | 0.924815i | \(0.375780\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | −7.00000 | −0.265525 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 0 | 0 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | −9.00000 | −0.339925 | −0.169963 | − | 0.985451i | \(-0.554365\pi\) | ||||
−0.169963 | + | 0.985451i | \(0.554365\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | −14.0000 | −0.528020 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 0 | 0 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | −10.0000 | −0.375558 | −0.187779 | − | 0.982211i | \(-0.560129\pi\) | ||||
−0.187779 | + | 0.982211i | \(0.560129\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | −6.00000 | −0.224702 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 27.0000 | 1.00693 | 0.503465 | − | 0.864016i | \(-0.332058\pi\) | ||||
0.503465 | + | 0.864016i | \(0.332058\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 0 | 0 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 7.00000 | 0.259973 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | −40.0000 | −1.48352 | −0.741759 | − | 0.670667i | \(-0.766008\pi\) | ||||
−0.741759 | + | 0.670667i | \(0.766008\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 0 | 0 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 46.0000 | 1.69905 | 0.849524 | − | 0.527549i | \(-0.176889\pi\) | ||||
0.849524 | + | 0.527549i | \(0.176889\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 2.00000 | 0.0736709 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | −47.0000 | −1.72892 | −0.864461 | − | 0.502699i | \(-0.832340\pi\) | ||||
−0.864461 | + | 0.502699i | \(0.832340\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | −20.0000 | −0.733729 | −0.366864 | − | 0.930274i | \(-0.619569\pi\) | ||||
−0.366864 | + | 0.930274i | \(0.619569\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | −10.0000 | −0.366372 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 0 | 0 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 40.0000 | 1.45962 | 0.729810 | − | 0.683650i | \(-0.239608\pi\) | ||||
0.729810 | + | 0.683650i | \(0.239608\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 11.0000 | 0.400331 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | −20.0000 | −0.726912 | −0.363456 | − | 0.931611i | \(-0.618403\pi\) | ||||
−0.363456 | + | 0.931611i | \(0.618403\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | −19.0000 | −0.688749 | −0.344375 | − | 0.938832i | \(-0.611909\pi\) | ||||
−0.344375 | + | 0.938832i | \(0.611909\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 0 | 0 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 0 | 0 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | −3.00000 | −0.108183 | −0.0540914 | − | 0.998536i | \(-0.517226\pi\) | ||||
−0.0540914 | + | 0.998536i | \(0.517226\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | −6.00000 | −0.215805 | −0.107903 | − | 0.994161i | \(-0.534413\pi\) | ||||
−0.107903 | + | 0.994161i | \(0.534413\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | −1.00000 | −0.0359211 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | −63.0000 | −2.25721 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 1.00000 | 0.0357828 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | −18.0000 | −0.642448 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | −40.0000 | −1.42585 | −0.712923 | − | 0.701242i | \(-0.752629\pi\) | ||||
−0.712923 | + | 0.701242i | \(0.752629\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 0 | 0 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 0 | 0 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | 40.0000 | 1.41687 | 0.708436 | − | 0.705775i | \(-0.249401\pi\) | ||||
0.708436 | + | 0.705775i | \(0.249401\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 0 | 0 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | 0 | 0 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | −33.0000 | −1.16022 | −0.580109 | − | 0.814539i | \(-0.696990\pi\) | ||||
−0.580109 | + | 0.814539i | \(0.696990\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | −41.0000 | −1.43970 | −0.719852 | − | 0.694127i | \(-0.755791\pi\) | ||||
−0.719852 | + | 0.694127i | \(0.755791\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 20.0000 | 0.700569 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | 42.0000 | 1.46939 | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | −1.00000 | −0.0349002 | −0.0174501 | − | 0.999848i | \(-0.505555\pi\) | ||||
−0.0174501 | + | 0.999848i | \(0.505555\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | 6.00000 | 0.209147 | 0.104573 | − | 0.994517i | \(-0.466652\pi\) | ||||
0.104573 | + | 0.994517i | \(0.466652\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | −17.0000 | −0.590434 | −0.295217 | − | 0.955430i | \(-0.595392\pi\) | ||||
−0.295217 | + | 0.955430i | \(0.595392\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | 0 | 0 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 20.0000 | 0.692129 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | 53.0000 | 1.82976 | 0.914882 | − | 0.403722i | \(-0.132284\pi\) | ||||
0.914882 | + | 0.403722i | \(0.132284\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | 20.0000 | 0.689655 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | −13.0000 | −0.447214 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | 0 | 0 | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | −12.0000 | −0.411355 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | 20.0000 | 0.684787 | 0.342393 | − | 0.939557i | \(-0.388762\pi\) | ||||
0.342393 | + | 0.939557i | \(0.388762\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | −40.0000 | −1.36637 | −0.683187 | − | 0.730243i | \(-0.739407\pi\) | ||||
−0.683187 | + | 0.730243i | \(0.739407\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | −13.0000 | −0.443554 | −0.221777 | − | 0.975097i | \(-0.571186\pi\) | ||||
−0.221777 | + | 0.975097i | \(0.571186\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | −20.0000 | −0.680808 | −0.340404 | − | 0.940279i | \(-0.610564\pi\) | ||||
−0.340404 | + | 0.940279i | \(0.610564\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 14.0000 | 0.476014 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | −4.00000 | −0.135691 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 0 | 0 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | 40.0000 | 1.35070 | 0.675352 | − | 0.737496i | \(-0.263992\pi\) | ||||
0.675352 | + | 0.737496i | \(0.263992\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | −1.00000 | −0.0336909 | −0.0168454 | − | 0.999858i | \(-0.505362\pi\) | ||||
−0.0168454 | + | 0.999858i | \(0.505362\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | 20.0000 | 0.673054 | 0.336527 | − | 0.941674i | \(-0.390748\pi\) | ||||
0.336527 | + | 0.941674i | \(0.390748\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | −18.0000 | −0.604381 | −0.302190 | − | 0.953248i | \(-0.597718\pi\) | ||||
−0.302190 | + | 0.953248i | \(0.597718\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 0 | 0 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | −14.0000 | −0.468492 | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 3.00000 | 0.100279 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | −7.00000 | −0.233463 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | 0 | 0 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 11.0000 | 0.365652 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | 2.00000 | 0.0664089 | 0.0332045 | − | 0.999449i | \(-0.489429\pi\) | ||||
0.0332045 | + | 0.999449i | \(0.489429\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | 39.0000 | 1.29213 | 0.646064 | − | 0.763283i | \(-0.276414\pi\) | ||||
0.646064 | + | 0.763283i | \(0.276414\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | −6.00000 | −0.198571 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 0 | 0 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | 13.0000 | 0.428830 | 0.214415 | − | 0.976743i | \(-0.431215\pi\) | ||||
0.214415 | + | 0.976743i | \(0.431215\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | 0 | 0 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | −2.00000 | −0.0657596 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | 33.0000 | 1.08269 | 0.541347 | − | 0.840799i | \(-0.317914\pi\) | ||||
0.541347 | + | 0.840799i | \(0.317914\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | −49.0000 | −1.60591 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | −18.0000 | −0.588034 | −0.294017 | − | 0.955800i | \(-0.594992\pi\) | ||||
−0.294017 | + | 0.955800i | \(0.594992\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | −50.0000 | −1.62995 | −0.814977 | − | 0.579494i | \(-0.803250\pi\) | ||||
−0.814977 | + | 0.579494i | \(0.803250\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | −54.0000 | −1.75848 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | −18.0000 | −0.584921 | −0.292461 | − | 0.956278i | \(-0.594474\pi\) | ||||
−0.292461 | + | 0.956278i | \(0.594474\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | 0 | 0 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | −20.0000 | −0.647864 | −0.323932 | − | 0.946080i | \(-0.605005\pi\) | ||||
−0.323932 | + | 0.946080i | \(0.605005\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 9.00000 | 0.291233 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 0 | 0 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −30.0000 | −0.967742 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | −14.0000 | −0.450676 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | 60.0000 | 1.92947 | 0.964735 | − | 0.263223i | \(-0.0847856\pi\) | ||||
0.964735 | + | 0.263223i | \(0.0847856\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | 9.00000 | 0.288824 | 0.144412 | − | 0.989518i | \(-0.453871\pi\) | ||||
0.144412 | + | 0.989518i | \(0.453871\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | 0 | 0 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | 40.0000 | 1.27971 | 0.639857 | − | 0.768494i | \(-0.278994\pi\) | ||||
0.639857 | + | 0.768494i | \(0.278994\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 7.00000 | 0.223721 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | −20.0000 | −0.637901 | −0.318950 | − | 0.947771i | \(-0.603330\pi\) | ||||
−0.318950 | + | 0.947771i | \(0.603330\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 20.0000 | 0.637253 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | 36.0000 | 1.14473 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | −1.00000 | −0.0317660 | −0.0158830 | − | 0.999874i | \(-0.505056\pi\) | ||||
−0.0158830 | + | 0.999874i | \(0.505056\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 0 | 0 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 60.0000 | 1.90022 | 0.950110 | − | 0.311916i | \(-0.100971\pi\) | ||||
0.950110 | + | 0.311916i | \(0.100971\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 6480.2.a.s.1.1 | 1 | ||
3.2 | odd | 2 | 6480.2.a.d.1.1 | 1 | |||
4.3 | odd | 2 | 3240.2.a.e.1.1 | yes | 1 | ||
12.11 | even | 2 | 3240.2.a.c.1.1 | ✓ | 1 | ||
36.7 | odd | 6 | 3240.2.q.f.1081.1 | 2 | |||
36.11 | even | 6 | 3240.2.q.r.1081.1 | 2 | |||
36.23 | even | 6 | 3240.2.q.r.2161.1 | 2 | |||
36.31 | odd | 6 | 3240.2.q.f.2161.1 | 2 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
3240.2.a.c.1.1 | ✓ | 1 | 12.11 | even | 2 | ||
3240.2.a.e.1.1 | yes | 1 | 4.3 | odd | 2 | ||
3240.2.q.f.1081.1 | 2 | 36.7 | odd | 6 | |||
3240.2.q.f.2161.1 | 2 | 36.31 | odd | 6 | |||
3240.2.q.r.1081.1 | 2 | 36.11 | even | 6 | |||
3240.2.q.r.2161.1 | 2 | 36.23 | even | 6 | |||
6480.2.a.d.1.1 | 1 | 3.2 | odd | 2 | |||
6480.2.a.s.1.1 | 1 | 1.1 | even | 1 | trivial |