Properties

Label 6480.2.a.e.1.1
Level $6480$
Weight $2$
Character 6480.1
Self dual yes
Analytic conductor $51.743$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6480,2,Mod(1,6480)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6480, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6480.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6480 = 2^{4} \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6480.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(51.7430605098\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 360)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 6480.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{5} +O(q^{10})\) \(q-1.00000 q^{5} +5.00000 q^{11} +3.00000 q^{17} -5.00000 q^{19} -6.00000 q^{23} +1.00000 q^{25} -10.0000 q^{29} +2.00000 q^{31} +4.00000 q^{37} -3.00000 q^{41} -3.00000 q^{43} -4.00000 q^{47} -7.00000 q^{49} -6.00000 q^{53} -5.00000 q^{55} +3.00000 q^{59} +2.00000 q^{61} +11.0000 q^{67} +14.0000 q^{71} -15.0000 q^{73} -10.0000 q^{79} +12.0000 q^{83} -3.00000 q^{85} +14.0000 q^{89} +5.00000 q^{95} -13.0000 q^{97} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 5.00000 1.50756 0.753778 0.657129i \(-0.228229\pi\)
0.753778 + 0.657129i \(0.228229\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.00000 0.727607 0.363803 0.931476i \(-0.381478\pi\)
0.363803 + 0.931476i \(0.381478\pi\)
\(18\) 0 0
\(19\) −5.00000 −1.14708 −0.573539 0.819178i \(-0.694430\pi\)
−0.573539 + 0.819178i \(0.694430\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −6.00000 −1.25109 −0.625543 0.780189i \(-0.715123\pi\)
−0.625543 + 0.780189i \(0.715123\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −10.0000 −1.85695 −0.928477 0.371391i \(-0.878881\pi\)
−0.928477 + 0.371391i \(0.878881\pi\)
\(30\) 0 0
\(31\) 2.00000 0.359211 0.179605 0.983739i \(-0.442518\pi\)
0.179605 + 0.983739i \(0.442518\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 4.00000 0.657596 0.328798 0.944400i \(-0.393356\pi\)
0.328798 + 0.944400i \(0.393356\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −3.00000 −0.468521 −0.234261 0.972174i \(-0.575267\pi\)
−0.234261 + 0.972174i \(0.575267\pi\)
\(42\) 0 0
\(43\) −3.00000 −0.457496 −0.228748 0.973486i \(-0.573463\pi\)
−0.228748 + 0.973486i \(0.573463\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −4.00000 −0.583460 −0.291730 0.956501i \(-0.594231\pi\)
−0.291730 + 0.956501i \(0.594231\pi\)
\(48\) 0 0
\(49\) −7.00000 −1.00000
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −6.00000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) 0 0
\(55\) −5.00000 −0.674200
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 3.00000 0.390567 0.195283 0.980747i \(-0.437437\pi\)
0.195283 + 0.980747i \(0.437437\pi\)
\(60\) 0 0
\(61\) 2.00000 0.256074 0.128037 0.991769i \(-0.459132\pi\)
0.128037 + 0.991769i \(0.459132\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 11.0000 1.34386 0.671932 0.740613i \(-0.265465\pi\)
0.671932 + 0.740613i \(0.265465\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 14.0000 1.66149 0.830747 0.556650i \(-0.187914\pi\)
0.830747 + 0.556650i \(0.187914\pi\)
\(72\) 0 0
\(73\) −15.0000 −1.75562 −0.877809 0.479012i \(-0.840995\pi\)
−0.877809 + 0.479012i \(0.840995\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −10.0000 −1.12509 −0.562544 0.826767i \(-0.690177\pi\)
−0.562544 + 0.826767i \(0.690177\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 12.0000 1.31717 0.658586 0.752506i \(-0.271155\pi\)
0.658586 + 0.752506i \(0.271155\pi\)
\(84\) 0 0
\(85\) −3.00000 −0.325396
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 14.0000 1.48400 0.741999 0.670402i \(-0.233878\pi\)
0.741999 + 0.670402i \(0.233878\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 5.00000 0.512989
\(96\) 0 0
\(97\) −13.0000 −1.31995 −0.659975 0.751288i \(-0.729433\pi\)
−0.659975 + 0.751288i \(0.729433\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −12.0000 −1.19404 −0.597022 0.802225i \(-0.703650\pi\)
−0.597022 + 0.802225i \(0.703650\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 17.0000 1.64345 0.821726 0.569883i \(-0.193011\pi\)
0.821726 + 0.569883i \(0.193011\pi\)
\(108\) 0 0
\(109\) −12.0000 −1.14939 −0.574696 0.818367i \(-0.694880\pi\)
−0.574696 + 0.818367i \(0.694880\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −6.00000 −0.564433 −0.282216 0.959351i \(-0.591070\pi\)
−0.282216 + 0.959351i \(0.591070\pi\)
\(114\) 0 0
\(115\) 6.00000 0.559503
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 14.0000 1.27273
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −10.0000 −0.887357 −0.443678 0.896186i \(-0.646327\pi\)
−0.443678 + 0.896186i \(0.646327\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 4.00000 0.349482 0.174741 0.984614i \(-0.444091\pi\)
0.174741 + 0.984614i \(0.444091\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 7.00000 0.598050 0.299025 0.954245i \(-0.403339\pi\)
0.299025 + 0.954245i \(0.403339\pi\)
\(138\) 0 0
\(139\) −7.00000 −0.593732 −0.296866 0.954919i \(-0.595942\pi\)
−0.296866 + 0.954919i \(0.595942\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 10.0000 0.830455
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 4.00000 0.327693 0.163846 0.986486i \(-0.447610\pi\)
0.163846 + 0.986486i \(0.447610\pi\)
\(150\) 0 0
\(151\) −22.0000 −1.79033 −0.895167 0.445730i \(-0.852944\pi\)
−0.895167 + 0.445730i \(0.852944\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −2.00000 −0.160644
\(156\) 0 0
\(157\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −16.0000 −1.25322 −0.626608 0.779334i \(-0.715557\pi\)
−0.626608 + 0.779334i \(0.715557\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 22.0000 1.70241 0.851206 0.524832i \(-0.175872\pi\)
0.851206 + 0.524832i \(0.175872\pi\)
\(168\) 0 0
\(169\) −13.0000 −1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −2.00000 −0.152057 −0.0760286 0.997106i \(-0.524224\pi\)
−0.0760286 + 0.997106i \(0.524224\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) −4.00000 −0.297318 −0.148659 0.988889i \(-0.547496\pi\)
−0.148659 + 0.988889i \(0.547496\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −4.00000 −0.294086
\(186\) 0 0
\(187\) 15.0000 1.09691
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −12.0000 −0.868290 −0.434145 0.900843i \(-0.642949\pi\)
−0.434145 + 0.900843i \(0.642949\pi\)
\(192\) 0 0
\(193\) 19.0000 1.36765 0.683825 0.729646i \(-0.260315\pi\)
0.683825 + 0.729646i \(0.260315\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −8.00000 −0.569976 −0.284988 0.958531i \(-0.591990\pi\)
−0.284988 + 0.958531i \(0.591990\pi\)
\(198\) 0 0
\(199\) 24.0000 1.70131 0.850657 0.525720i \(-0.176204\pi\)
0.850657 + 0.525720i \(0.176204\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 3.00000 0.209529
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −25.0000 −1.72929
\(210\) 0 0
\(211\) −12.0000 −0.826114 −0.413057 0.910705i \(-0.635539\pi\)
−0.413057 + 0.910705i \(0.635539\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 3.00000 0.204598
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −2.00000 −0.133930 −0.0669650 0.997755i \(-0.521332\pi\)
−0.0669650 + 0.997755i \(0.521332\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −13.0000 −0.862840 −0.431420 0.902151i \(-0.641987\pi\)
−0.431420 + 0.902151i \(0.641987\pi\)
\(228\) 0 0
\(229\) −16.0000 −1.05731 −0.528655 0.848837i \(-0.677303\pi\)
−0.528655 + 0.848837i \(0.677303\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −11.0000 −0.720634 −0.360317 0.932830i \(-0.617331\pi\)
−0.360317 + 0.932830i \(0.617331\pi\)
\(234\) 0 0
\(235\) 4.00000 0.260931
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −6.00000 −0.388108 −0.194054 0.980991i \(-0.562164\pi\)
−0.194054 + 0.980991i \(0.562164\pi\)
\(240\) 0 0
\(241\) −23.0000 −1.48156 −0.740780 0.671748i \(-0.765544\pi\)
−0.740780 + 0.671748i \(0.765544\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 7.00000 0.447214
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −11.0000 −0.694314 −0.347157 0.937807i \(-0.612853\pi\)
−0.347157 + 0.937807i \(0.612853\pi\)
\(252\) 0 0
\(253\) −30.0000 −1.88608
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −31.0000 −1.93373 −0.966863 0.255294i \(-0.917828\pi\)
−0.966863 + 0.255294i \(0.917828\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 12.0000 0.739952 0.369976 0.929041i \(-0.379366\pi\)
0.369976 + 0.929041i \(0.379366\pi\)
\(264\) 0 0
\(265\) 6.00000 0.368577
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −30.0000 −1.82913 −0.914566 0.404436i \(-0.867468\pi\)
−0.914566 + 0.404436i \(0.867468\pi\)
\(270\) 0 0
\(271\) −24.0000 −1.45790 −0.728948 0.684569i \(-0.759990\pi\)
−0.728948 + 0.684569i \(0.759990\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 5.00000 0.301511
\(276\) 0 0
\(277\) −14.0000 −0.841178 −0.420589 0.907251i \(-0.638177\pi\)
−0.420589 + 0.907251i \(0.638177\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 10.0000 0.596550 0.298275 0.954480i \(-0.403589\pi\)
0.298275 + 0.954480i \(0.403589\pi\)
\(282\) 0 0
\(283\) 4.00000 0.237775 0.118888 0.992908i \(-0.462067\pi\)
0.118888 + 0.992908i \(0.462067\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −8.00000 −0.470588
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −10.0000 −0.584206 −0.292103 0.956387i \(-0.594355\pi\)
−0.292103 + 0.956387i \(0.594355\pi\)
\(294\) 0 0
\(295\) −3.00000 −0.174667
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −2.00000 −0.114520
\(306\) 0 0
\(307\) 7.00000 0.399511 0.199756 0.979846i \(-0.435985\pi\)
0.199756 + 0.979846i \(0.435985\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −10.0000 −0.567048 −0.283524 0.958965i \(-0.591504\pi\)
−0.283524 + 0.958965i \(0.591504\pi\)
\(312\) 0 0
\(313\) 7.00000 0.395663 0.197832 0.980236i \(-0.436610\pi\)
0.197832 + 0.980236i \(0.436610\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 28.0000 1.57264 0.786318 0.617822i \(-0.211985\pi\)
0.786318 + 0.617822i \(0.211985\pi\)
\(318\) 0 0
\(319\) −50.0000 −2.79946
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −15.0000 −0.834622
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −20.0000 −1.09930 −0.549650 0.835395i \(-0.685239\pi\)
−0.549650 + 0.835395i \(0.685239\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −11.0000 −0.600994
\(336\) 0 0
\(337\) −31.0000 −1.68868 −0.844339 0.535810i \(-0.820006\pi\)
−0.844339 + 0.535810i \(0.820006\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 10.0000 0.541530
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 3.00000 0.161048 0.0805242 0.996753i \(-0.474341\pi\)
0.0805242 + 0.996753i \(0.474341\pi\)
\(348\) 0 0
\(349\) 32.0000 1.71292 0.856460 0.516213i \(-0.172659\pi\)
0.856460 + 0.516213i \(0.172659\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 25.0000 1.33062 0.665308 0.746569i \(-0.268300\pi\)
0.665308 + 0.746569i \(0.268300\pi\)
\(354\) 0 0
\(355\) −14.0000 −0.743043
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 12.0000 0.633336 0.316668 0.948536i \(-0.397436\pi\)
0.316668 + 0.948536i \(0.397436\pi\)
\(360\) 0 0
\(361\) 6.00000 0.315789
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 15.0000 0.785136
\(366\) 0 0
\(367\) 8.00000 0.417597 0.208798 0.977959i \(-0.433045\pi\)
0.208798 + 0.977959i \(0.433045\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −26.0000 −1.34623 −0.673114 0.739538i \(-0.735044\pi\)
−0.673114 + 0.739538i \(0.735044\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 35.0000 1.79783 0.898915 0.438124i \(-0.144357\pi\)
0.898915 + 0.438124i \(0.144357\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −12.0000 −0.613171 −0.306586 0.951843i \(-0.599187\pi\)
−0.306586 + 0.951843i \(0.599187\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −24.0000 −1.21685 −0.608424 0.793612i \(-0.708198\pi\)
−0.608424 + 0.793612i \(0.708198\pi\)
\(390\) 0 0
\(391\) −18.0000 −0.910299
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 10.0000 0.503155
\(396\) 0 0
\(397\) 8.00000 0.401508 0.200754 0.979642i \(-0.435661\pi\)
0.200754 + 0.979642i \(0.435661\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −7.00000 −0.349563 −0.174782 0.984607i \(-0.555922\pi\)
−0.174782 + 0.984607i \(0.555922\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 20.0000 0.991363
\(408\) 0 0
\(409\) −7.00000 −0.346128 −0.173064 0.984911i \(-0.555367\pi\)
−0.173064 + 0.984911i \(0.555367\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −12.0000 −0.589057
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 38.0000 1.85201 0.926003 0.377515i \(-0.123221\pi\)
0.926003 + 0.377515i \(0.123221\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 3.00000 0.145521
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −28.0000 −1.34871 −0.674356 0.738406i \(-0.735579\pi\)
−0.674356 + 0.738406i \(0.735579\pi\)
\(432\) 0 0
\(433\) 27.0000 1.29754 0.648769 0.760986i \(-0.275284\pi\)
0.648769 + 0.760986i \(0.275284\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 30.0000 1.43509
\(438\) 0 0
\(439\) 14.0000 0.668184 0.334092 0.942541i \(-0.391570\pi\)
0.334092 + 0.942541i \(0.391570\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 29.0000 1.37783 0.688916 0.724841i \(-0.258087\pi\)
0.688916 + 0.724841i \(0.258087\pi\)
\(444\) 0 0
\(445\) −14.0000 −0.663664
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 9.00000 0.424736 0.212368 0.977190i \(-0.431882\pi\)
0.212368 + 0.977190i \(0.431882\pi\)
\(450\) 0 0
\(451\) −15.0000 −0.706322
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −25.0000 −1.16945 −0.584725 0.811231i \(-0.698798\pi\)
−0.584725 + 0.811231i \(0.698798\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 4.00000 0.186299 0.0931493 0.995652i \(-0.470307\pi\)
0.0931493 + 0.995652i \(0.470307\pi\)
\(462\) 0 0
\(463\) 4.00000 0.185896 0.0929479 0.995671i \(-0.470371\pi\)
0.0929479 + 0.995671i \(0.470371\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 11.0000 0.509019 0.254510 0.967070i \(-0.418086\pi\)
0.254510 + 0.967070i \(0.418086\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −15.0000 −0.689701
\(474\) 0 0
\(475\) −5.00000 −0.229416
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −26.0000 −1.18797 −0.593985 0.804476i \(-0.702446\pi\)
−0.593985 + 0.804476i \(0.702446\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 13.0000 0.590300
\(486\) 0 0
\(487\) −34.0000 −1.54069 −0.770344 0.637629i \(-0.779915\pi\)
−0.770344 + 0.637629i \(0.779915\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −15.0000 −0.676941 −0.338470 0.940977i \(-0.609909\pi\)
−0.338470 + 0.940977i \(0.609909\pi\)
\(492\) 0 0
\(493\) −30.0000 −1.35113
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 23.0000 1.02962 0.514811 0.857304i \(-0.327862\pi\)
0.514811 + 0.857304i \(0.327862\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −34.0000 −1.51599 −0.757993 0.652263i \(-0.773820\pi\)
−0.757993 + 0.652263i \(0.773820\pi\)
\(504\) 0 0
\(505\) 12.0000 0.533993
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 44.0000 1.95027 0.975133 0.221621i \(-0.0711348\pi\)
0.975133 + 0.221621i \(0.0711348\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −20.0000 −0.879599
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −27.0000 −1.18289 −0.591446 0.806345i \(-0.701443\pi\)
−0.591446 + 0.806345i \(0.701443\pi\)
\(522\) 0 0
\(523\) 4.00000 0.174908 0.0874539 0.996169i \(-0.472127\pi\)
0.0874539 + 0.996169i \(0.472127\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 6.00000 0.261364
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −17.0000 −0.734974
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −35.0000 −1.50756
\(540\) 0 0
\(541\) 24.0000 1.03184 0.515920 0.856637i \(-0.327450\pi\)
0.515920 + 0.856637i \(0.327450\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 12.0000 0.514024
\(546\) 0 0
\(547\) 9.00000 0.384812 0.192406 0.981315i \(-0.438371\pi\)
0.192406 + 0.981315i \(0.438371\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 50.0000 2.13007
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −5.00000 −0.210725 −0.105362 0.994434i \(-0.533600\pi\)
−0.105362 + 0.994434i \(0.533600\pi\)
\(564\) 0 0
\(565\) 6.00000 0.252422
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −15.0000 −0.628833 −0.314416 0.949285i \(-0.601809\pi\)
−0.314416 + 0.949285i \(0.601809\pi\)
\(570\) 0 0
\(571\) 3.00000 0.125546 0.0627730 0.998028i \(-0.480006\pi\)
0.0627730 + 0.998028i \(0.480006\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −6.00000 −0.250217
\(576\) 0 0
\(577\) −31.0000 −1.29055 −0.645273 0.763952i \(-0.723257\pi\)
−0.645273 + 0.763952i \(0.723257\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −30.0000 −1.24247
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 17.0000 0.701665 0.350833 0.936438i \(-0.385899\pi\)
0.350833 + 0.936438i \(0.385899\pi\)
\(588\) 0 0
\(589\) −10.0000 −0.412043
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 30.0000 1.23195 0.615976 0.787765i \(-0.288762\pi\)
0.615976 + 0.787765i \(0.288762\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −16.0000 −0.653742 −0.326871 0.945069i \(-0.605994\pi\)
−0.326871 + 0.945069i \(0.605994\pi\)
\(600\) 0 0
\(601\) −1.00000 −0.0407909 −0.0203954 0.999792i \(-0.506493\pi\)
−0.0203954 + 0.999792i \(0.506493\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −14.0000 −0.569181
\(606\) 0 0
\(607\) 32.0000 1.29884 0.649420 0.760430i \(-0.275012\pi\)
0.649420 + 0.760430i \(0.275012\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −2.00000 −0.0807792 −0.0403896 0.999184i \(-0.512860\pi\)
−0.0403896 + 0.999184i \(0.512860\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 25.0000 1.00646 0.503231 0.864152i \(-0.332144\pi\)
0.503231 + 0.864152i \(0.332144\pi\)
\(618\) 0 0
\(619\) 19.0000 0.763674 0.381837 0.924230i \(-0.375291\pi\)
0.381837 + 0.924230i \(0.375291\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 12.0000 0.478471
\(630\) 0 0
\(631\) −2.00000 −0.0796187 −0.0398094 0.999207i \(-0.512675\pi\)
−0.0398094 + 0.999207i \(0.512675\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 10.0000 0.396838
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 33.0000 1.30342 0.651711 0.758468i \(-0.274052\pi\)
0.651711 + 0.758468i \(0.274052\pi\)
\(642\) 0 0
\(643\) 41.0000 1.61688 0.808441 0.588577i \(-0.200312\pi\)
0.808441 + 0.588577i \(0.200312\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −30.0000 −1.17942 −0.589711 0.807614i \(-0.700758\pi\)
−0.589711 + 0.807614i \(0.700758\pi\)
\(648\) 0 0
\(649\) 15.0000 0.588802
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 34.0000 1.33052 0.665261 0.746611i \(-0.268320\pi\)
0.665261 + 0.746611i \(0.268320\pi\)
\(654\) 0 0
\(655\) −4.00000 −0.156293
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −44.0000 −1.71400 −0.856998 0.515319i \(-0.827673\pi\)
−0.856998 + 0.515319i \(0.827673\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 60.0000 2.32321
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 10.0000 0.386046
\(672\) 0 0
\(673\) −26.0000 −1.00223 −0.501113 0.865382i \(-0.667076\pi\)
−0.501113 + 0.865382i \(0.667076\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 28.0000 1.07613 0.538064 0.842904i \(-0.319156\pi\)
0.538064 + 0.842904i \(0.319156\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 13.0000 0.497431 0.248716 0.968577i \(-0.419992\pi\)
0.248716 + 0.968577i \(0.419992\pi\)
\(684\) 0 0
\(685\) −7.00000 −0.267456
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 8.00000 0.304334 0.152167 0.988355i \(-0.451375\pi\)
0.152167 + 0.988355i \(0.451375\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 7.00000 0.265525
\(696\) 0 0
\(697\) −9.00000 −0.340899
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −6.00000 −0.226617 −0.113308 0.993560i \(-0.536145\pi\)
−0.113308 + 0.993560i \(0.536145\pi\)
\(702\) 0 0
\(703\) −20.0000 −0.754314
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −46.0000 −1.72757 −0.863783 0.503864i \(-0.831911\pi\)
−0.863783 + 0.503864i \(0.831911\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −12.0000 −0.449404
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −10.0000 −0.371391
\(726\) 0 0
\(727\) −16.0000 −0.593407 −0.296704 0.954970i \(-0.595887\pi\)
−0.296704 + 0.954970i \(0.595887\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −9.00000 −0.332877
\(732\) 0 0
\(733\) 28.0000 1.03420 0.517102 0.855924i \(-0.327011\pi\)
0.517102 + 0.855924i \(0.327011\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 55.0000 2.02595
\(738\) 0 0
\(739\) −5.00000 −0.183928 −0.0919640 0.995762i \(-0.529314\pi\)
−0.0919640 + 0.995762i \(0.529314\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −34.0000 −1.24734 −0.623670 0.781688i \(-0.714359\pi\)
−0.623670 + 0.781688i \(0.714359\pi\)
\(744\) 0 0
\(745\) −4.00000 −0.146549
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −20.0000 −0.729810 −0.364905 0.931045i \(-0.618899\pi\)
−0.364905 + 0.931045i \(0.618899\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 22.0000 0.800662
\(756\) 0 0
\(757\) −26.0000 −0.944986 −0.472493 0.881334i \(-0.656646\pi\)
−0.472493 + 0.881334i \(0.656646\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 10.0000 0.362500 0.181250 0.983437i \(-0.441986\pi\)
0.181250 + 0.983437i \(0.441986\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −54.0000 −1.94729 −0.973645 0.228069i \(-0.926759\pi\)
−0.973645 + 0.228069i \(0.926759\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −30.0000 −1.07903 −0.539513 0.841978i \(-0.681391\pi\)
−0.539513 + 0.841978i \(0.681391\pi\)
\(774\) 0 0
\(775\) 2.00000 0.0718421
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 15.0000 0.537431
\(780\) 0 0
\(781\) 70.0000 2.50480
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −28.0000 −0.998092 −0.499046 0.866575i \(-0.666316\pi\)
−0.499046 + 0.866575i \(0.666316\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 32.0000 1.13350 0.566749 0.823890i \(-0.308201\pi\)
0.566749 + 0.823890i \(0.308201\pi\)
\(798\) 0 0
\(799\) −12.0000 −0.424529
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −75.0000 −2.64669
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −15.0000 −0.527372 −0.263686 0.964609i \(-0.584938\pi\)
−0.263686 + 0.964609i \(0.584938\pi\)
\(810\) 0 0
\(811\) −35.0000 −1.22902 −0.614508 0.788911i \(-0.710645\pi\)
−0.614508 + 0.788911i \(0.710645\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 16.0000 0.560456
\(816\) 0 0
\(817\) 15.0000 0.524784
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 4.00000 0.139601 0.0698005 0.997561i \(-0.477764\pi\)
0.0698005 + 0.997561i \(0.477764\pi\)
\(822\) 0 0
\(823\) −12.0000 −0.418294 −0.209147 0.977884i \(-0.567069\pi\)
−0.209147 + 0.977884i \(0.567069\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 12.0000 0.417281 0.208640 0.977992i \(-0.433096\pi\)
0.208640 + 0.977992i \(0.433096\pi\)
\(828\) 0 0
\(829\) 40.0000 1.38926 0.694629 0.719368i \(-0.255569\pi\)
0.694629 + 0.719368i \(0.255569\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −21.0000 −0.727607
\(834\) 0 0
\(835\) −22.0000 −0.761341
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −14.0000 −0.483334 −0.241667 0.970359i \(-0.577694\pi\)
−0.241667 + 0.970359i \(0.577694\pi\)
\(840\) 0 0
\(841\) 71.0000 2.44828
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 13.0000 0.447214
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −24.0000 −0.822709
\(852\) 0 0
\(853\) 32.0000 1.09566 0.547830 0.836590i \(-0.315454\pi\)
0.547830 + 0.836590i \(0.315454\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −2.00000 −0.0683187 −0.0341593 0.999416i \(-0.510875\pi\)
−0.0341593 + 0.999416i \(0.510875\pi\)
\(858\) 0 0
\(859\) 11.0000 0.375315 0.187658 0.982235i \(-0.439910\pi\)
0.187658 + 0.982235i \(0.439910\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 26.0000 0.885050 0.442525 0.896756i \(-0.354083\pi\)
0.442525 + 0.896756i \(0.354083\pi\)
\(864\) 0 0
\(865\) 2.00000 0.0680020
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −50.0000 −1.69613
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 22.0000 0.742887 0.371444 0.928456i \(-0.378863\pi\)
0.371444 + 0.928456i \(0.378863\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −2.00000 −0.0673817 −0.0336909 0.999432i \(-0.510726\pi\)
−0.0336909 + 0.999432i \(0.510726\pi\)
\(882\) 0 0
\(883\) 47.0000 1.58168 0.790838 0.612026i \(-0.209645\pi\)
0.790838 + 0.612026i \(0.209645\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 6.00000 0.201460 0.100730 0.994914i \(-0.467882\pi\)
0.100730 + 0.994914i \(0.467882\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 20.0000 0.669274
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −20.0000 −0.667037
\(900\) 0 0
\(901\) −18.0000 −0.599667
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 4.00000 0.132964
\(906\) 0 0
\(907\) −13.0000 −0.431658 −0.215829 0.976431i \(-0.569245\pi\)
−0.215829 + 0.976431i \(0.569245\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −6.00000 −0.198789 −0.0993944 0.995048i \(-0.531691\pi\)
−0.0993944 + 0.995048i \(0.531691\pi\)
\(912\) 0 0
\(913\) 60.0000 1.98571
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −14.0000 −0.461817 −0.230909 0.972975i \(-0.574170\pi\)
−0.230909 + 0.972975i \(0.574170\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 4.00000 0.131519
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 30.0000 0.984268 0.492134 0.870519i \(-0.336217\pi\)
0.492134 + 0.870519i \(0.336217\pi\)
\(930\) 0 0
\(931\) 35.0000 1.14708
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −15.0000 −0.490552
\(936\) 0 0
\(937\) −42.0000 −1.37208 −0.686040 0.727564i \(-0.740653\pi\)
−0.686040 + 0.727564i \(0.740653\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −16.0000 −0.521585 −0.260793 0.965395i \(-0.583984\pi\)
−0.260793 + 0.965395i \(0.583984\pi\)
\(942\) 0 0
\(943\) 18.0000 0.586161
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 21.0000 0.682408 0.341204 0.939989i \(-0.389165\pi\)
0.341204 + 0.939989i \(0.389165\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −13.0000 −0.421111 −0.210556 0.977582i \(-0.567527\pi\)
−0.210556 + 0.977582i \(0.567527\pi\)
\(954\) 0 0
\(955\) 12.0000 0.388311
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −27.0000 −0.870968
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −19.0000 −0.611632
\(966\) 0 0
\(967\) 6.00000 0.192947 0.0964735 0.995336i \(-0.469244\pi\)
0.0964735 + 0.995336i \(0.469244\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −12.0000 −0.385098 −0.192549 0.981287i \(-0.561675\pi\)
−0.192549 + 0.981287i \(0.561675\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 23.0000 0.735835 0.367918 0.929858i \(-0.380071\pi\)
0.367918 + 0.929858i \(0.380071\pi\)
\(978\) 0 0
\(979\) 70.0000 2.23721
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −52.0000 −1.65854 −0.829271 0.558846i \(-0.811244\pi\)
−0.829271 + 0.558846i \(0.811244\pi\)
\(984\) 0 0
\(985\) 8.00000 0.254901
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 18.0000 0.572367
\(990\) 0 0
\(991\) −28.0000 −0.889449 −0.444725 0.895667i \(-0.646698\pi\)
−0.444725 + 0.895667i \(0.646698\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −24.0000 −0.760851
\(996\) 0 0
\(997\) −42.0000 −1.33015 −0.665077 0.746775i \(-0.731601\pi\)
−0.665077 + 0.746775i \(0.731601\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6480.2.a.e.1.1 1
3.2 odd 2 6480.2.a.q.1.1 1
4.3 odd 2 3240.2.a.b.1.1 1
9.2 odd 6 2160.2.q.c.1441.1 2
9.4 even 3 720.2.q.e.241.1 2
9.5 odd 6 2160.2.q.c.721.1 2
9.7 even 3 720.2.q.e.481.1 2
12.11 even 2 3240.2.a.f.1.1 1
36.7 odd 6 360.2.q.a.121.1 2
36.11 even 6 1080.2.q.a.361.1 2
36.23 even 6 1080.2.q.a.721.1 2
36.31 odd 6 360.2.q.a.241.1 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
360.2.q.a.121.1 2 36.7 odd 6
360.2.q.a.241.1 yes 2 36.31 odd 6
720.2.q.e.241.1 2 9.4 even 3
720.2.q.e.481.1 2 9.7 even 3
1080.2.q.a.361.1 2 36.11 even 6
1080.2.q.a.721.1 2 36.23 even 6
2160.2.q.c.721.1 2 9.5 odd 6
2160.2.q.c.1441.1 2 9.2 odd 6
3240.2.a.b.1.1 1 4.3 odd 2
3240.2.a.f.1.1 1 12.11 even 2
6480.2.a.e.1.1 1 1.1 even 1 trivial
6480.2.a.q.1.1 1 3.2 odd 2