Properties

Label 6480.2.a.cb.1.3
Level $6480$
Weight $2$
Character 6480.1
Self dual yes
Analytic conductor $51.743$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6480,2,Mod(1,6480)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6480, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6480.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6480 = 2^{4} \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6480.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(51.7430605098\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.29268.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 9x^{2} + 5x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 360)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.85121\) of defining polynomial
Character \(\chi\) \(=\) 6480.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{5} +0.331895 q^{7} -4.40761 q^{11} +6.98062 q^{13} -3.07139 q^{17} +7.55364 q^{19} -1.66811 q^{23} +1.00000 q^{25} +3.57301 q^{29} -5.64441 q^{31} +0.331895 q^{35} +7.64441 q^{37} +5.49838 q^{41} +7.07139 q^{43} -7.97630 q^{47} -6.88985 q^{49} -5.47900 q^{53} -4.40761 q^{55} +7.38823 q^{59} +0.592395 q^{61} +6.98062 q^{65} -5.22174 q^{67} -8.98062 q^{71} -8.05202 q^{73} -1.46286 q^{77} +10.9968 q^{79} +6.29314 q^{83} -3.07139 q^{85} +11.9060 q^{89} +2.31683 q^{91} +7.55364 q^{95} -1.24544 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{5} + q^{7} - q^{11} + 4 q^{13} + 5 q^{17} - q^{19} - 7 q^{23} + 4 q^{25} + 7 q^{29} + 2 q^{31} + q^{35} + 6 q^{37} + 12 q^{41} + 11 q^{43} - 7 q^{47} + 3 q^{49} + 12 q^{53} - q^{55} - 11 q^{59}+ \cdots + q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 0.331895 0.125444 0.0627222 0.998031i \(-0.480022\pi\)
0.0627222 + 0.998031i \(0.480022\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −4.40761 −1.32894 −0.664472 0.747314i \(-0.731343\pi\)
−0.664472 + 0.747314i \(0.731343\pi\)
\(12\) 0 0
\(13\) 6.98062 1.93608 0.968038 0.250804i \(-0.0806950\pi\)
0.968038 + 0.250804i \(0.0806950\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.07139 −0.744923 −0.372461 0.928048i \(-0.621486\pi\)
−0.372461 + 0.928048i \(0.621486\pi\)
\(18\) 0 0
\(19\) 7.55364 1.73292 0.866461 0.499244i \(-0.166389\pi\)
0.866461 + 0.499244i \(0.166389\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1.66811 −0.347824 −0.173912 0.984761i \(-0.555641\pi\)
−0.173912 + 0.984761i \(0.555641\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.57301 0.663492 0.331746 0.943369i \(-0.392362\pi\)
0.331746 + 0.943369i \(0.392362\pi\)
\(30\) 0 0
\(31\) −5.64441 −1.01377 −0.506883 0.862015i \(-0.669202\pi\)
−0.506883 + 0.862015i \(0.669202\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0.331895 0.0561004
\(36\) 0 0
\(37\) 7.64441 1.25673 0.628367 0.777917i \(-0.283724\pi\)
0.628367 + 0.777917i \(0.283724\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 5.49838 0.858703 0.429351 0.903138i \(-0.358742\pi\)
0.429351 + 0.903138i \(0.358742\pi\)
\(42\) 0 0
\(43\) 7.07139 1.07838 0.539189 0.842185i \(-0.318731\pi\)
0.539189 + 0.842185i \(0.318731\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −7.97630 −1.16346 −0.581732 0.813381i \(-0.697625\pi\)
−0.581732 + 0.813381i \(0.697625\pi\)
\(48\) 0 0
\(49\) −6.88985 −0.984264
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −5.47900 −0.752599 −0.376299 0.926498i \(-0.622804\pi\)
−0.376299 + 0.926498i \(0.622804\pi\)
\(54\) 0 0
\(55\) −4.40761 −0.594321
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 7.38823 0.961865 0.480933 0.876758i \(-0.340298\pi\)
0.480933 + 0.876758i \(0.340298\pi\)
\(60\) 0 0
\(61\) 0.592395 0.0758484 0.0379242 0.999281i \(-0.487925\pi\)
0.0379242 + 0.999281i \(0.487925\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 6.98062 0.865839
\(66\) 0 0
\(67\) −5.22174 −0.637937 −0.318969 0.947765i \(-0.603336\pi\)
−0.318969 + 0.947765i \(0.603336\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −8.98062 −1.06580 −0.532902 0.846177i \(-0.678898\pi\)
−0.532902 + 0.846177i \(0.678898\pi\)
\(72\) 0 0
\(73\) −8.05202 −0.942417 −0.471209 0.882022i \(-0.656182\pi\)
−0.471209 + 0.882022i \(0.656182\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −1.46286 −0.166708
\(78\) 0 0
\(79\) 10.9968 1.23723 0.618616 0.785693i \(-0.287694\pi\)
0.618616 + 0.785693i \(0.287694\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 6.29314 0.690761 0.345381 0.938463i \(-0.387750\pi\)
0.345381 + 0.938463i \(0.387750\pi\)
\(84\) 0 0
\(85\) −3.07139 −0.333140
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 11.9060 1.26203 0.631016 0.775770i \(-0.282638\pi\)
0.631016 + 0.775770i \(0.282638\pi\)
\(90\) 0 0
\(91\) 2.31683 0.242870
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 7.55364 0.774987
\(96\) 0 0
\(97\) −1.24544 −0.126455 −0.0632274 0.997999i \(-0.520139\pi\)
−0.0632274 + 0.997999i \(0.520139\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 4.66379 0.464064 0.232032 0.972708i \(-0.425463\pi\)
0.232032 + 0.972708i \(0.425463\pi\)
\(102\) 0 0
\(103\) 4.16541 0.410430 0.205215 0.978717i \(-0.434211\pi\)
0.205215 + 0.978717i \(0.434211\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 6.57409 0.635541 0.317771 0.948168i \(-0.397066\pi\)
0.317771 + 0.948168i \(0.397066\pi\)
\(108\) 0 0
\(109\) 0.743816 0.0712446 0.0356223 0.999365i \(-0.488659\pi\)
0.0356223 + 0.999365i \(0.488659\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 16.6250 1.56395 0.781976 0.623309i \(-0.214212\pi\)
0.781976 + 0.623309i \(0.214212\pi\)
\(114\) 0 0
\(115\) −1.66811 −0.155552
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −1.01938 −0.0934464
\(120\) 0 0
\(121\) 8.42699 0.766090
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −4.79152 −0.425178 −0.212589 0.977142i \(-0.568190\pi\)
−0.212589 + 0.977142i \(0.568190\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −19.7797 −1.72816 −0.864080 0.503355i \(-0.832099\pi\)
−0.864080 + 0.503355i \(0.832099\pi\)
\(132\) 0 0
\(133\) 2.50701 0.217385
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 18.5343 1.58349 0.791744 0.610853i \(-0.209173\pi\)
0.791744 + 0.610853i \(0.209173\pi\)
\(138\) 0 0
\(139\) −5.37959 −0.456291 −0.228146 0.973627i \(-0.573266\pi\)
−0.228146 + 0.973627i \(0.573266\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −30.7678 −2.57293
\(144\) 0 0
\(145\) 3.57301 0.296723
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 11.0359 0.904094 0.452047 0.891994i \(-0.350694\pi\)
0.452047 + 0.891994i \(0.350694\pi\)
\(150\) 0 0
\(151\) 1.50162 0.122200 0.0611001 0.998132i \(-0.480539\pi\)
0.0611001 + 0.998132i \(0.480539\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −5.64441 −0.453370
\(156\) 0 0
\(157\) −23.6218 −1.88522 −0.942612 0.333890i \(-0.891639\pi\)
−0.942612 + 0.333890i \(0.891639\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −0.553635 −0.0436326
\(162\) 0 0
\(163\) 9.16217 0.717636 0.358818 0.933407i \(-0.383180\pi\)
0.358818 + 0.933407i \(0.383180\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0.648726 0.0501999 0.0250999 0.999685i \(-0.492010\pi\)
0.0250999 + 0.999685i \(0.492010\pi\)
\(168\) 0 0
\(169\) 35.7291 2.74839
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 8.81521 0.670208 0.335104 0.942181i \(-0.391229\pi\)
0.335104 + 0.942181i \(0.391229\pi\)
\(174\) 0 0
\(175\) 0.331895 0.0250889
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −9.16217 −0.684813 −0.342406 0.939552i \(-0.611242\pi\)
−0.342406 + 0.939552i \(0.611242\pi\)
\(180\) 0 0
\(181\) 13.5730 1.00887 0.504437 0.863448i \(-0.331700\pi\)
0.504437 + 0.863448i \(0.331700\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 7.64441 0.562028
\(186\) 0 0
\(187\) 13.5375 0.989960
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 10.2694 0.743071 0.371535 0.928419i \(-0.378831\pi\)
0.371535 + 0.928419i \(0.378831\pi\)
\(192\) 0 0
\(193\) 9.07139 0.652973 0.326487 0.945202i \(-0.394135\pi\)
0.326487 + 0.945202i \(0.394135\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −4.80658 −0.342455 −0.171227 0.985232i \(-0.554773\pi\)
−0.171227 + 0.985232i \(0.554773\pi\)
\(198\) 0 0
\(199\) 18.4596 1.30857 0.654284 0.756249i \(-0.272970\pi\)
0.654284 + 0.756249i \(0.272970\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 1.18586 0.0832314
\(204\) 0 0
\(205\) 5.49838 0.384024
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −33.2934 −2.30296
\(210\) 0 0
\(211\) −0.355590 −0.0244798 −0.0122399 0.999925i \(-0.503896\pi\)
−0.0122399 + 0.999925i \(0.503896\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 7.07139 0.482265
\(216\) 0 0
\(217\) −1.87335 −0.127171
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −21.4402 −1.44223
\(222\) 0 0
\(223\) −3.30388 −0.221244 −0.110622 0.993863i \(-0.535284\pi\)
−0.110622 + 0.993863i \(0.535284\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 4.73842 0.314500 0.157250 0.987559i \(-0.449737\pi\)
0.157250 + 0.987559i \(0.449737\pi\)
\(228\) 0 0
\(229\) 19.0606 1.25956 0.629781 0.776772i \(-0.283144\pi\)
0.629781 + 0.776772i \(0.283144\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −13.3721 −0.876035 −0.438017 0.898967i \(-0.644319\pi\)
−0.438017 + 0.898967i \(0.644319\pi\)
\(234\) 0 0
\(235\) −7.97630 −0.520317
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −19.2975 −1.24825 −0.624124 0.781325i \(-0.714544\pi\)
−0.624124 + 0.781325i \(0.714544\pi\)
\(240\) 0 0
\(241\) 19.9806 1.28706 0.643532 0.765419i \(-0.277468\pi\)
0.643532 + 0.765419i \(0.277468\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −6.88985 −0.440176
\(246\) 0 0
\(247\) 52.7291 3.35507
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0.889846 0.0561666 0.0280833 0.999606i \(-0.491060\pi\)
0.0280833 + 0.999606i \(0.491060\pi\)
\(252\) 0 0
\(253\) 7.35235 0.462238
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 16.7244 1.04324 0.521621 0.853177i \(-0.325328\pi\)
0.521621 + 0.853177i \(0.325328\pi\)
\(258\) 0 0
\(259\) 2.53714 0.157650
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 7.12341 0.439248 0.219624 0.975585i \(-0.429517\pi\)
0.219624 + 0.975585i \(0.429517\pi\)
\(264\) 0 0
\(265\) −5.47900 −0.336572
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 23.5030 1.43300 0.716502 0.697585i \(-0.245742\pi\)
0.716502 + 0.697585i \(0.245742\pi\)
\(270\) 0 0
\(271\) 8.49838 0.516240 0.258120 0.966113i \(-0.416897\pi\)
0.258120 + 0.966113i \(0.416897\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −4.40761 −0.265789
\(276\) 0 0
\(277\) −22.2307 −1.33571 −0.667856 0.744290i \(-0.732788\pi\)
−0.667856 + 0.744290i \(0.732788\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −11.7406 −0.700384 −0.350192 0.936678i \(-0.613884\pi\)
−0.350192 + 0.936678i \(0.613884\pi\)
\(282\) 0 0
\(283\) 23.7334 1.41080 0.705401 0.708808i \(-0.250767\pi\)
0.705401 + 0.708808i \(0.250767\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1.82488 0.107719
\(288\) 0 0
\(289\) −7.56653 −0.445090
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −20.2694 −1.18415 −0.592077 0.805882i \(-0.701692\pi\)
−0.592077 + 0.805882i \(0.701692\pi\)
\(294\) 0 0
\(295\) 7.38823 0.430159
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −11.6444 −0.673414
\(300\) 0 0
\(301\) 2.34696 0.135276
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0.592395 0.0339204
\(306\) 0 0
\(307\) −2.05094 −0.117053 −0.0585267 0.998286i \(-0.518640\pi\)
−0.0585267 + 0.998286i \(0.518640\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 19.7958 1.12252 0.561259 0.827640i \(-0.310317\pi\)
0.561259 + 0.827640i \(0.310317\pi\)
\(312\) 0 0
\(313\) −0.115545 −0.00653102 −0.00326551 0.999995i \(-0.501039\pi\)
−0.00326551 + 0.999995i \(0.501039\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 23.7872 1.33602 0.668011 0.744151i \(-0.267146\pi\)
0.668011 + 0.744151i \(0.267146\pi\)
\(318\) 0 0
\(319\) −15.7484 −0.881743
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −23.2002 −1.29089
\(324\) 0 0
\(325\) 6.98062 0.387215
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −2.64729 −0.145950
\(330\) 0 0
\(331\) −34.6250 −1.90316 −0.951582 0.307395i \(-0.900543\pi\)
−0.951582 + 0.307395i \(0.900543\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −5.22174 −0.285294
\(336\) 0 0
\(337\) −10.5343 −0.573837 −0.286919 0.957955i \(-0.592631\pi\)
−0.286919 + 0.957955i \(0.592631\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 24.8783 1.34724
\(342\) 0 0
\(343\) −4.60997 −0.248915
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 5.89309 0.316357 0.158179 0.987410i \(-0.449438\pi\)
0.158179 + 0.987410i \(0.449438\pi\)
\(348\) 0 0
\(349\) −23.0133 −1.23187 −0.615936 0.787796i \(-0.711222\pi\)
−0.615936 + 0.787796i \(0.711222\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −14.7244 −0.783703 −0.391851 0.920029i \(-0.628165\pi\)
−0.391851 + 0.920029i \(0.628165\pi\)
\(354\) 0 0
\(355\) −8.98062 −0.476642
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −4.02262 −0.212306 −0.106153 0.994350i \(-0.533853\pi\)
−0.106153 + 0.994350i \(0.533853\pi\)
\(360\) 0 0
\(361\) 38.0574 2.00302
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −8.05202 −0.421462
\(366\) 0 0
\(367\) 8.87659 0.463354 0.231677 0.972793i \(-0.425579\pi\)
0.231677 + 0.972793i \(0.425579\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −1.81845 −0.0944093
\(372\) 0 0
\(373\) 30.7291 1.59109 0.795545 0.605894i \(-0.207185\pi\)
0.795545 + 0.605894i \(0.207185\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 24.9419 1.28457
\(378\) 0 0
\(379\) 4.24004 0.217796 0.108898 0.994053i \(-0.465268\pi\)
0.108898 + 0.994053i \(0.465268\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −32.0879 −1.63961 −0.819807 0.572639i \(-0.805920\pi\)
−0.819807 + 0.572639i \(0.805920\pi\)
\(384\) 0 0
\(385\) −1.46286 −0.0745543
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −28.3333 −1.43656 −0.718278 0.695756i \(-0.755070\pi\)
−0.718278 + 0.695756i \(0.755070\pi\)
\(390\) 0 0
\(391\) 5.12341 0.259102
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 10.9968 0.553307
\(396\) 0 0
\(397\) 13.1395 0.659455 0.329728 0.944076i \(-0.393043\pi\)
0.329728 + 0.944076i \(0.393043\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 15.1894 0.758523 0.379262 0.925290i \(-0.376178\pi\)
0.379262 + 0.925290i \(0.376178\pi\)
\(402\) 0 0
\(403\) −39.4015 −1.96273
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −33.6935 −1.67013
\(408\) 0 0
\(409\) −10.2013 −0.504421 −0.252211 0.967672i \(-0.581158\pi\)
−0.252211 + 0.967672i \(0.581158\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 2.45211 0.120661
\(414\) 0 0
\(415\) 6.29314 0.308918
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −12.6412 −0.617562 −0.308781 0.951133i \(-0.599921\pi\)
−0.308781 + 0.951133i \(0.599921\pi\)
\(420\) 0 0
\(421\) 1.00324 0.0488949 0.0244475 0.999701i \(-0.492217\pi\)
0.0244475 + 0.999701i \(0.492217\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −3.07139 −0.148985
\(426\) 0 0
\(427\) 0.196613 0.00951475
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 39.0685 1.88186 0.940932 0.338596i \(-0.109952\pi\)
0.940932 + 0.338596i \(0.109952\pi\)
\(432\) 0 0
\(433\) −29.6663 −1.42567 −0.712836 0.701331i \(-0.752589\pi\)
−0.712836 + 0.701331i \(0.752589\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −12.6003 −0.602752
\(438\) 0 0
\(439\) 32.2447 1.53895 0.769477 0.638674i \(-0.220517\pi\)
0.769477 + 0.638674i \(0.220517\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 4.44744 0.211304 0.105652 0.994403i \(-0.466307\pi\)
0.105652 + 0.994403i \(0.466307\pi\)
\(444\) 0 0
\(445\) 11.9060 0.564398
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −13.0639 −0.616523 −0.308261 0.951302i \(-0.599747\pi\)
−0.308261 + 0.951302i \(0.599747\pi\)
\(450\) 0 0
\(451\) −24.2347 −1.14117
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 2.31683 0.108615
\(456\) 0 0
\(457\) 16.3301 0.763889 0.381945 0.924185i \(-0.375255\pi\)
0.381945 + 0.924185i \(0.375255\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 21.5278 1.00265 0.501324 0.865260i \(-0.332846\pi\)
0.501324 + 0.865260i \(0.332846\pi\)
\(462\) 0 0
\(463\) 22.3168 1.03715 0.518576 0.855032i \(-0.326462\pi\)
0.518576 + 0.855032i \(0.326462\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 36.5203 1.68996 0.844978 0.534801i \(-0.179613\pi\)
0.844978 + 0.534801i \(0.179613\pi\)
\(468\) 0 0
\(469\) −1.73307 −0.0800256
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −31.1679 −1.43310
\(474\) 0 0
\(475\) 7.55364 0.346585
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −8.95800 −0.409301 −0.204651 0.978835i \(-0.565606\pi\)
−0.204651 + 0.978835i \(0.565606\pi\)
\(480\) 0 0
\(481\) 53.3627 2.43313
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −1.24544 −0.0565523
\(486\) 0 0
\(487\) 29.5016 1.33685 0.668423 0.743781i \(-0.266970\pi\)
0.668423 + 0.743781i \(0.266970\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 10.3527 0.467211 0.233606 0.972331i \(-0.424948\pi\)
0.233606 + 0.972331i \(0.424948\pi\)
\(492\) 0 0
\(493\) −10.9741 −0.494250
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −2.98062 −0.133699
\(498\) 0 0
\(499\) −22.3850 −1.00209 −0.501045 0.865421i \(-0.667051\pi\)
−0.501045 + 0.865421i \(0.667051\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 42.8654 1.91127 0.955637 0.294546i \(-0.0951685\pi\)
0.955637 + 0.294546i \(0.0951685\pi\)
\(504\) 0 0
\(505\) 4.66379 0.207536
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −7.09077 −0.314293 −0.157147 0.987575i \(-0.550229\pi\)
−0.157147 + 0.987575i \(0.550229\pi\)
\(510\) 0 0
\(511\) −2.67242 −0.118221
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 4.16541 0.183550
\(516\) 0 0
\(517\) 35.1564 1.54618
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −39.5863 −1.73431 −0.867153 0.498042i \(-0.834053\pi\)
−0.867153 + 0.498042i \(0.834053\pi\)
\(522\) 0 0
\(523\) −25.9375 −1.13417 −0.567085 0.823659i \(-0.691929\pi\)
−0.567085 + 0.823659i \(0.691929\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 17.3362 0.755177
\(528\) 0 0
\(529\) −20.2174 −0.879018
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 38.3821 1.66251
\(534\) 0 0
\(535\) 6.57409 0.284223
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 30.3677 1.30803
\(540\) 0 0
\(541\) −38.7929 −1.66784 −0.833920 0.551886i \(-0.813908\pi\)
−0.833920 + 0.551886i \(0.813908\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0.743816 0.0318616
\(546\) 0 0
\(547\) 10.0531 0.429839 0.214920 0.976632i \(-0.431051\pi\)
0.214920 + 0.976632i \(0.431051\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 26.9893 1.14978
\(552\) 0 0
\(553\) 3.64977 0.155204
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −23.4316 −0.992829 −0.496415 0.868086i \(-0.665350\pi\)
−0.496415 + 0.868086i \(0.665350\pi\)
\(558\) 0 0
\(559\) 49.3627 2.08782
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 41.5160 1.74969 0.874844 0.484404i \(-0.160964\pi\)
0.874844 + 0.484404i \(0.160964\pi\)
\(564\) 0 0
\(565\) 16.6250 0.699420
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −35.1980 −1.47558 −0.737789 0.675031i \(-0.764130\pi\)
−0.737789 + 0.675031i \(0.764130\pi\)
\(570\) 0 0
\(571\) 1.37959 0.0577342 0.0288671 0.999583i \(-0.490810\pi\)
0.0288671 + 0.999583i \(0.490810\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −1.66811 −0.0695648
\(576\) 0 0
\(577\) −17.3322 −0.721549 −0.360775 0.932653i \(-0.617488\pi\)
−0.360775 + 0.932653i \(0.617488\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 2.08866 0.0866521
\(582\) 0 0
\(583\) 24.1493 1.00016
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 45.6900 1.88583 0.942914 0.333037i \(-0.108073\pi\)
0.942914 + 0.333037i \(0.108073\pi\)
\(588\) 0 0
\(589\) −42.6358 −1.75678
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 10.4661 0.429791 0.214896 0.976637i \(-0.431059\pi\)
0.214896 + 0.976637i \(0.431059\pi\)
\(594\) 0 0
\(595\) −1.01938 −0.0417905
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −21.1395 −0.863739 −0.431869 0.901936i \(-0.642146\pi\)
−0.431869 + 0.901936i \(0.642146\pi\)
\(600\) 0 0
\(601\) −10.6684 −0.435174 −0.217587 0.976041i \(-0.569819\pi\)
−0.217587 + 0.976041i \(0.569819\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 8.42699 0.342606
\(606\) 0 0
\(607\) −1.30388 −0.0529230 −0.0264615 0.999650i \(-0.508424\pi\)
−0.0264615 + 0.999650i \(0.508424\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −55.6796 −2.25255
\(612\) 0 0
\(613\) 30.9741 1.25103 0.625517 0.780211i \(-0.284888\pi\)
0.625517 + 0.780211i \(0.284888\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −2.58380 −0.104020 −0.0520099 0.998647i \(-0.516563\pi\)
−0.0520099 + 0.998647i \(0.516563\pi\)
\(618\) 0 0
\(619\) 0.930756 0.0374102 0.0187051 0.999825i \(-0.494046\pi\)
0.0187051 + 0.999825i \(0.494046\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 3.95153 0.158315
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −23.4790 −0.936169
\(630\) 0 0
\(631\) −20.6250 −0.821069 −0.410535 0.911845i \(-0.634658\pi\)
−0.410535 + 0.911845i \(0.634658\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −4.79152 −0.190145
\(636\) 0 0
\(637\) −48.0954 −1.90561
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 23.9031 0.944116 0.472058 0.881568i \(-0.343511\pi\)
0.472058 + 0.881568i \(0.343511\pi\)
\(642\) 0 0
\(643\) −2.25726 −0.0890176 −0.0445088 0.999009i \(-0.514172\pi\)
−0.0445088 + 0.999009i \(0.514172\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 12.7262 0.500320 0.250160 0.968204i \(-0.419517\pi\)
0.250160 + 0.968204i \(0.419517\pi\)
\(648\) 0 0
\(649\) −32.5644 −1.27826
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 1.17080 0.0458170 0.0229085 0.999738i \(-0.492707\pi\)
0.0229085 + 0.999738i \(0.492707\pi\)
\(654\) 0 0
\(655\) −19.7797 −0.772857
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −34.7355 −1.35310 −0.676552 0.736395i \(-0.736527\pi\)
−0.676552 + 0.736395i \(0.736527\pi\)
\(660\) 0 0
\(661\) 35.1460 1.36702 0.683511 0.729940i \(-0.260452\pi\)
0.683511 + 0.729940i \(0.260452\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 2.50701 0.0972177
\(666\) 0 0
\(667\) −5.96017 −0.230779
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −2.61104 −0.100798
\(672\) 0 0
\(673\) −27.2748 −1.05137 −0.525684 0.850680i \(-0.676190\pi\)
−0.525684 + 0.850680i \(0.676190\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 9.13204 0.350973 0.175486 0.984482i \(-0.443850\pi\)
0.175486 + 0.984482i \(0.443850\pi\)
\(678\) 0 0
\(679\) −0.413354 −0.0158631
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 29.0326 1.11090 0.555451 0.831549i \(-0.312545\pi\)
0.555451 + 0.831549i \(0.312545\pi\)
\(684\) 0 0
\(685\) 18.5343 0.708158
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −38.2468 −1.45709
\(690\) 0 0
\(691\) 16.7765 0.638206 0.319103 0.947720i \(-0.396618\pi\)
0.319103 + 0.947720i \(0.396618\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −5.37959 −0.204060
\(696\) 0 0
\(697\) −16.8877 −0.639667
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 2.93400 0.110816 0.0554078 0.998464i \(-0.482354\pi\)
0.0554078 + 0.998464i \(0.482354\pi\)
\(702\) 0 0
\(703\) 57.7431 2.17782
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1.54789 0.0582143
\(708\) 0 0
\(709\) 27.8586 1.04625 0.523126 0.852256i \(-0.324766\pi\)
0.523126 + 0.852256i \(0.324766\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 9.41547 0.352612
\(714\) 0 0
\(715\) −30.7678 −1.15065
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −6.95585 −0.259409 −0.129705 0.991553i \(-0.541403\pi\)
−0.129705 + 0.991553i \(0.541403\pi\)
\(720\) 0 0
\(721\) 1.38248 0.0514861
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 3.57301 0.132698
\(726\) 0 0
\(727\) 5.02046 0.186198 0.0930992 0.995657i \(-0.470323\pi\)
0.0930992 + 0.995657i \(0.470323\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −21.7190 −0.803308
\(732\) 0 0
\(733\) −20.4736 −0.756210 −0.378105 0.925763i \(-0.623424\pi\)
−0.378105 + 0.925763i \(0.623424\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 23.0154 0.847782
\(738\) 0 0
\(739\) −51.1614 −1.88200 −0.941002 0.338401i \(-0.890114\pi\)
−0.941002 + 0.338401i \(0.890114\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 6.14171 0.225318 0.112659 0.993634i \(-0.464063\pi\)
0.112659 + 0.993634i \(0.464063\pi\)
\(744\) 0 0
\(745\) 11.0359 0.404323
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 2.18191 0.0797251
\(750\) 0 0
\(751\) 15.0911 0.550683 0.275342 0.961346i \(-0.411209\pi\)
0.275342 + 0.961346i \(0.411209\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 1.50162 0.0546496
\(756\) 0 0
\(757\) −2.87659 −0.104551 −0.0522757 0.998633i \(-0.516647\pi\)
−0.0522757 + 0.998633i \(0.516647\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0.238955 0.00866212 0.00433106 0.999991i \(-0.498621\pi\)
0.00433106 + 0.999991i \(0.498621\pi\)
\(762\) 0 0
\(763\) 0.246869 0.00893724
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 51.5744 1.86224
\(768\) 0 0
\(769\) −3.85859 −0.139144 −0.0695722 0.997577i \(-0.522163\pi\)
−0.0695722 + 0.997577i \(0.522163\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −5.22355 −0.187878 −0.0939390 0.995578i \(-0.529946\pi\)
−0.0939390 + 0.995578i \(0.529946\pi\)
\(774\) 0 0
\(775\) −5.64441 −0.202753
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 41.5328 1.48807
\(780\) 0 0
\(781\) 39.5830 1.41639
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −23.6218 −0.843098
\(786\) 0 0
\(787\) 21.7636 0.775787 0.387893 0.921704i \(-0.373203\pi\)
0.387893 + 0.921704i \(0.373203\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 5.51776 0.196189
\(792\) 0 0
\(793\) 4.13528 0.146848
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 25.4456 0.901329 0.450665 0.892693i \(-0.351187\pi\)
0.450665 + 0.892693i \(0.351187\pi\)
\(798\) 0 0
\(799\) 24.4984 0.866690
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 35.4901 1.25242
\(804\) 0 0
\(805\) −0.553635 −0.0195131
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −11.0854 −0.389741 −0.194871 0.980829i \(-0.562429\pi\)
−0.194871 + 0.980829i \(0.562429\pi\)
\(810\) 0 0
\(811\) −42.4869 −1.49192 −0.745958 0.665993i \(-0.768008\pi\)
−0.745958 + 0.665993i \(0.768008\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 9.16217 0.320937
\(816\) 0 0
\(817\) 53.4147 1.86875
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −30.1345 −1.05170 −0.525851 0.850577i \(-0.676253\pi\)
−0.525851 + 0.850577i \(0.676253\pi\)
\(822\) 0 0
\(823\) −21.6218 −0.753690 −0.376845 0.926276i \(-0.622991\pi\)
−0.376845 + 0.926276i \(0.622991\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1.82488 0.0634574 0.0317287 0.999497i \(-0.489899\pi\)
0.0317287 + 0.999497i \(0.489899\pi\)
\(828\) 0 0
\(829\) 30.4374 1.05713 0.528567 0.848892i \(-0.322730\pi\)
0.528567 + 0.848892i \(0.322730\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 21.1614 0.733200
\(834\) 0 0
\(835\) 0.648726 0.0224501
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −33.5669 −1.15886 −0.579429 0.815023i \(-0.696724\pi\)
−0.579429 + 0.815023i \(0.696724\pi\)
\(840\) 0 0
\(841\) −16.2336 −0.559778
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 35.7291 1.22912
\(846\) 0 0
\(847\) 2.79687 0.0961016
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −12.7517 −0.437122
\(852\) 0 0
\(853\) −23.7549 −0.813353 −0.406676 0.913572i \(-0.633312\pi\)
−0.406676 + 0.913572i \(0.633312\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −26.0104 −0.888497 −0.444249 0.895904i \(-0.646529\pi\)
−0.444249 + 0.895904i \(0.646529\pi\)
\(858\) 0 0
\(859\) 50.7671 1.73215 0.866075 0.499914i \(-0.166635\pi\)
0.866075 + 0.499914i \(0.166635\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −32.9343 −1.12110 −0.560548 0.828122i \(-0.689410\pi\)
−0.560548 + 0.828122i \(0.689410\pi\)
\(864\) 0 0
\(865\) 8.81521 0.299726
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −48.4694 −1.64421
\(870\) 0 0
\(871\) −36.4510 −1.23509
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0.331895 0.0112201
\(876\) 0 0
\(877\) 17.1234 0.578216 0.289108 0.957296i \(-0.406641\pi\)
0.289108 + 0.957296i \(0.406641\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −46.7617 −1.57544 −0.787721 0.616032i \(-0.788739\pi\)
−0.787721 + 0.616032i \(0.788739\pi\)
\(882\) 0 0
\(883\) 21.1356 0.711269 0.355635 0.934625i \(-0.384265\pi\)
0.355635 + 0.934625i \(0.384265\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 45.9774 1.54377 0.771885 0.635763i \(-0.219314\pi\)
0.771885 + 0.635763i \(0.219314\pi\)
\(888\) 0 0
\(889\) −1.59028 −0.0533362
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −60.2501 −2.01619
\(894\) 0 0
\(895\) −9.16217 −0.306258
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −20.1676 −0.672626
\(900\) 0 0
\(901\) 16.8282 0.560628
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 13.5730 0.451182
\(906\) 0 0
\(907\) 6.58808 0.218754 0.109377 0.994000i \(-0.465114\pi\)
0.109377 + 0.994000i \(0.465114\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 23.7711 0.787570 0.393785 0.919202i \(-0.371165\pi\)
0.393785 + 0.919202i \(0.371165\pi\)
\(912\) 0 0
\(913\) −27.7377 −0.917982
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −6.56477 −0.216788
\(918\) 0 0
\(919\) −46.1305 −1.52171 −0.760853 0.648924i \(-0.775219\pi\)
−0.760853 + 0.648924i \(0.775219\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −62.6903 −2.06348
\(924\) 0 0
\(925\) 7.64441 0.251347
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 22.6164 0.742020 0.371010 0.928629i \(-0.379012\pi\)
0.371010 + 0.928629i \(0.379012\pi\)
\(930\) 0 0
\(931\) −52.0434 −1.70565
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 13.5375 0.442723
\(936\) 0 0
\(937\) −47.5830 −1.55447 −0.777235 0.629211i \(-0.783378\pi\)
−0.777235 + 0.629211i \(0.783378\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −42.9981 −1.40170 −0.700850 0.713309i \(-0.747196\pi\)
−0.700850 + 0.713309i \(0.747196\pi\)
\(942\) 0 0
\(943\) −9.17188 −0.298677
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 48.0548 1.56157 0.780786 0.624798i \(-0.214819\pi\)
0.780786 + 0.624798i \(0.214819\pi\)
\(948\) 0 0
\(949\) −56.2081 −1.82459
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −39.0413 −1.26467 −0.632335 0.774695i \(-0.717904\pi\)
−0.632335 + 0.774695i \(0.717904\pi\)
\(954\) 0 0
\(955\) 10.2694 0.332311
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 6.15142 0.198640
\(960\) 0 0
\(961\) 0.859361 0.0277213
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 9.07139 0.292019
\(966\) 0 0
\(967\) 2.04847 0.0658742 0.0329371 0.999457i \(-0.489514\pi\)
0.0329371 + 0.999457i \(0.489514\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −27.4068 −0.879527 −0.439764 0.898114i \(-0.644938\pi\)
−0.439764 + 0.898114i \(0.644938\pi\)
\(972\) 0 0
\(973\) −1.78546 −0.0572392
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −4.09828 −0.131116 −0.0655578 0.997849i \(-0.520883\pi\)
−0.0655578 + 0.997849i \(0.520883\pi\)
\(978\) 0 0
\(979\) −52.4769 −1.67717
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 6.11807 0.195136 0.0975680 0.995229i \(-0.468894\pi\)
0.0975680 + 0.995229i \(0.468894\pi\)
\(984\) 0 0
\(985\) −4.80658 −0.153150
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −11.7958 −0.375086
\(990\) 0 0
\(991\) −14.9881 −0.476114 −0.238057 0.971251i \(-0.576510\pi\)
−0.238057 + 0.971251i \(0.576510\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 18.4596 0.585209
\(996\) 0 0
\(997\) −13.4963 −0.427431 −0.213715 0.976896i \(-0.568557\pi\)
−0.213715 + 0.976896i \(0.568557\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6480.2.a.cb.1.3 4
3.2 odd 2 6480.2.a.bz.1.3 4
4.3 odd 2 3240.2.a.u.1.2 4
9.2 odd 6 2160.2.q.l.1441.2 8
9.4 even 3 720.2.q.l.241.4 8
9.5 odd 6 2160.2.q.l.721.2 8
9.7 even 3 720.2.q.l.481.4 8
12.11 even 2 3240.2.a.s.1.2 4
36.7 odd 6 360.2.q.e.121.1 8
36.11 even 6 1080.2.q.e.361.3 8
36.23 even 6 1080.2.q.e.721.3 8
36.31 odd 6 360.2.q.e.241.1 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
360.2.q.e.121.1 8 36.7 odd 6
360.2.q.e.241.1 yes 8 36.31 odd 6
720.2.q.l.241.4 8 9.4 even 3
720.2.q.l.481.4 8 9.7 even 3
1080.2.q.e.361.3 8 36.11 even 6
1080.2.q.e.721.3 8 36.23 even 6
2160.2.q.l.721.2 8 9.5 odd 6
2160.2.q.l.1441.2 8 9.2 odd 6
3240.2.a.s.1.2 4 12.11 even 2
3240.2.a.u.1.2 4 4.3 odd 2
6480.2.a.bz.1.3 4 3.2 odd 2
6480.2.a.cb.1.3 4 1.1 even 1 trivial