Properties

Label 6480.2.a.cb.1.2
Level $6480$
Weight $2$
Character 6480.1
Self dual yes
Analytic conductor $51.743$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6480,2,Mod(1,6480)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6480, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6480.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6480 = 2^{4} \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6480.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(51.7430605098\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.29268.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 9x^{2} + 5x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 360)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.83719\) of defining polynomial
Character \(\chi\) \(=\) 6480.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{5} -0.867736 q^{7} +4.08667 q^{11} +1.21245 q^{13} +7.82214 q^{17} +4.51156 q^{19} -2.86774 q^{23} +1.00000 q^{25} +6.29912 q^{29} +2.52303 q^{31} -0.867736 q^{35} -0.523026 q^{37} -8.12126 q^{41} -3.82214 q^{43} +1.39076 q^{47} -6.24703 q^{49} +13.9088 q^{53} +4.08667 q^{55} -6.87423 q^{59} +9.08667 q^{61} +1.21245 q^{65} -3.37930 q^{67} -3.21245 q^{71} +8.60970 q^{73} -3.54615 q^{77} -16.2425 q^{79} -6.44284 q^{83} +7.82214 q^{85} -10.2079 q^{89} -1.05208 q^{91} +4.51156 q^{95} -8.77006 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{5} + q^{7} - q^{11} + 4 q^{13} + 5 q^{17} - q^{19} - 7 q^{23} + 4 q^{25} + 7 q^{29} + 2 q^{31} + q^{35} + 6 q^{37} + 12 q^{41} + 11 q^{43} - 7 q^{47} + 3 q^{49} + 12 q^{53} - q^{55} - 11 q^{59}+ \cdots + q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) −0.867736 −0.327973 −0.163987 0.986463i \(-0.552435\pi\)
−0.163987 + 0.986463i \(0.552435\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 4.08667 1.23218 0.616089 0.787677i \(-0.288716\pi\)
0.616089 + 0.787677i \(0.288716\pi\)
\(12\) 0 0
\(13\) 1.21245 0.336272 0.168136 0.985764i \(-0.446225\pi\)
0.168136 + 0.985764i \(0.446225\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 7.82214 1.89715 0.948574 0.316555i \(-0.102526\pi\)
0.948574 + 0.316555i \(0.102526\pi\)
\(18\) 0 0
\(19\) 4.51156 1.03502 0.517512 0.855676i \(-0.326858\pi\)
0.517512 + 0.855676i \(0.326858\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.86774 −0.597964 −0.298982 0.954259i \(-0.596647\pi\)
−0.298982 + 0.954259i \(0.596647\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 6.29912 1.16972 0.584858 0.811135i \(-0.301150\pi\)
0.584858 + 0.811135i \(0.301150\pi\)
\(30\) 0 0
\(31\) 2.52303 0.453149 0.226574 0.973994i \(-0.427247\pi\)
0.226574 + 0.973994i \(0.427247\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.867736 −0.146674
\(36\) 0 0
\(37\) −0.523026 −0.0859850 −0.0429925 0.999075i \(-0.513689\pi\)
−0.0429925 + 0.999075i \(0.513689\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −8.12126 −1.26833 −0.634164 0.773199i \(-0.718656\pi\)
−0.634164 + 0.773199i \(0.718656\pi\)
\(42\) 0 0
\(43\) −3.82214 −0.582871 −0.291436 0.956590i \(-0.594133\pi\)
−0.291436 + 0.956590i \(0.594133\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.39076 0.202863 0.101432 0.994843i \(-0.467658\pi\)
0.101432 + 0.994843i \(0.467658\pi\)
\(48\) 0 0
\(49\) −6.24703 −0.892433
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 13.9088 1.91052 0.955261 0.295763i \(-0.0955739\pi\)
0.955261 + 0.295763i \(0.0955739\pi\)
\(54\) 0 0
\(55\) 4.08667 0.551047
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −6.87423 −0.894948 −0.447474 0.894297i \(-0.647676\pi\)
−0.447474 + 0.894297i \(0.647676\pi\)
\(60\) 0 0
\(61\) 9.08667 1.16343 0.581715 0.813393i \(-0.302382\pi\)
0.581715 + 0.813393i \(0.302382\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.21245 0.150385
\(66\) 0 0
\(67\) −3.37930 −0.412847 −0.206424 0.978463i \(-0.566182\pi\)
−0.206424 + 0.978463i \(0.566182\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −3.21245 −0.381247 −0.190624 0.981663i \(-0.561051\pi\)
−0.190624 + 0.981663i \(0.561051\pi\)
\(72\) 0 0
\(73\) 8.60970 1.00769 0.503844 0.863794i \(-0.331918\pi\)
0.503844 + 0.863794i \(0.331918\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −3.54615 −0.404121
\(78\) 0 0
\(79\) −16.2425 −1.82743 −0.913713 0.406360i \(-0.866798\pi\)
−0.913713 + 0.406360i \(0.866798\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −6.44284 −0.707194 −0.353597 0.935398i \(-0.615042\pi\)
−0.353597 + 0.935398i \(0.615042\pi\)
\(84\) 0 0
\(85\) 7.82214 0.848431
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −10.2079 −1.08204 −0.541019 0.841010i \(-0.681961\pi\)
−0.541019 + 0.841010i \(0.681961\pi\)
\(90\) 0 0
\(91\) −1.05208 −0.110288
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 4.51156 0.462877
\(96\) 0 0
\(97\) −8.77006 −0.890465 −0.445232 0.895415i \(-0.646879\pi\)
−0.445232 + 0.895415i \(0.646879\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 2.26453 0.225329 0.112664 0.993633i \(-0.464061\pi\)
0.112664 + 0.993633i \(0.464061\pi\)
\(102\) 0 0
\(103\) 15.3858 1.51601 0.758003 0.652251i \(-0.226175\pi\)
0.758003 + 0.652251i \(0.226175\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −14.3402 −1.38632 −0.693160 0.720784i \(-0.743782\pi\)
−0.693160 + 0.720784i \(0.743782\pi\)
\(108\) 0 0
\(109\) −5.35120 −0.512552 −0.256276 0.966604i \(-0.582496\pi\)
−0.256276 + 0.966604i \(0.582496\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 2.68942 0.252999 0.126500 0.991967i \(-0.459626\pi\)
0.126500 + 0.991967i \(0.459626\pi\)
\(114\) 0 0
\(115\) −2.86774 −0.267418
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −6.78755 −0.622214
\(120\) 0 0
\(121\) 5.70088 0.518262
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 21.5641 1.91350 0.956752 0.290903i \(-0.0939558\pi\)
0.956752 + 0.290903i \(0.0939558\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −18.4941 −1.61583 −0.807917 0.589296i \(-0.799405\pi\)
−0.807917 + 0.589296i \(0.799405\pi\)
\(132\) 0 0
\(133\) −3.91484 −0.339460
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 9.72401 0.830778 0.415389 0.909644i \(-0.363645\pi\)
0.415389 + 0.909644i \(0.363645\pi\)
\(138\) 0 0
\(139\) 16.0806 1.36394 0.681971 0.731379i \(-0.261123\pi\)
0.681971 + 0.731379i \(0.261123\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 4.95487 0.414347
\(144\) 0 0
\(145\) 6.29912 0.523113
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 15.8453 1.29809 0.649047 0.760748i \(-0.275168\pi\)
0.649047 + 0.760748i \(0.275168\pi\)
\(150\) 0 0
\(151\) 15.1213 1.23055 0.615275 0.788312i \(-0.289045\pi\)
0.615275 + 0.788312i \(0.289045\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 2.52303 0.202654
\(156\) 0 0
\(157\) 17.5531 1.40089 0.700445 0.713706i \(-0.252985\pi\)
0.700445 + 0.713706i \(0.252985\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 2.48844 0.196116
\(162\) 0 0
\(163\) −6.85673 −0.537061 −0.268530 0.963271i \(-0.586538\pi\)
−0.268530 + 0.963271i \(0.586538\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −3.91982 −0.303325 −0.151662 0.988432i \(-0.548463\pi\)
−0.151662 + 0.988432i \(0.548463\pi\)
\(168\) 0 0
\(169\) −11.5300 −0.886921
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −8.17334 −0.621408 −0.310704 0.950507i \(-0.600565\pi\)
−0.310704 + 0.950507i \(0.600565\pi\)
\(174\) 0 0
\(175\) −0.867736 −0.0655947
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 6.85673 0.512496 0.256248 0.966611i \(-0.417514\pi\)
0.256248 + 0.966611i \(0.417514\pi\)
\(180\) 0 0
\(181\) 16.2991 1.21150 0.605752 0.795654i \(-0.292872\pi\)
0.605752 + 0.795654i \(0.292872\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −0.523026 −0.0384536
\(186\) 0 0
\(187\) 31.9665 2.33762
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −11.8336 −0.856250 −0.428125 0.903720i \(-0.640826\pi\)
−0.428125 + 0.903720i \(0.640826\pi\)
\(192\) 0 0
\(193\) −1.82214 −0.131161 −0.0655804 0.997847i \(-0.520890\pi\)
−0.0655804 + 0.997847i \(0.520890\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 19.3798 1.38075 0.690375 0.723451i \(-0.257445\pi\)
0.690375 + 0.723451i \(0.257445\pi\)
\(198\) 0 0
\(199\) −6.69637 −0.474693 −0.237347 0.971425i \(-0.576278\pi\)
−0.237347 + 0.971425i \(0.576278\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −5.46597 −0.383636
\(204\) 0 0
\(205\) −8.12126 −0.567213
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 18.4373 1.27533
\(210\) 0 0
\(211\) −8.52303 −0.586749 −0.293375 0.955998i \(-0.594778\pi\)
−0.293375 + 0.955998i \(0.594778\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −3.82214 −0.260668
\(216\) 0 0
\(217\) −2.18932 −0.148621
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 9.48392 0.637958
\(222\) 0 0
\(223\) 10.8617 0.727354 0.363677 0.931525i \(-0.381521\pi\)
0.363677 + 0.931525i \(0.381521\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 18.6849 1.24016 0.620080 0.784538i \(-0.287100\pi\)
0.620080 + 0.784538i \(0.287100\pi\)
\(228\) 0 0
\(229\) 9.59672 0.634169 0.317084 0.948397i \(-0.397296\pi\)
0.317084 + 0.948397i \(0.397296\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −20.5807 −1.34829 −0.674145 0.738599i \(-0.735488\pi\)
−0.674145 + 0.738599i \(0.735488\pi\)
\(234\) 0 0
\(235\) 1.39076 0.0907233
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −10.1604 −0.657219 −0.328610 0.944466i \(-0.606580\pi\)
−0.328610 + 0.944466i \(0.606580\pi\)
\(240\) 0 0
\(241\) 14.2124 0.915504 0.457752 0.889080i \(-0.348655\pi\)
0.457752 + 0.889080i \(0.348655\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −6.24703 −0.399108
\(246\) 0 0
\(247\) 5.47002 0.348049
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0.247034 0.0155927 0.00779634 0.999970i \(-0.497518\pi\)
0.00779634 + 0.999970i \(0.497518\pi\)
\(252\) 0 0
\(253\) −11.7195 −0.736798
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 4.86125 0.303236 0.151618 0.988439i \(-0.451552\pi\)
0.151618 + 0.988439i \(0.451552\pi\)
\(258\) 0 0
\(259\) 0.453849 0.0282008
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −20.4318 −1.25988 −0.629941 0.776643i \(-0.716921\pi\)
−0.629941 + 0.776643i \(0.716921\pi\)
\(264\) 0 0
\(265\) 13.9088 0.854412
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −25.5125 −1.55552 −0.777762 0.628559i \(-0.783645\pi\)
−0.777762 + 0.628559i \(0.783645\pi\)
\(270\) 0 0
\(271\) −5.12126 −0.311094 −0.155547 0.987828i \(-0.549714\pi\)
−0.155547 + 0.987828i \(0.549714\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 4.08667 0.246436
\(276\) 0 0
\(277\) 11.4087 0.685483 0.342742 0.939430i \(-0.388644\pi\)
0.342742 + 0.939430i \(0.388644\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 21.5937 1.28817 0.644087 0.764953i \(-0.277238\pi\)
0.644087 + 0.764953i \(0.277238\pi\)
\(282\) 0 0
\(283\) −19.9268 −1.18452 −0.592262 0.805746i \(-0.701765\pi\)
−0.592262 + 0.805746i \(0.701765\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 7.04711 0.415978
\(288\) 0 0
\(289\) 44.1859 2.59917
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1.83361 0.107120 0.0535602 0.998565i \(-0.482943\pi\)
0.0535602 + 0.998565i \(0.482943\pi\)
\(294\) 0 0
\(295\) −6.87423 −0.400233
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −3.47697 −0.201079
\(300\) 0 0
\(301\) 3.31661 0.191166
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 9.08667 0.520301
\(306\) 0 0
\(307\) −9.02962 −0.515347 −0.257674 0.966232i \(-0.582956\pi\)
−0.257674 + 0.966232i \(0.582956\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −2.96090 −0.167897 −0.0839485 0.996470i \(-0.526753\pi\)
−0.0839485 + 0.996470i \(0.526753\pi\)
\(312\) 0 0
\(313\) 19.2831 1.08995 0.544974 0.838453i \(-0.316540\pi\)
0.544974 + 0.838453i \(0.316540\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −6.16731 −0.346391 −0.173195 0.984887i \(-0.555409\pi\)
−0.173195 + 0.984887i \(0.555409\pi\)
\(318\) 0 0
\(319\) 25.7424 1.44130
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 35.2901 1.96359
\(324\) 0 0
\(325\) 1.21245 0.0672544
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −1.20681 −0.0665338
\(330\) 0 0
\(331\) −20.6894 −1.13719 −0.568597 0.822616i \(-0.692513\pi\)
−0.568597 + 0.822616i \(0.692513\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −3.37930 −0.184631
\(336\) 0 0
\(337\) −1.72401 −0.0939127 −0.0469564 0.998897i \(-0.514952\pi\)
−0.0469564 + 0.998897i \(0.514952\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 10.3108 0.558360
\(342\) 0 0
\(343\) 11.4949 0.620668
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 32.4896 1.74413 0.872065 0.489389i \(-0.162780\pi\)
0.872065 + 0.489389i \(0.162780\pi\)
\(348\) 0 0
\(349\) 5.18481 0.277536 0.138768 0.990325i \(-0.455686\pi\)
0.138768 + 0.990325i \(0.455686\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −2.86125 −0.152289 −0.0761444 0.997097i \(-0.524261\pi\)
−0.0761444 + 0.997097i \(0.524261\pi\)
\(354\) 0 0
\(355\) −3.21245 −0.170499
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −37.0301 −1.95437 −0.977186 0.212384i \(-0.931877\pi\)
−0.977186 + 0.212384i \(0.931877\pi\)
\(360\) 0 0
\(361\) 1.35420 0.0712736
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 8.60970 0.450652
\(366\) 0 0
\(367\) 36.4318 1.90173 0.950863 0.309611i \(-0.100199\pi\)
0.950863 + 0.309611i \(0.100199\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −12.0692 −0.626600
\(372\) 0 0
\(373\) −16.5300 −0.855890 −0.427945 0.903805i \(-0.640762\pi\)
−0.427945 + 0.903805i \(0.640762\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 7.63734 0.393343
\(378\) 0 0
\(379\) 31.8062 1.63377 0.816886 0.576798i \(-0.195698\pi\)
0.816886 + 0.576798i \(0.195698\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −20.2356 −1.03399 −0.516995 0.855989i \(-0.672949\pi\)
−0.516995 + 0.855989i \(0.672949\pi\)
\(384\) 0 0
\(385\) −3.54615 −0.180729
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −24.0056 −1.21713 −0.608567 0.793503i \(-0.708255\pi\)
−0.608567 + 0.793503i \(0.708255\pi\)
\(390\) 0 0
\(391\) −22.4318 −1.13443
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −16.2425 −0.817250
\(396\) 0 0
\(397\) −35.8868 −1.80111 −0.900554 0.434745i \(-0.856839\pi\)
−0.900554 + 0.434745i \(0.856839\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −3.21788 −0.160693 −0.0803466 0.996767i \(-0.525603\pi\)
−0.0803466 + 0.996767i \(0.525603\pi\)
\(402\) 0 0
\(403\) 3.05903 0.152381
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −2.13744 −0.105949
\(408\) 0 0
\(409\) −26.2311 −1.29704 −0.648521 0.761197i \(-0.724612\pi\)
−0.648521 + 0.761197i \(0.724612\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 5.96501 0.293519
\(414\) 0 0
\(415\) −6.44284 −0.316267
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 22.7655 1.11217 0.556085 0.831126i \(-0.312303\pi\)
0.556085 + 0.831126i \(0.312303\pi\)
\(420\) 0 0
\(421\) 28.2425 1.37646 0.688228 0.725494i \(-0.258389\pi\)
0.688228 + 0.725494i \(0.258389\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 7.82214 0.379430
\(426\) 0 0
\(427\) −7.88483 −0.381574
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 21.4480 1.03311 0.516557 0.856253i \(-0.327213\pi\)
0.516557 + 0.856253i \(0.327213\pi\)
\(432\) 0 0
\(433\) −0.498583 −0.0239604 −0.0119802 0.999928i \(-0.503814\pi\)
−0.0119802 + 0.999928i \(0.503814\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −12.9380 −0.618907
\(438\) 0 0
\(439\) 24.4149 1.16526 0.582631 0.812737i \(-0.302023\pi\)
0.582631 + 0.812737i \(0.302023\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −16.1509 −0.767351 −0.383676 0.923468i \(-0.625342\pi\)
−0.383676 + 0.923468i \(0.625342\pi\)
\(444\) 0 0
\(445\) −10.2079 −0.483902
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −30.8392 −1.45539 −0.727697 0.685899i \(-0.759409\pi\)
−0.727697 + 0.685899i \(0.759409\pi\)
\(450\) 0 0
\(451\) −33.1889 −1.56281
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −1.05208 −0.0493224
\(456\) 0 0
\(457\) −15.2369 −0.712752 −0.356376 0.934343i \(-0.615988\pi\)
−0.356376 + 0.934343i \(0.615988\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −41.7610 −1.94501 −0.972503 0.232892i \(-0.925181\pi\)
−0.972503 + 0.232892i \(0.925181\pi\)
\(462\) 0 0
\(463\) 18.9479 0.880584 0.440292 0.897855i \(-0.354875\pi\)
0.440292 + 0.897855i \(0.354875\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 1.90035 0.0879377 0.0439688 0.999033i \(-0.486000\pi\)
0.0439688 + 0.999033i \(0.486000\pi\)
\(468\) 0 0
\(469\) 2.93234 0.135403
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −15.6198 −0.718201
\(474\) 0 0
\(475\) 4.51156 0.207005
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 29.8176 1.36240 0.681201 0.732096i \(-0.261458\pi\)
0.681201 + 0.732096i \(0.261458\pi\)
\(480\) 0 0
\(481\) −0.634141 −0.0289143
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −8.77006 −0.398228
\(486\) 0 0
\(487\) 43.1213 1.95401 0.977005 0.213215i \(-0.0683933\pi\)
0.977005 + 0.213215i \(0.0683933\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 11.7932 0.532219 0.266110 0.963943i \(-0.414262\pi\)
0.266110 + 0.963943i \(0.414262\pi\)
\(492\) 0 0
\(493\) 49.2726 2.21913
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 2.78755 0.125039
\(498\) 0 0
\(499\) 19.1167 0.855783 0.427892 0.903830i \(-0.359257\pi\)
0.427892 + 0.903830i \(0.359257\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −21.1522 −0.943130 −0.471565 0.881831i \(-0.656311\pi\)
−0.471565 + 0.881831i \(0.656311\pi\)
\(504\) 0 0
\(505\) 2.26453 0.100770
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −1.96541 −0.0871153 −0.0435577 0.999051i \(-0.513869\pi\)
−0.0435577 + 0.999051i \(0.513869\pi\)
\(510\) 0 0
\(511\) −7.47094 −0.330495
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 15.3858 0.677979
\(516\) 0 0
\(517\) 5.68359 0.249964
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −14.1143 −0.618359 −0.309180 0.951004i \(-0.600054\pi\)
−0.309180 + 0.951004i \(0.600054\pi\)
\(522\) 0 0
\(523\) −5.03413 −0.220127 −0.110064 0.993925i \(-0.535105\pi\)
−0.110064 + 0.993925i \(0.535105\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 19.7355 0.859691
\(528\) 0 0
\(529\) −14.7761 −0.642439
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −9.84659 −0.426503
\(534\) 0 0
\(535\) −14.3402 −0.619981
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −25.5296 −1.09964
\(540\) 0 0
\(541\) −9.30926 −0.400236 −0.200118 0.979772i \(-0.564133\pi\)
−0.200118 + 0.979772i \(0.564133\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −5.35120 −0.229220
\(546\) 0 0
\(547\) −30.2490 −1.29335 −0.646677 0.762764i \(-0.723842\pi\)
−0.646677 + 0.762764i \(0.723842\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 28.4189 1.21068
\(552\) 0 0
\(553\) 14.0942 0.599347
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 14.6903 0.622450 0.311225 0.950336i \(-0.399261\pi\)
0.311225 + 0.950336i \(0.399261\pi\)
\(558\) 0 0
\(559\) −4.63414 −0.196003
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 3.29714 0.138958 0.0694790 0.997583i \(-0.477866\pi\)
0.0694790 + 0.997583i \(0.477866\pi\)
\(564\) 0 0
\(565\) 2.68942 0.113145
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −23.9885 −1.00565 −0.502826 0.864388i \(-0.667706\pi\)
−0.502826 + 0.864388i \(0.667706\pi\)
\(570\) 0 0
\(571\) −20.0806 −0.840349 −0.420174 0.907443i \(-0.638031\pi\)
−0.420174 + 0.907443i \(0.638031\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −2.86774 −0.119593
\(576\) 0 0
\(577\) 22.8622 0.951764 0.475882 0.879509i \(-0.342129\pi\)
0.475882 + 0.879509i \(0.342129\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 5.59069 0.231941
\(582\) 0 0
\(583\) 56.8408 2.35410
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 25.8893 1.06857 0.534284 0.845305i \(-0.320581\pi\)
0.534284 + 0.845305i \(0.320581\pi\)
\(588\) 0 0
\(589\) 11.3828 0.469020
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 39.7887 1.63392 0.816962 0.576691i \(-0.195656\pi\)
0.816962 + 0.576691i \(0.195656\pi\)
\(594\) 0 0
\(595\) −6.78755 −0.278263
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 27.8868 1.13942 0.569712 0.821844i \(-0.307055\pi\)
0.569712 + 0.821844i \(0.307055\pi\)
\(600\) 0 0
\(601\) 27.1267 1.10652 0.553260 0.833008i \(-0.313383\pi\)
0.553260 + 0.833008i \(0.313383\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 5.70088 0.231774
\(606\) 0 0
\(607\) 12.8617 0.522041 0.261020 0.965333i \(-0.415941\pi\)
0.261020 + 0.965333i \(0.415941\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 1.68622 0.0682173
\(612\) 0 0
\(613\) −29.2726 −1.18231 −0.591154 0.806558i \(-0.701328\pi\)
−0.591154 + 0.806558i \(0.701328\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 34.7731 1.39991 0.699956 0.714186i \(-0.253203\pi\)
0.699956 + 0.714186i \(0.253203\pi\)
\(618\) 0 0
\(619\) −35.4565 −1.42512 −0.712558 0.701613i \(-0.752464\pi\)
−0.712558 + 0.701613i \(0.752464\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 8.85779 0.354880
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −4.09119 −0.163126
\(630\) 0 0
\(631\) −6.68942 −0.266302 −0.133151 0.991096i \(-0.542509\pi\)
−0.133151 + 0.991096i \(0.542509\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 21.5641 0.855745
\(636\) 0 0
\(637\) −7.57419 −0.300100
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −4.93777 −0.195030 −0.0975151 0.995234i \(-0.531089\pi\)
−0.0975151 + 0.995234i \(0.531089\pi\)
\(642\) 0 0
\(643\) 15.2881 0.602904 0.301452 0.953481i \(-0.402529\pi\)
0.301452 + 0.953481i \(0.402529\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 31.2304 1.22779 0.613897 0.789386i \(-0.289601\pi\)
0.613897 + 0.789386i \(0.289601\pi\)
\(648\) 0 0
\(649\) −28.0927 −1.10273
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −7.65032 −0.299380 −0.149690 0.988733i \(-0.547828\pi\)
−0.149690 + 0.988733i \(0.547828\pi\)
\(654\) 0 0
\(655\) −18.4941 −0.722623
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −41.9551 −1.63434 −0.817169 0.576399i \(-0.804458\pi\)
−0.817169 + 0.576399i \(0.804458\pi\)
\(660\) 0 0
\(661\) 40.5982 1.57909 0.789544 0.613694i \(-0.210317\pi\)
0.789544 + 0.613694i \(0.210317\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −3.91484 −0.151811
\(666\) 0 0
\(667\) −18.0642 −0.699449
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 37.1342 1.43355
\(672\) 0 0
\(673\) 14.8697 0.573185 0.286593 0.958053i \(-0.407477\pi\)
0.286593 + 0.958053i \(0.407477\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −11.2254 −0.431428 −0.215714 0.976457i \(-0.569208\pi\)
−0.215714 + 0.976457i \(0.569208\pi\)
\(678\) 0 0
\(679\) 7.61010 0.292049
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 6.60275 0.252647 0.126324 0.991989i \(-0.459682\pi\)
0.126324 + 0.991989i \(0.459682\pi\)
\(684\) 0 0
\(685\) 9.72401 0.371535
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 16.8637 0.642455
\(690\) 0 0
\(691\) −11.7485 −0.446932 −0.223466 0.974712i \(-0.571737\pi\)
−0.223466 + 0.974712i \(0.571737\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 16.0806 0.609973
\(696\) 0 0
\(697\) −63.5257 −2.40621
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −6.21396 −0.234698 −0.117349 0.993091i \(-0.537440\pi\)
−0.117349 + 0.993091i \(0.537440\pi\)
\(702\) 0 0
\(703\) −2.35967 −0.0889965
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −1.96501 −0.0739019
\(708\) 0 0
\(709\) −12.9895 −0.487829 −0.243915 0.969797i \(-0.578432\pi\)
−0.243915 + 0.969797i \(0.578432\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −7.23537 −0.270967
\(714\) 0 0
\(715\) 4.95487 0.185302
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −15.4610 −0.576598 −0.288299 0.957540i \(-0.593090\pi\)
−0.288299 + 0.957540i \(0.593090\pi\)
\(720\) 0 0
\(721\) −13.3508 −0.497210
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 6.29912 0.233943
\(726\) 0 0
\(727\) −12.8518 −0.476645 −0.238323 0.971186i \(-0.576598\pi\)
−0.238323 + 0.971186i \(0.576598\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −29.8974 −1.10579
\(732\) 0 0
\(733\) −21.1273 −0.780354 −0.390177 0.920740i \(-0.627586\pi\)
−0.390177 + 0.920740i \(0.627586\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −13.8101 −0.508701
\(738\) 0 0
\(739\) 18.8652 0.693968 0.346984 0.937871i \(-0.387206\pi\)
0.346984 + 0.937871i \(0.387206\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 7.99503 0.293309 0.146655 0.989188i \(-0.453149\pi\)
0.146655 + 0.989188i \(0.453149\pi\)
\(744\) 0 0
\(745\) 15.8453 0.580526
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 12.4435 0.454676
\(750\) 0 0
\(751\) 30.4781 1.11216 0.556081 0.831128i \(-0.312305\pi\)
0.556081 + 0.831128i \(0.312305\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 15.1213 0.550319
\(756\) 0 0
\(757\) −30.4318 −1.10606 −0.553032 0.833160i \(-0.686529\pi\)
−0.553032 + 0.833160i \(0.686529\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −46.7150 −1.69342 −0.846708 0.532057i \(-0.821419\pi\)
−0.846708 + 0.532057i \(0.821419\pi\)
\(762\) 0 0
\(763\) 4.64343 0.168103
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −8.33462 −0.300946
\(768\) 0 0
\(769\) 36.9895 1.33387 0.666937 0.745114i \(-0.267605\pi\)
0.666937 + 0.745114i \(0.267605\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −33.7485 −1.21385 −0.606924 0.794760i \(-0.707597\pi\)
−0.606924 + 0.794760i \(0.707597\pi\)
\(774\) 0 0
\(775\) 2.52303 0.0906298
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −36.6396 −1.31275
\(780\) 0 0
\(781\) −13.1282 −0.469764
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 17.5531 0.626497
\(786\) 0 0
\(787\) 41.9490 1.49532 0.747661 0.664081i \(-0.231177\pi\)
0.747661 + 0.664081i \(0.231177\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −2.33371 −0.0829770
\(792\) 0 0
\(793\) 11.0171 0.391229
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 13.1333 0.465206 0.232603 0.972572i \(-0.425276\pi\)
0.232603 + 0.972572i \(0.425276\pi\)
\(798\) 0 0
\(799\) 10.8787 0.384862
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 35.1850 1.24165
\(804\) 0 0
\(805\) 2.48844 0.0877059
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −26.0015 −0.914165 −0.457082 0.889424i \(-0.651106\pi\)
−0.457082 + 0.889424i \(0.651106\pi\)
\(810\) 0 0
\(811\) −14.9425 −0.524702 −0.262351 0.964973i \(-0.584498\pi\)
−0.262351 + 0.964973i \(0.584498\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −6.85673 −0.240181
\(816\) 0 0
\(817\) −17.2438 −0.603286
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −21.6620 −0.756008 −0.378004 0.925804i \(-0.623389\pi\)
−0.378004 + 0.925804i \(0.623389\pi\)
\(822\) 0 0
\(823\) −39.9540 −1.39271 −0.696355 0.717698i \(-0.745196\pi\)
−0.696355 + 0.717698i \(0.745196\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 7.04711 0.245052 0.122526 0.992465i \(-0.460901\pi\)
0.122526 + 0.992465i \(0.460901\pi\)
\(828\) 0 0
\(829\) −7.21376 −0.250544 −0.125272 0.992122i \(-0.539980\pi\)
−0.125272 + 0.992122i \(0.539980\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −48.8652 −1.69308
\(834\) 0 0
\(835\) −3.91982 −0.135651
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −2.32676 −0.0803286 −0.0401643 0.999193i \(-0.512788\pi\)
−0.0401643 + 0.999193i \(0.512788\pi\)
\(840\) 0 0
\(841\) 10.6789 0.368237
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −11.5300 −0.396643
\(846\) 0 0
\(847\) −4.94686 −0.169976
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 1.49990 0.0514159
\(852\) 0 0
\(853\) −36.7426 −1.25804 −0.629022 0.777388i \(-0.716544\pi\)
−0.629022 + 0.777388i \(0.716544\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 8.91465 0.304519 0.152259 0.988341i \(-0.451345\pi\)
0.152259 + 0.988341i \(0.451345\pi\)
\(858\) 0 0
\(859\) −38.9633 −1.32941 −0.664706 0.747105i \(-0.731443\pi\)
−0.664706 + 0.747105i \(0.731443\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 15.2084 0.517700 0.258850 0.965918i \(-0.416657\pi\)
0.258850 + 0.965918i \(0.416657\pi\)
\(864\) 0 0
\(865\) −8.17334 −0.277902
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −66.3778 −2.25171
\(870\) 0 0
\(871\) −4.09722 −0.138829
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −0.867736 −0.0293348
\(876\) 0 0
\(877\) −10.4318 −0.352258 −0.176129 0.984367i \(-0.556358\pi\)
−0.176129 + 0.984367i \(0.556358\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 22.9272 0.772438 0.386219 0.922407i \(-0.373781\pi\)
0.386219 + 0.922407i \(0.373781\pi\)
\(882\) 0 0
\(883\) −10.9773 −0.369417 −0.184708 0.982793i \(-0.559134\pi\)
−0.184708 + 0.982793i \(0.559134\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 12.9699 0.435487 0.217744 0.976006i \(-0.430130\pi\)
0.217744 + 0.976006i \(0.430130\pi\)
\(888\) 0 0
\(889\) −18.7119 −0.627579
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 6.27451 0.209968
\(894\) 0 0
\(895\) 6.85673 0.229195
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 15.8928 0.530056
\(900\) 0 0
\(901\) 108.797 3.62454
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 16.2991 0.541801
\(906\) 0 0
\(907\) 11.4835 0.381302 0.190651 0.981658i \(-0.438940\pi\)
0.190651 + 0.981658i \(0.438940\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 15.2877 0.506503 0.253251 0.967401i \(-0.418500\pi\)
0.253251 + 0.967401i \(0.418500\pi\)
\(912\) 0 0
\(913\) −26.3298 −0.871389
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 16.0480 0.529951
\(918\) 0 0
\(919\) 43.5890 1.43787 0.718934 0.695078i \(-0.244630\pi\)
0.718934 + 0.695078i \(0.244630\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −3.89492 −0.128203
\(924\) 0 0
\(925\) −0.523026 −0.0171970
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 1.48300 0.0486558 0.0243279 0.999704i \(-0.492255\pi\)
0.0243279 + 0.999704i \(0.492255\pi\)
\(930\) 0 0
\(931\) −28.1839 −0.923690
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 31.9665 1.04542
\(936\) 0 0
\(937\) 5.12821 0.167531 0.0837657 0.996485i \(-0.473305\pi\)
0.0837657 + 0.996485i \(0.473305\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 46.8763 1.52812 0.764061 0.645144i \(-0.223203\pi\)
0.764061 + 0.645144i \(0.223203\pi\)
\(942\) 0 0
\(943\) 23.2896 0.758415
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −34.3701 −1.11688 −0.558439 0.829546i \(-0.688599\pi\)
−0.558439 + 0.829546i \(0.688599\pi\)
\(948\) 0 0
\(949\) 10.4388 0.338857
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −23.8092 −0.771254 −0.385627 0.922655i \(-0.626015\pi\)
−0.385627 + 0.922655i \(0.626015\pi\)
\(954\) 0 0
\(955\) −11.8336 −0.382927
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −8.43787 −0.272473
\(960\) 0 0
\(961\) −24.6343 −0.794656
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −1.82214 −0.0586569
\(966\) 0 0
\(967\) −2.85779 −0.0919003 −0.0459501 0.998944i \(-0.514632\pi\)
−0.0459501 + 0.998944i \(0.514632\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −3.55821 −0.114188 −0.0570942 0.998369i \(-0.518184\pi\)
−0.0570942 + 0.998369i \(0.518184\pi\)
\(972\) 0 0
\(973\) −13.9537 −0.447337
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 29.6960 0.950058 0.475029 0.879970i \(-0.342438\pi\)
0.475029 + 0.879970i \(0.342438\pi\)
\(978\) 0 0
\(979\) −41.7165 −1.33326
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 58.1114 1.85346 0.926732 0.375722i \(-0.122605\pi\)
0.926732 + 0.375722i \(0.122605\pi\)
\(984\) 0 0
\(985\) 19.3798 0.617490
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 10.9609 0.348536
\(990\) 0 0
\(991\) 19.4489 0.617816 0.308908 0.951092i \(-0.400037\pi\)
0.308908 + 0.951092i \(0.400037\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −6.69637 −0.212289
\(996\) 0 0
\(997\) −8.50402 −0.269325 −0.134662 0.990892i \(-0.542995\pi\)
−0.134662 + 0.990892i \(0.542995\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6480.2.a.cb.1.2 4
3.2 odd 2 6480.2.a.bz.1.2 4
4.3 odd 2 3240.2.a.u.1.3 4
9.2 odd 6 2160.2.q.l.1441.3 8
9.4 even 3 720.2.q.l.241.1 8
9.5 odd 6 2160.2.q.l.721.3 8
9.7 even 3 720.2.q.l.481.1 8
12.11 even 2 3240.2.a.s.1.3 4
36.7 odd 6 360.2.q.e.121.4 8
36.11 even 6 1080.2.q.e.361.2 8
36.23 even 6 1080.2.q.e.721.2 8
36.31 odd 6 360.2.q.e.241.4 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
360.2.q.e.121.4 8 36.7 odd 6
360.2.q.e.241.4 yes 8 36.31 odd 6
720.2.q.l.241.1 8 9.4 even 3
720.2.q.l.481.1 8 9.7 even 3
1080.2.q.e.361.2 8 36.11 even 6
1080.2.q.e.721.2 8 36.23 even 6
2160.2.q.l.721.3 8 9.5 odd 6
2160.2.q.l.1441.3 8 9.2 odd 6
3240.2.a.s.1.3 4 12.11 even 2
3240.2.a.u.1.3 4 4.3 odd 2
6480.2.a.bz.1.2 4 3.2 odd 2
6480.2.a.cb.1.2 4 1.1 even 1 trivial