Properties

Label 6480.2.a.cb.1.1
Level $6480$
Weight $2$
Character 6480.1
Self dual yes
Analytic conductor $51.743$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6480,2,Mod(1,6480)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6480, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6480.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6480 = 2^{4} \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6480.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(51.7430605098\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.29268.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 9x^{2} + 5x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 360)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-2.43292\) of defining polynomial
Character \(\chi\) \(=\) 6480.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{5} -3.03717 q^{7} -5.27114 q^{11} -0.513812 q^{13} +2.80320 q^{17} -8.29877 q^{19} -5.03717 q^{23} +1.00000 q^{25} -4.78496 q^{29} +8.58816 q^{31} -3.03717 q^{35} -6.58816 q^{37} +7.98175 q^{41} +1.19680 q^{43} +9.62533 q^{47} +2.22442 q^{49} -0.467941 q^{53} -5.27114 q^{55} +0.757332 q^{59} -0.271144 q^{61} -0.513812 q^{65} +7.26159 q^{67} -1.48619 q^{71} +5.31701 q^{73} +16.0094 q^{77} +15.9635 q^{79} -12.0648 q^{83} +2.80320 q^{85} +15.2529 q^{89} +1.56053 q^{91} -8.29877 q^{95} -6.36374 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{5} + q^{7} - q^{11} + 4 q^{13} + 5 q^{17} - q^{19} - 7 q^{23} + 4 q^{25} + 7 q^{29} + 2 q^{31} + q^{35} + 6 q^{37} + 12 q^{41} + 11 q^{43} - 7 q^{47} + 3 q^{49} + 12 q^{53} - q^{55} - 11 q^{59}+ \cdots + q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) −3.03717 −1.14794 −0.573972 0.818875i \(-0.694598\pi\)
−0.573972 + 0.818875i \(0.694598\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −5.27114 −1.58931 −0.794655 0.607062i \(-0.792348\pi\)
−0.794655 + 0.607062i \(0.792348\pi\)
\(12\) 0 0
\(13\) −0.513812 −0.142506 −0.0712528 0.997458i \(-0.522700\pi\)
−0.0712528 + 0.997458i \(0.522700\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.80320 0.679876 0.339938 0.940448i \(-0.389594\pi\)
0.339938 + 0.940448i \(0.389594\pi\)
\(18\) 0 0
\(19\) −8.29877 −1.90387 −0.951934 0.306304i \(-0.900908\pi\)
−0.951934 + 0.306304i \(0.900908\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −5.03717 −1.05032 −0.525162 0.851003i \(-0.675995\pi\)
−0.525162 + 0.851003i \(0.675995\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −4.78496 −0.888544 −0.444272 0.895892i \(-0.646538\pi\)
−0.444272 + 0.895892i \(0.646538\pi\)
\(30\) 0 0
\(31\) 8.58816 1.54248 0.771239 0.636545i \(-0.219637\pi\)
0.771239 + 0.636545i \(0.219637\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −3.03717 −0.513376
\(36\) 0 0
\(37\) −6.58816 −1.08309 −0.541543 0.840673i \(-0.682160\pi\)
−0.541543 + 0.840673i \(0.682160\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 7.98175 1.24654 0.623270 0.782007i \(-0.285804\pi\)
0.623270 + 0.782007i \(0.285804\pi\)
\(42\) 0 0
\(43\) 1.19680 0.182510 0.0912549 0.995828i \(-0.470912\pi\)
0.0912549 + 0.995828i \(0.470912\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 9.62533 1.40400 0.701999 0.712178i \(-0.252291\pi\)
0.701999 + 0.712178i \(0.252291\pi\)
\(48\) 0 0
\(49\) 2.22442 0.317774
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −0.467941 −0.0642766 −0.0321383 0.999483i \(-0.510232\pi\)
−0.0321383 + 0.999483i \(0.510232\pi\)
\(54\) 0 0
\(55\) −5.27114 −0.710761
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0.757332 0.0985962 0.0492981 0.998784i \(-0.484302\pi\)
0.0492981 + 0.998784i \(0.484302\pi\)
\(60\) 0 0
\(61\) −0.271144 −0.0347164 −0.0173582 0.999849i \(-0.505526\pi\)
−0.0173582 + 0.999849i \(0.505526\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −0.513812 −0.0637305
\(66\) 0 0
\(67\) 7.26159 0.887145 0.443572 0.896239i \(-0.353711\pi\)
0.443572 + 0.896239i \(0.353711\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −1.48619 −0.176378 −0.0881891 0.996104i \(-0.528108\pi\)
−0.0881891 + 0.996104i \(0.528108\pi\)
\(72\) 0 0
\(73\) 5.31701 0.622309 0.311155 0.950359i \(-0.399284\pi\)
0.311155 + 0.950359i \(0.399284\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 16.0094 1.82444
\(78\) 0 0
\(79\) 15.9635 1.79603 0.898017 0.439960i \(-0.145007\pi\)
0.898017 + 0.439960i \(0.145007\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −12.0648 −1.32428 −0.662142 0.749379i \(-0.730352\pi\)
−0.662142 + 0.749379i \(0.730352\pi\)
\(84\) 0 0
\(85\) 2.80320 0.304050
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 15.2529 1.61680 0.808402 0.588631i \(-0.200333\pi\)
0.808402 + 0.588631i \(0.200333\pi\)
\(90\) 0 0
\(91\) 1.56053 0.163588
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −8.29877 −0.851436
\(96\) 0 0
\(97\) −6.36374 −0.646140 −0.323070 0.946375i \(-0.604715\pi\)
−0.323070 + 0.946375i \(0.604715\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −2.07435 −0.206405 −0.103203 0.994660i \(-0.532909\pi\)
−0.103203 + 0.994660i \(0.532909\pi\)
\(102\) 0 0
\(103\) −5.05610 −0.498192 −0.249096 0.968479i \(-0.580134\pi\)
−0.249096 + 0.968479i \(0.580134\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 13.2901 1.28480 0.642400 0.766370i \(-0.277939\pi\)
0.642400 + 0.766370i \(0.277939\pi\)
\(108\) 0 0
\(109\) 8.34549 0.799353 0.399676 0.916656i \(-0.369122\pi\)
0.399676 + 0.916656i \(0.369122\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −5.10197 −0.479953 −0.239976 0.970779i \(-0.577140\pi\)
−0.239976 + 0.970779i \(0.577140\pi\)
\(114\) 0 0
\(115\) −5.03717 −0.469719
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −8.51381 −0.780460
\(120\) 0 0
\(121\) 16.7850 1.52591
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 11.0830 0.983461 0.491731 0.870747i \(-0.336365\pi\)
0.491731 + 0.870747i \(0.336365\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −1.55116 −0.135525 −0.0677627 0.997701i \(-0.521586\pi\)
−0.0677627 + 0.997701i \(0.521586\pi\)
\(132\) 0 0
\(133\) 25.2048 2.18553
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −4.81258 −0.411166 −0.205583 0.978640i \(-0.565909\pi\)
−0.205583 + 0.978640i \(0.565909\pi\)
\(138\) 0 0
\(139\) 21.4657 1.82070 0.910349 0.413842i \(-0.135813\pi\)
0.910349 + 0.413842i \(0.135813\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 2.70837 0.226486
\(144\) 0 0
\(145\) −4.78496 −0.397369
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −14.7943 −1.21200 −0.605999 0.795465i \(-0.707227\pi\)
−0.605999 + 0.795465i \(0.707227\pi\)
\(150\) 0 0
\(151\) −0.981753 −0.0798939 −0.0399469 0.999202i \(-0.512719\pi\)
−0.0399469 + 0.999202i \(0.512719\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 8.58816 0.689817
\(156\) 0 0
\(157\) −6.86154 −0.547610 −0.273805 0.961785i \(-0.588282\pi\)
−0.273805 + 0.961785i \(0.588282\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 15.2988 1.20571
\(162\) 0 0
\(163\) 4.90741 0.384378 0.192189 0.981358i \(-0.438441\pi\)
0.192189 + 0.981358i \(0.438441\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −3.47664 −0.269030 −0.134515 0.990912i \(-0.542948\pi\)
−0.134515 + 0.990912i \(0.542948\pi\)
\(168\) 0 0
\(169\) −12.7360 −0.979692
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 10.5423 0.801515 0.400758 0.916184i \(-0.368747\pi\)
0.400758 + 0.916184i \(0.368747\pi\)
\(174\) 0 0
\(175\) −3.03717 −0.229589
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −4.90741 −0.366797 −0.183398 0.983039i \(-0.558710\pi\)
−0.183398 + 0.983039i \(0.558710\pi\)
\(180\) 0 0
\(181\) 5.21504 0.387631 0.193816 0.981038i \(-0.437914\pi\)
0.193816 + 0.981038i \(0.437914\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −6.58816 −0.484371
\(186\) 0 0
\(187\) −14.7761 −1.08053
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −25.6901 −1.85887 −0.929436 0.368983i \(-0.879706\pi\)
−0.929436 + 0.368983i \(0.879706\pi\)
\(192\) 0 0
\(193\) 3.19680 0.230111 0.115055 0.993359i \(-0.463295\pi\)
0.115055 + 0.993359i \(0.463295\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 13.6808 0.974713 0.487357 0.873203i \(-0.337961\pi\)
0.487357 + 0.873203i \(0.337961\pi\)
\(198\) 0 0
\(199\) 5.95413 0.422077 0.211039 0.977478i \(-0.432315\pi\)
0.211039 + 0.977478i \(0.432315\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 14.5327 1.02000
\(204\) 0 0
\(205\) 7.98175 0.557470
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 43.7440 3.02584
\(210\) 0 0
\(211\) −14.5882 −1.00429 −0.502145 0.864783i \(-0.667456\pi\)
−0.502145 + 0.864783i \(0.667456\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 1.19680 0.0816209
\(216\) 0 0
\(217\) −26.0837 −1.77068
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −1.44032 −0.0968863
\(222\) 0 0
\(223\) 27.7740 1.85989 0.929943 0.367703i \(-0.119856\pi\)
0.929943 + 0.367703i \(0.119856\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −12.8411 −0.852291 −0.426145 0.904655i \(-0.640129\pi\)
−0.426145 + 0.904655i \(0.640129\pi\)
\(228\) 0 0
\(229\) 25.9060 1.71192 0.855959 0.517043i \(-0.172967\pi\)
0.855959 + 0.517043i \(0.172967\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 5.71998 0.374729 0.187364 0.982290i \(-0.440006\pi\)
0.187364 + 0.982290i \(0.440006\pi\)
\(234\) 0 0
\(235\) 9.62533 0.627887
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −11.0467 −0.714553 −0.357277 0.933999i \(-0.616295\pi\)
−0.357277 + 0.933999i \(0.616295\pi\)
\(240\) 0 0
\(241\) 12.4862 0.804306 0.402153 0.915572i \(-0.368262\pi\)
0.402153 + 0.915572i \(0.368262\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 2.22442 0.142113
\(246\) 0 0
\(247\) 4.26400 0.271312
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −8.22442 −0.519121 −0.259560 0.965727i \(-0.583578\pi\)
−0.259560 + 0.965727i \(0.583578\pi\)
\(252\) 0 0
\(253\) 26.5517 1.66929
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 16.8317 1.04993 0.524966 0.851123i \(-0.324078\pi\)
0.524966 + 0.851123i \(0.324078\pi\)
\(258\) 0 0
\(259\) 20.0094 1.24332
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −12.1202 −0.747365 −0.373682 0.927557i \(-0.621905\pi\)
−0.373682 + 0.927557i \(0.621905\pi\)
\(264\) 0 0
\(265\) −0.467941 −0.0287454
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −22.5859 −1.37709 −0.688544 0.725195i \(-0.741750\pi\)
−0.688544 + 0.725195i \(0.741750\pi\)
\(270\) 0 0
\(271\) 10.9818 0.667094 0.333547 0.942733i \(-0.391754\pi\)
0.333547 + 0.942733i \(0.391754\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −5.27114 −0.317862
\(276\) 0 0
\(277\) 28.7178 1.72548 0.862741 0.505646i \(-0.168746\pi\)
0.862741 + 0.505646i \(0.168746\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −24.3090 −1.45015 −0.725077 0.688668i \(-0.758196\pi\)
−0.725077 + 0.688668i \(0.758196\pi\)
\(282\) 0 0
\(283\) −14.6245 −0.869335 −0.434668 0.900591i \(-0.643134\pi\)
−0.434668 + 0.900591i \(0.643134\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −24.2420 −1.43096
\(288\) 0 0
\(289\) −9.14206 −0.537768
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 15.6901 0.916627 0.458314 0.888791i \(-0.348454\pi\)
0.458314 + 0.888791i \(0.348454\pi\)
\(294\) 0 0
\(295\) 0.757332 0.0440936
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 2.58816 0.149677
\(300\) 0 0
\(301\) −3.63488 −0.209511
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −0.271144 −0.0155256
\(306\) 0 0
\(307\) 26.3920 1.50627 0.753137 0.657864i \(-0.228540\pi\)
0.753137 + 0.657864i \(0.228540\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 14.0285 0.795482 0.397741 0.917498i \(-0.369794\pi\)
0.397741 + 0.917498i \(0.369794\pi\)
\(312\) 0 0
\(313\) −34.4110 −1.94502 −0.972511 0.232855i \(-0.925193\pi\)
−0.972511 + 0.232855i \(0.925193\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −2.19456 −0.123259 −0.0616295 0.998099i \(-0.519630\pi\)
−0.0616295 + 0.998099i \(0.519630\pi\)
\(318\) 0 0
\(319\) 25.2222 1.41217
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −23.2631 −1.29439
\(324\) 0 0
\(325\) −0.513812 −0.0285011
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −29.2338 −1.61171
\(330\) 0 0
\(331\) −12.8980 −0.708940 −0.354470 0.935067i \(-0.615339\pi\)
−0.354470 + 0.935067i \(0.615339\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 7.26159 0.396743
\(336\) 0 0
\(337\) 12.8126 0.697946 0.348973 0.937133i \(-0.386531\pi\)
0.348973 + 0.937133i \(0.386531\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −45.2694 −2.45148
\(342\) 0 0
\(343\) 14.5043 0.783157
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −8.18793 −0.439551 −0.219775 0.975550i \(-0.570532\pi\)
−0.219775 + 0.975550i \(0.570532\pi\)
\(348\) 0 0
\(349\) 5.34464 0.286092 0.143046 0.989716i \(-0.454310\pi\)
0.143046 + 0.989716i \(0.454310\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −14.8317 −0.789411 −0.394705 0.918808i \(-0.629153\pi\)
−0.394705 + 0.918808i \(0.629153\pi\)
\(354\) 0 0
\(355\) −1.48619 −0.0788787
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −6.55031 −0.345712 −0.172856 0.984947i \(-0.555300\pi\)
−0.172856 + 0.984947i \(0.555300\pi\)
\(360\) 0 0
\(361\) 49.8695 2.62471
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 5.31701 0.278305
\(366\) 0 0
\(367\) 28.1202 1.46786 0.733932 0.679223i \(-0.237683\pi\)
0.733932 + 0.679223i \(0.237683\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 1.42122 0.0737860
\(372\) 0 0
\(373\) −17.7360 −0.918335 −0.459168 0.888350i \(-0.651852\pi\)
−0.459168 + 0.888350i \(0.651852\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 2.45857 0.126623
\(378\) 0 0
\(379\) −15.8228 −0.812763 −0.406381 0.913703i \(-0.633210\pi\)
−0.406381 + 0.913703i \(0.633210\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 7.11135 0.363373 0.181686 0.983357i \(-0.441844\pi\)
0.181686 + 0.983357i \(0.441844\pi\)
\(384\) 0 0
\(385\) 16.0094 0.815913
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 5.74761 0.291415 0.145708 0.989328i \(-0.453454\pi\)
0.145708 + 0.989328i \(0.453454\pi\)
\(390\) 0 0
\(391\) −14.1202 −0.714090
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 15.9635 0.803211
\(396\) 0 0
\(397\) 6.35710 0.319054 0.159527 0.987194i \(-0.449003\pi\)
0.159527 + 0.987194i \(0.449003\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −35.1100 −1.75331 −0.876654 0.481121i \(-0.840230\pi\)
−0.876654 + 0.481121i \(0.840230\pi\)
\(402\) 0 0
\(403\) −4.41269 −0.219812
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 34.7271 1.72136
\(408\) 0 0
\(409\) 24.8504 1.22877 0.614387 0.789005i \(-0.289403\pi\)
0.614387 + 0.789005i \(0.289403\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −2.30015 −0.113183
\(414\) 0 0
\(415\) −12.0648 −0.592238
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −3.37535 −0.164897 −0.0824483 0.996595i \(-0.526274\pi\)
−0.0824483 + 0.996595i \(0.526274\pi\)
\(420\) 0 0
\(421\) −3.96351 −0.193169 −0.0965847 0.995325i \(-0.530792\pi\)
−0.0965847 + 0.995325i \(0.530792\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 2.80320 0.135975
\(426\) 0 0
\(427\) 0.823510 0.0398524
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −7.62516 −0.367291 −0.183645 0.982993i \(-0.558790\pi\)
−0.183645 + 0.982993i \(0.558790\pi\)
\(432\) 0 0
\(433\) −7.29024 −0.350347 −0.175173 0.984538i \(-0.556049\pi\)
−0.175173 + 0.984538i \(0.556049\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 41.8023 1.99968
\(438\) 0 0
\(439\) −36.3905 −1.73682 −0.868411 0.495844i \(-0.834859\pi\)
−0.868411 + 0.495844i \(0.834859\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 35.3738 1.68066 0.840330 0.542076i \(-0.182361\pi\)
0.840330 + 0.542076i \(0.182361\pi\)
\(444\) 0 0
\(445\) 15.2529 0.723057
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −14.9425 −0.705181 −0.352591 0.935778i \(-0.614699\pi\)
−0.352591 + 0.935778i \(0.614699\pi\)
\(450\) 0 0
\(451\) −42.0730 −1.98114
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 1.56053 0.0731590
\(456\) 0 0
\(457\) −12.7841 −0.598015 −0.299008 0.954251i \(-0.596656\pi\)
−0.299008 + 0.954251i \(0.596656\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 8.11443 0.377927 0.188963 0.981984i \(-0.439487\pi\)
0.188963 + 0.981984i \(0.439487\pi\)
\(462\) 0 0
\(463\) 21.5605 1.00200 0.501002 0.865446i \(-0.332965\pi\)
0.501002 + 0.865446i \(0.332965\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 30.8602 1.42804 0.714019 0.700127i \(-0.246873\pi\)
0.714019 + 0.700127i \(0.246873\pi\)
\(468\) 0 0
\(469\) −22.0547 −1.01839
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −6.30849 −0.290065
\(474\) 0 0
\(475\) −8.29877 −0.380774
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 1.06412 0.0486208 0.0243104 0.999704i \(-0.492261\pi\)
0.0243104 + 0.999704i \(0.492261\pi\)
\(480\) 0 0
\(481\) 3.38507 0.154346
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −6.36374 −0.288962
\(486\) 0 0
\(487\) 27.0182 1.22431 0.612157 0.790736i \(-0.290302\pi\)
0.612157 + 0.790736i \(0.290302\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −16.2338 −0.732621 −0.366310 0.930493i \(-0.619379\pi\)
−0.366310 + 0.930493i \(0.619379\pi\)
\(492\) 0 0
\(493\) −13.4132 −0.604100
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 4.51381 0.202472
\(498\) 0 0
\(499\) −20.7208 −0.927592 −0.463796 0.885942i \(-0.653513\pi\)
−0.463796 + 0.885942i \(0.653513\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 5.47834 0.244267 0.122134 0.992514i \(-0.461026\pi\)
0.122134 + 0.992514i \(0.461026\pi\)
\(504\) 0 0
\(505\) −2.07435 −0.0923072
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −8.71061 −0.386091 −0.193045 0.981190i \(-0.561836\pi\)
−0.193045 + 0.981190i \(0.561836\pi\)
\(510\) 0 0
\(511\) −16.1487 −0.714376
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −5.05610 −0.222798
\(516\) 0 0
\(517\) −50.7365 −2.23139
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −2.87041 −0.125755 −0.0628774 0.998021i \(-0.520028\pi\)
−0.0628774 + 0.998021i \(0.520028\pi\)
\(522\) 0 0
\(523\) 6.65295 0.290913 0.145457 0.989365i \(-0.453535\pi\)
0.145457 + 0.989365i \(0.453535\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 24.0743 1.04869
\(528\) 0 0
\(529\) 2.37311 0.103179
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −4.10112 −0.177639
\(534\) 0 0
\(535\) 13.2901 0.574580
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −11.7252 −0.505042
\(540\) 0 0
\(541\) 7.79348 0.335068 0.167534 0.985866i \(-0.446420\pi\)
0.167534 + 0.985866i \(0.446420\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 8.34549 0.357482
\(546\) 0 0
\(547\) 11.7580 0.502736 0.251368 0.967892i \(-0.419120\pi\)
0.251368 + 0.967892i \(0.419120\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 39.7092 1.69167
\(552\) 0 0
\(553\) −48.4839 −2.06175
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 16.7827 0.711107 0.355553 0.934656i \(-0.384292\pi\)
0.355553 + 0.934656i \(0.384292\pi\)
\(558\) 0 0
\(559\) −0.614928 −0.0260087
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 25.7486 1.08518 0.542588 0.839999i \(-0.317445\pi\)
0.542588 + 0.839999i \(0.317445\pi\)
\(564\) 0 0
\(565\) −5.10197 −0.214641
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −5.11308 −0.214351 −0.107176 0.994240i \(-0.534181\pi\)
−0.107176 + 0.994240i \(0.534181\pi\)
\(570\) 0 0
\(571\) −25.4657 −1.06571 −0.532853 0.846208i \(-0.678880\pi\)
−0.532853 + 0.846208i \(0.678880\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −5.03717 −0.210065
\(576\) 0 0
\(577\) 44.7164 1.86157 0.930783 0.365571i \(-0.119126\pi\)
0.930783 + 0.365571i \(0.119126\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 36.6429 1.52020
\(582\) 0 0
\(583\) 2.46658 0.102155
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 40.9156 1.68877 0.844383 0.535740i \(-0.179967\pi\)
0.844383 + 0.535740i \(0.179967\pi\)
\(588\) 0 0
\(589\) −71.2711 −2.93668
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −11.9729 −0.491667 −0.245834 0.969312i \(-0.579062\pi\)
−0.245834 + 0.969312i \(0.579062\pi\)
\(594\) 0 0
\(595\) −8.51381 −0.349032
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −14.3571 −0.586615 −0.293308 0.956018i \(-0.594756\pi\)
−0.293308 + 0.956018i \(0.594756\pi\)
\(600\) 0 0
\(601\) 44.6420 1.82099 0.910493 0.413524i \(-0.135702\pi\)
0.910493 + 0.413524i \(0.135702\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 16.7850 0.682405
\(606\) 0 0
\(607\) 29.7740 1.20849 0.604245 0.796798i \(-0.293475\pi\)
0.604245 + 0.796798i \(0.293475\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −4.94561 −0.200078
\(612\) 0 0
\(613\) 33.4132 1.34955 0.674773 0.738025i \(-0.264241\pi\)
0.674773 + 0.738025i \(0.264241\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −44.5881 −1.79505 −0.897525 0.440963i \(-0.854637\pi\)
−0.897525 + 0.440963i \(0.854637\pi\)
\(618\) 0 0
\(619\) 36.9533 1.48528 0.742638 0.669693i \(-0.233574\pi\)
0.742638 + 0.669693i \(0.233574\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −46.3257 −1.85600
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −18.4679 −0.736365
\(630\) 0 0
\(631\) 1.10197 0.0438687 0.0219344 0.999759i \(-0.493018\pi\)
0.0219344 + 0.999759i \(0.493018\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 11.0830 0.439817
\(636\) 0 0
\(637\) −1.14293 −0.0452847
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −13.5691 −0.535946 −0.267973 0.963426i \(-0.586354\pi\)
−0.267973 + 0.963426i \(0.586354\pi\)
\(642\) 0 0
\(643\) −9.72953 −0.383695 −0.191848 0.981425i \(-0.561448\pi\)
−0.191848 + 0.981425i \(0.561448\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 38.5786 1.51668 0.758341 0.651858i \(-0.226010\pi\)
0.758341 + 0.651858i \(0.226010\pi\)
\(648\) 0 0
\(649\) −3.99201 −0.156700
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 17.1304 0.670366 0.335183 0.942153i \(-0.391202\pi\)
0.335183 + 0.942153i \(0.391202\pi\)
\(654\) 0 0
\(655\) −1.55116 −0.0606088
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 23.6630 0.921780 0.460890 0.887457i \(-0.347530\pi\)
0.460890 + 0.887457i \(0.347530\pi\)
\(660\) 0 0
\(661\) 18.4301 0.716847 0.358424 0.933559i \(-0.383314\pi\)
0.358424 + 0.933559i \(0.383314\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 25.2048 0.977400
\(666\) 0 0
\(667\) 24.1026 0.933258
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 1.42924 0.0551751
\(672\) 0 0
\(673\) −16.4964 −0.635890 −0.317945 0.948109i \(-0.602993\pi\)
−0.317945 + 0.948109i \(0.602993\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 10.1028 0.388283 0.194141 0.980974i \(-0.437808\pi\)
0.194141 + 0.980974i \(0.437808\pi\)
\(678\) 0 0
\(679\) 19.3278 0.741732
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 8.16917 0.312585 0.156292 0.987711i \(-0.450046\pi\)
0.156292 + 0.987711i \(0.450046\pi\)
\(684\) 0 0
\(685\) −4.81258 −0.183879
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0.240434 0.00915979
\(690\) 0 0
\(691\) 3.51466 0.133704 0.0668521 0.997763i \(-0.478704\pi\)
0.0668521 + 0.997763i \(0.478704\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 21.4657 0.814241
\(696\) 0 0
\(697\) 22.3745 0.847493
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 33.9897 1.28378 0.641888 0.766799i \(-0.278152\pi\)
0.641888 + 0.766799i \(0.278152\pi\)
\(702\) 0 0
\(703\) 54.6736 2.06205
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 6.30015 0.236941
\(708\) 0 0
\(709\) −3.99777 −0.150139 −0.0750696 0.997178i \(-0.523918\pi\)
−0.0750696 + 0.997178i \(0.523918\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −43.2600 −1.62010
\(714\) 0 0
\(715\) 2.70837 0.101287
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 33.2142 1.23868 0.619340 0.785123i \(-0.287400\pi\)
0.619340 + 0.785123i \(0.287400\pi\)
\(720\) 0 0
\(721\) 15.3562 0.571897
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −4.78496 −0.177709
\(726\) 0 0
\(727\) 27.5888 1.02321 0.511607 0.859220i \(-0.329051\pi\)
0.511607 + 0.859220i \(0.329051\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 3.35487 0.124084
\(732\) 0 0
\(733\) 9.71860 0.358965 0.179482 0.983761i \(-0.442558\pi\)
0.179482 + 0.983761i \(0.442558\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −38.2769 −1.40995
\(738\) 0 0
\(739\) −36.2355 −1.33294 −0.666472 0.745530i \(-0.732197\pi\)
−0.666472 + 0.745530i \(0.732197\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −20.6814 −0.758728 −0.379364 0.925247i \(-0.623857\pi\)
−0.379364 + 0.925247i \(0.623857\pi\)
\(744\) 0 0
\(745\) −14.7943 −0.542022
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −40.3642 −1.47488
\(750\) 0 0
\(751\) −29.0749 −1.06096 −0.530478 0.847699i \(-0.677988\pi\)
−0.530478 + 0.847699i \(0.677988\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −0.981753 −0.0357296
\(756\) 0 0
\(757\) −22.1202 −0.803973 −0.401986 0.915646i \(-0.631680\pi\)
−0.401986 + 0.915646i \(0.631680\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 15.2907 0.554289 0.277145 0.960828i \(-0.410612\pi\)
0.277145 + 0.960828i \(0.410612\pi\)
\(762\) 0 0
\(763\) −25.3467 −0.917612
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −0.389126 −0.0140505
\(768\) 0 0
\(769\) 27.9978 1.00963 0.504813 0.863229i \(-0.331562\pi\)
0.504813 + 0.863229i \(0.331562\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −18.4853 −0.664871 −0.332436 0.943126i \(-0.607870\pi\)
−0.332436 + 0.943126i \(0.607870\pi\)
\(774\) 0 0
\(775\) 8.58816 0.308496
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −66.2387 −2.37325
\(780\) 0 0
\(781\) 7.83391 0.280319
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −6.86154 −0.244899
\(786\) 0 0
\(787\) −8.92616 −0.318183 −0.159092 0.987264i \(-0.550857\pi\)
−0.159092 + 0.987264i \(0.550857\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 15.4956 0.550959
\(792\) 0 0
\(793\) 0.139317 0.00494728
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −32.4555 −1.14963 −0.574816 0.818283i \(-0.694926\pi\)
−0.574816 + 0.818283i \(0.694926\pi\)
\(798\) 0 0
\(799\) 26.9818 0.954546
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −28.0267 −0.989042
\(804\) 0 0
\(805\) 15.2988 0.539211
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 12.4759 0.438631 0.219315 0.975654i \(-0.429618\pi\)
0.219315 + 0.975654i \(0.429618\pi\)
\(810\) 0 0
\(811\) 16.0632 0.564057 0.282028 0.959406i \(-0.408993\pi\)
0.282028 + 0.959406i \(0.408993\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 4.90741 0.171899
\(816\) 0 0
\(817\) −9.93194 −0.347475
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 47.6149 1.66177 0.830886 0.556443i \(-0.187834\pi\)
0.830886 + 0.556443i \(0.187834\pi\)
\(822\) 0 0
\(823\) −17.7553 −0.618910 −0.309455 0.950914i \(-0.600147\pi\)
−0.309455 + 0.950914i \(0.600147\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −24.2420 −0.842976 −0.421488 0.906834i \(-0.638492\pi\)
−0.421488 + 0.906834i \(0.638492\pi\)
\(828\) 0 0
\(829\) −30.3816 −1.05520 −0.527599 0.849494i \(-0.676908\pi\)
−0.527599 + 0.849494i \(0.676908\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 6.23550 0.216047
\(834\) 0 0
\(835\) −3.47664 −0.120314
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 10.6434 0.367451 0.183726 0.982978i \(-0.441184\pi\)
0.183726 + 0.982978i \(0.441184\pi\)
\(840\) 0 0
\(841\) −6.10420 −0.210490
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −12.7360 −0.438132
\(846\) 0 0
\(847\) −50.9788 −1.75165
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 33.1857 1.13759
\(852\) 0 0
\(853\) 27.1492 0.929571 0.464785 0.885423i \(-0.346131\pi\)
0.464785 + 0.885423i \(0.346131\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 43.1666 1.47454 0.737271 0.675597i \(-0.236114\pi\)
0.737271 + 0.675597i \(0.236114\pi\)
\(858\) 0 0
\(859\) 6.61972 0.225862 0.112931 0.993603i \(-0.463976\pi\)
0.112931 + 0.993603i \(0.463976\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −5.31055 −0.180773 −0.0903866 0.995907i \(-0.528810\pi\)
−0.0903866 + 0.995907i \(0.528810\pi\)
\(864\) 0 0
\(865\) 10.5423 0.358449
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −84.1459 −2.85446
\(870\) 0 0
\(871\) −3.73109 −0.126423
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −3.03717 −0.102675
\(876\) 0 0
\(877\) −2.12022 −0.0715946 −0.0357973 0.999359i \(-0.511397\pi\)
−0.0357973 + 0.999359i \(0.511397\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 22.5668 0.760296 0.380148 0.924926i \(-0.375873\pi\)
0.380148 + 0.924926i \(0.375873\pi\)
\(882\) 0 0
\(883\) −41.5399 −1.39793 −0.698964 0.715157i \(-0.746355\pi\)
−0.698964 + 0.715157i \(0.746355\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 43.4497 1.45890 0.729449 0.684035i \(-0.239777\pi\)
0.729449 + 0.684035i \(0.239777\pi\)
\(888\) 0 0
\(889\) −33.6611 −1.12896
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −79.8784 −2.67303
\(894\) 0 0
\(895\) −4.90741 −0.164037
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −41.0940 −1.37056
\(900\) 0 0
\(901\) −1.31173 −0.0437002
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 5.21504 0.173354
\(906\) 0 0
\(907\) −4.38266 −0.145524 −0.0727620 0.997349i \(-0.523181\pi\)
−0.0727620 + 0.997349i \(0.523181\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −14.6719 −0.486101 −0.243051 0.970014i \(-0.578148\pi\)
−0.243051 + 0.970014i \(0.578148\pi\)
\(912\) 0 0
\(913\) 63.5953 2.10470
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 4.71114 0.155575
\(918\) 0 0
\(919\) 37.3233 1.23118 0.615591 0.788066i \(-0.288917\pi\)
0.615591 + 0.788066i \(0.288917\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0.763621 0.0251349
\(924\) 0 0
\(925\) −6.58816 −0.216617
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −19.3250 −0.634033 −0.317016 0.948420i \(-0.602681\pi\)
−0.317016 + 0.948420i \(0.602681\pi\)
\(930\) 0 0
\(931\) −18.4599 −0.605000
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −14.7761 −0.483230
\(936\) 0 0
\(937\) −15.8339 −0.517271 −0.258636 0.965975i \(-0.583273\pi\)
−0.258636 + 0.965975i \(0.583273\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −4.35933 −0.142110 −0.0710551 0.997472i \(-0.522637\pi\)
−0.0710551 + 0.997472i \(0.522637\pi\)
\(942\) 0 0
\(943\) −40.2055 −1.30927
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −39.6316 −1.28785 −0.643927 0.765087i \(-0.722696\pi\)
−0.643927 + 0.765087i \(0.722696\pi\)
\(948\) 0 0
\(949\) −2.73194 −0.0886826
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −38.3922 −1.24365 −0.621823 0.783158i \(-0.713608\pi\)
−0.621823 + 0.783158i \(0.713608\pi\)
\(954\) 0 0
\(955\) −25.6901 −0.831313
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 14.6166 0.471996
\(960\) 0 0
\(961\) 42.7565 1.37924
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 3.19680 0.102909
\(966\) 0 0
\(967\) 52.3257 1.68268 0.841340 0.540506i \(-0.181767\pi\)
0.841340 + 0.540506i \(0.181767\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 45.4831 1.45962 0.729811 0.683649i \(-0.239608\pi\)
0.729811 + 0.683649i \(0.239608\pi\)
\(972\) 0 0
\(973\) −65.1951 −2.09006
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 2.03511 0.0651090 0.0325545 0.999470i \(-0.489636\pi\)
0.0325545 + 0.999470i \(0.489636\pi\)
\(978\) 0 0
\(979\) −80.4002 −2.56960
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −25.4130 −0.810550 −0.405275 0.914195i \(-0.632824\pi\)
−0.405275 + 0.914195i \(0.632824\pi\)
\(984\) 0 0
\(985\) 13.6808 0.435905
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −6.02848 −0.191694
\(990\) 0 0
\(991\) 0.259533 0.00824435 0.00412218 0.999992i \(-0.498688\pi\)
0.00412218 + 0.999992i \(0.498688\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 5.95413 0.188759
\(996\) 0 0
\(997\) −48.9140 −1.54912 −0.774561 0.632499i \(-0.782029\pi\)
−0.774561 + 0.632499i \(0.782029\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6480.2.a.cb.1.1 4
3.2 odd 2 6480.2.a.bz.1.1 4
4.3 odd 2 3240.2.a.u.1.4 4
9.2 odd 6 2160.2.q.l.1441.4 8
9.4 even 3 720.2.q.l.241.2 8
9.5 odd 6 2160.2.q.l.721.4 8
9.7 even 3 720.2.q.l.481.2 8
12.11 even 2 3240.2.a.s.1.4 4
36.7 odd 6 360.2.q.e.121.3 8
36.11 even 6 1080.2.q.e.361.1 8
36.23 even 6 1080.2.q.e.721.1 8
36.31 odd 6 360.2.q.e.241.3 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
360.2.q.e.121.3 8 36.7 odd 6
360.2.q.e.241.3 yes 8 36.31 odd 6
720.2.q.l.241.2 8 9.4 even 3
720.2.q.l.481.2 8 9.7 even 3
1080.2.q.e.361.1 8 36.11 even 6
1080.2.q.e.721.1 8 36.23 even 6
2160.2.q.l.721.4 8 9.5 odd 6
2160.2.q.l.1441.4 8 9.2 odd 6
3240.2.a.s.1.4 4 12.11 even 2
3240.2.a.u.1.4 4 4.3 odd 2
6480.2.a.bz.1.1 4 3.2 odd 2
6480.2.a.cb.1.1 4 1.1 even 1 trivial