Properties

Label 6480.2.a.ca.1.3
Level $6480$
Weight $2$
Character 6480.1
Self dual yes
Analytic conductor $51.743$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6480,2,Mod(1,6480)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6480, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6480.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6480 = 2^{4} \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6480.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(51.7430605098\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.62352.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 11x^{2} + 12x + 24 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 3240)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.16910\) of defining polynomial
Character \(\chi\) \(=\) 6480.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{5} -0.562950 q^{7} -6.36314 q^{11} +3.75699 q^{13} +6.65815 q^{17} +3.33820 q^{19} -4.16910 q^{23} +1.00000 q^{25} -9.82725 q^{29} -5.16910 q^{31} -0.562950 q^{35} +3.14416 q^{37} -11.5842 q^{41} -8.60826 q^{43} +12.2913 q^{47} -6.68309 q^{49} -0.434941 q^{53} -6.36314 q^{55} +1.73205 q^{59} +4.92399 q^{61} +3.75699 q^{65} +11.6545 q^{67} -11.7774 q^{71} +4.31994 q^{73} +3.58213 q^{77} -7.46410 q^{79} +8.99635 q^{83} +6.65815 q^{85} +6.36736 q^{89} -2.11500 q^{91} +3.33820 q^{95} -16.4604 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{5} - 2 q^{7} - 4 q^{11} - 2 q^{17} - 10 q^{23} + 4 q^{25} - 4 q^{29} - 14 q^{31} - 2 q^{35} + 14 q^{37} + 4 q^{41} - 22 q^{43} + 10 q^{49} - 8 q^{53} - 4 q^{55} + 4 q^{61} - 24 q^{67} - 28 q^{71}+ \cdots - 10 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) −0.562950 −0.212775 −0.106388 0.994325i \(-0.533928\pi\)
−0.106388 + 0.994325i \(0.533928\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −6.36314 −1.91856 −0.959280 0.282456i \(-0.908851\pi\)
−0.959280 + 0.282456i \(0.908851\pi\)
\(12\) 0 0
\(13\) 3.75699 1.04200 0.521001 0.853556i \(-0.325559\pi\)
0.521001 + 0.853556i \(0.325559\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 6.65815 1.61484 0.807419 0.589979i \(-0.200864\pi\)
0.807419 + 0.589979i \(0.200864\pi\)
\(18\) 0 0
\(19\) 3.33820 0.765836 0.382918 0.923782i \(-0.374919\pi\)
0.382918 + 0.923782i \(0.374919\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −4.16910 −0.869318 −0.434659 0.900595i \(-0.643131\pi\)
−0.434659 + 0.900595i \(0.643131\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −9.82725 −1.82487 −0.912437 0.409217i \(-0.865802\pi\)
−0.912437 + 0.409217i \(0.865802\pi\)
\(30\) 0 0
\(31\) −5.16910 −0.928398 −0.464199 0.885731i \(-0.653658\pi\)
−0.464199 + 0.885731i \(0.653658\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.562950 −0.0951559
\(36\) 0 0
\(37\) 3.14416 0.516896 0.258448 0.966025i \(-0.416789\pi\)
0.258448 + 0.966025i \(0.416789\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −11.5842 −1.80915 −0.904577 0.426310i \(-0.859813\pi\)
−0.904577 + 0.426310i \(0.859813\pi\)
\(42\) 0 0
\(43\) −8.60826 −1.31275 −0.656374 0.754436i \(-0.727911\pi\)
−0.656374 + 0.754436i \(0.727911\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 12.2913 1.79288 0.896439 0.443168i \(-0.146145\pi\)
0.896439 + 0.443168i \(0.146145\pi\)
\(48\) 0 0
\(49\) −6.68309 −0.954727
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −0.434941 −0.0597438 −0.0298719 0.999554i \(-0.509510\pi\)
−0.0298719 + 0.999554i \(0.509510\pi\)
\(54\) 0 0
\(55\) −6.36314 −0.858006
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 1.73205 0.225494 0.112747 0.993624i \(-0.464035\pi\)
0.112747 + 0.993624i \(0.464035\pi\)
\(60\) 0 0
\(61\) 4.92399 0.630452 0.315226 0.949017i \(-0.397920\pi\)
0.315226 + 0.949017i \(0.397920\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 3.75699 0.465998
\(66\) 0 0
\(67\) 11.6545 1.42382 0.711911 0.702269i \(-0.247830\pi\)
0.711911 + 0.702269i \(0.247830\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −11.7774 −1.39772 −0.698858 0.715261i \(-0.746308\pi\)
−0.698858 + 0.715261i \(0.746308\pi\)
\(72\) 0 0
\(73\) 4.31994 0.505611 0.252806 0.967517i \(-0.418647\pi\)
0.252806 + 0.967517i \(0.418647\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 3.58213 0.408222
\(78\) 0 0
\(79\) −7.46410 −0.839777 −0.419889 0.907576i \(-0.637931\pi\)
−0.419889 + 0.907576i \(0.637931\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 8.99635 0.987477 0.493739 0.869610i \(-0.335630\pi\)
0.493739 + 0.869610i \(0.335630\pi\)
\(84\) 0 0
\(85\) 6.65815 0.722177
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 6.36736 0.674939 0.337470 0.941336i \(-0.390429\pi\)
0.337470 + 0.941336i \(0.390429\pi\)
\(90\) 0 0
\(91\) −2.11500 −0.221712
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 3.33820 0.342492
\(96\) 0 0
\(97\) −16.4604 −1.67131 −0.835653 0.549258i \(-0.814910\pi\)
−0.835653 + 0.549258i \(0.814910\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −0.226856 −0.0225731 −0.0112865 0.999936i \(-0.503593\pi\)
−0.0112865 + 0.999936i \(0.503593\pi\)
\(102\) 0 0
\(103\) 0.833008 0.0820787 0.0410394 0.999158i \(-0.486933\pi\)
0.0410394 + 0.999158i \(0.486933\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −6.39230 −0.617967 −0.308984 0.951067i \(-0.599989\pi\)
−0.308984 + 0.951067i \(0.599989\pi\)
\(108\) 0 0
\(109\) 10.6332 1.01848 0.509238 0.860626i \(-0.329927\pi\)
0.509238 + 0.860626i \(0.329927\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −7.48236 −0.703881 −0.351941 0.936022i \(-0.614478\pi\)
−0.351941 + 0.936022i \(0.614478\pi\)
\(114\) 0 0
\(115\) −4.16910 −0.388771
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −3.74820 −0.343597
\(120\) 0 0
\(121\) 29.4896 2.68087
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −11.4912 −1.01967 −0.509837 0.860271i \(-0.670294\pi\)
−0.509837 + 0.860271i \(0.670294\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −5.19193 −0.453621 −0.226811 0.973939i \(-0.572830\pi\)
−0.226811 + 0.973939i \(0.572830\pi\)
\(132\) 0 0
\(133\) −1.87924 −0.162951
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −5.12590 −0.437935 −0.218968 0.975732i \(-0.570269\pi\)
−0.218968 + 0.975732i \(0.570269\pi\)
\(138\) 0 0
\(139\) −19.7762 −1.67739 −0.838697 0.544599i \(-0.816682\pi\)
−0.838697 + 0.544599i \(0.816682\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −23.9063 −1.99914
\(144\) 0 0
\(145\) −9.82725 −0.816108
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −14.5900 −1.19526 −0.597630 0.801772i \(-0.703891\pi\)
−0.597630 + 0.801772i \(0.703891\pi\)
\(150\) 0 0
\(151\) −3.21899 −0.261957 −0.130979 0.991385i \(-0.541812\pi\)
−0.130979 + 0.991385i \(0.541812\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −5.16910 −0.415192
\(156\) 0 0
\(157\) 8.16334 0.651505 0.325753 0.945455i \(-0.394382\pi\)
0.325753 + 0.945455i \(0.394382\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 2.34699 0.184969
\(162\) 0 0
\(163\) 6.12225 0.479531 0.239766 0.970831i \(-0.422929\pi\)
0.239766 + 0.970831i \(0.422929\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 10.1721 0.787143 0.393572 0.919294i \(-0.371239\pi\)
0.393572 + 0.919294i \(0.371239\pi\)
\(168\) 0 0
\(169\) 1.11500 0.0857691
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −15.0973 −1.14783 −0.573913 0.818916i \(-0.694575\pi\)
−0.573913 + 0.818916i \(0.694575\pi\)
\(174\) 0 0
\(175\) −0.562950 −0.0425550
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −11.5842 −0.865847 −0.432923 0.901431i \(-0.642518\pi\)
−0.432923 + 0.901431i \(0.642518\pi\)
\(180\) 0 0
\(181\) −1.50730 −0.112037 −0.0560185 0.998430i \(-0.517841\pi\)
−0.0560185 + 0.998430i \(0.517841\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 3.14416 0.231163
\(186\) 0 0
\(187\) −42.3667 −3.09816
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 1.62955 0.117910 0.0589550 0.998261i \(-0.481223\pi\)
0.0589550 + 0.998261i \(0.481223\pi\)
\(192\) 0 0
\(193\) −7.92033 −0.570118 −0.285059 0.958510i \(-0.592013\pi\)
−0.285059 + 0.958510i \(0.592013\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −14.4708 −1.03100 −0.515500 0.856889i \(-0.672394\pi\)
−0.515500 + 0.856889i \(0.672394\pi\)
\(198\) 0 0
\(199\) −5.41422 −0.383804 −0.191902 0.981414i \(-0.561466\pi\)
−0.191902 + 0.981414i \(0.561466\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 5.53225 0.388288
\(204\) 0 0
\(205\) −11.5842 −0.809078
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −21.2415 −1.46930
\(210\) 0 0
\(211\) 0.121682 0.00837691 0.00418846 0.999991i \(-0.498667\pi\)
0.00418846 + 0.999991i \(0.498667\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −8.60826 −0.587078
\(216\) 0 0
\(217\) 2.90994 0.197540
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 25.0146 1.68266
\(222\) 0 0
\(223\) 9.26219 0.620242 0.310121 0.950697i \(-0.399630\pi\)
0.310121 + 0.950697i \(0.399630\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 12.6083 0.836840 0.418420 0.908254i \(-0.362584\pi\)
0.418420 + 0.908254i \(0.362584\pi\)
\(228\) 0 0
\(229\) 3.32360 0.219629 0.109815 0.993952i \(-0.464974\pi\)
0.109815 + 0.993952i \(0.464974\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 6.12225 0.401082 0.200541 0.979685i \(-0.435730\pi\)
0.200541 + 0.979685i \(0.435730\pi\)
\(234\) 0 0
\(235\) 12.2913 0.801799
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −15.4641 −1.00029 −0.500145 0.865942i \(-0.666720\pi\)
−0.500145 + 0.865942i \(0.666720\pi\)
\(240\) 0 0
\(241\) −18.6259 −1.19980 −0.599900 0.800075i \(-0.704793\pi\)
−0.599900 + 0.800075i \(0.704793\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −6.68309 −0.426967
\(246\) 0 0
\(247\) 12.5416 0.798003
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −8.49481 −0.536187 −0.268094 0.963393i \(-0.586394\pi\)
−0.268094 + 0.963393i \(0.586394\pi\)
\(252\) 0 0
\(253\) 26.5286 1.66784
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −20.3881 −1.27177 −0.635887 0.771782i \(-0.719366\pi\)
−0.635887 + 0.771782i \(0.719366\pi\)
\(258\) 0 0
\(259\) −1.77000 −0.109983
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −27.5353 −1.69790 −0.848949 0.528475i \(-0.822764\pi\)
−0.848949 + 0.528475i \(0.822764\pi\)
\(264\) 0 0
\(265\) −0.434941 −0.0267182
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0.417247 0.0254400 0.0127200 0.999919i \(-0.495951\pi\)
0.0127200 + 0.999919i \(0.495951\pi\)
\(270\) 0 0
\(271\) 15.2664 0.927368 0.463684 0.886001i \(-0.346527\pi\)
0.463684 + 0.886001i \(0.346527\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −6.36314 −0.383712
\(276\) 0 0
\(277\) 16.8397 1.01180 0.505901 0.862592i \(-0.331160\pi\)
0.505901 + 0.862592i \(0.331160\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −18.6238 −1.11100 −0.555501 0.831516i \(-0.687474\pi\)
−0.555501 + 0.831516i \(0.687474\pi\)
\(282\) 0 0
\(283\) 3.80230 0.226023 0.113012 0.993594i \(-0.463950\pi\)
0.113012 + 0.993594i \(0.463950\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 6.52134 0.384943
\(288\) 0 0
\(289\) 27.3309 1.60770
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −32.7293 −1.91207 −0.956034 0.293257i \(-0.905261\pi\)
−0.956034 + 0.293257i \(0.905261\pi\)
\(294\) 0 0
\(295\) 1.73205 0.100844
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −15.6633 −0.905831
\(300\) 0 0
\(301\) 4.84602 0.279320
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 4.92399 0.281947
\(306\) 0 0
\(307\) −24.7080 −1.41016 −0.705081 0.709127i \(-0.749089\pi\)
−0.705081 + 0.709127i \(0.749089\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −27.0030 −1.53120 −0.765601 0.643316i \(-0.777558\pi\)
−0.765601 + 0.643316i \(0.777558\pi\)
\(312\) 0 0
\(313\) 20.6284 1.16598 0.582992 0.812478i \(-0.301882\pi\)
0.582992 + 0.812478i \(0.301882\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0.629550 0.0353590 0.0176795 0.999844i \(-0.494372\pi\)
0.0176795 + 0.999844i \(0.494372\pi\)
\(318\) 0 0
\(319\) 62.5322 3.50113
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 22.2262 1.23670
\(324\) 0 0
\(325\) 3.75699 0.208400
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −6.91941 −0.381479
\(330\) 0 0
\(331\) 1.46657 0.0806098 0.0403049 0.999187i \(-0.487167\pi\)
0.0403049 + 0.999187i \(0.487167\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 11.6545 0.636753
\(336\) 0 0
\(337\) −3.13012 −0.170508 −0.0852542 0.996359i \(-0.527170\pi\)
−0.0852542 + 0.996359i \(0.527170\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 32.8917 1.78119
\(342\) 0 0
\(343\) 7.70289 0.415917
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 29.4385 1.58034 0.790172 0.612885i \(-0.209991\pi\)
0.790172 + 0.612885i \(0.209991\pi\)
\(348\) 0 0
\(349\) −1.30961 −0.0701017 −0.0350508 0.999386i \(-0.511159\pi\)
−0.0350508 + 0.999386i \(0.511159\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 8.35646 0.444770 0.222385 0.974959i \(-0.428616\pi\)
0.222385 + 0.974959i \(0.428616\pi\)
\(354\) 0 0
\(355\) −11.7774 −0.625077
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 14.5578 0.768329 0.384164 0.923265i \(-0.374490\pi\)
0.384164 + 0.923265i \(0.374490\pi\)
\(360\) 0 0
\(361\) −7.85641 −0.413495
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 4.31994 0.226116
\(366\) 0 0
\(367\) 0.635668 0.0331816 0.0165908 0.999862i \(-0.494719\pi\)
0.0165908 + 0.999862i \(0.494719\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0.244850 0.0127120
\(372\) 0 0
\(373\) 22.9349 1.18753 0.593763 0.804640i \(-0.297642\pi\)
0.593763 + 0.804640i \(0.297642\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −36.9209 −1.90152
\(378\) 0 0
\(379\) 13.8351 0.710662 0.355331 0.934741i \(-0.384368\pi\)
0.355331 + 0.934741i \(0.384368\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −22.9453 −1.17245 −0.586224 0.810149i \(-0.699386\pi\)
−0.586224 + 0.810149i \(0.699386\pi\)
\(384\) 0 0
\(385\) 3.58213 0.182562
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 9.55050 0.484230 0.242115 0.970248i \(-0.422159\pi\)
0.242115 + 0.970248i \(0.422159\pi\)
\(390\) 0 0
\(391\) −27.7585 −1.40381
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −7.46410 −0.375560
\(396\) 0 0
\(397\) −13.1217 −0.658558 −0.329279 0.944233i \(-0.606806\pi\)
−0.329279 + 0.944233i \(0.606806\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 17.3251 0.865173 0.432587 0.901592i \(-0.357601\pi\)
0.432587 + 0.901592i \(0.357601\pi\)
\(402\) 0 0
\(403\) −19.4203 −0.967393
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −20.0067 −0.991697
\(408\) 0 0
\(409\) 30.8340 1.52464 0.762321 0.647199i \(-0.224060\pi\)
0.762321 + 0.647199i \(0.224060\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −0.975058 −0.0479794
\(414\) 0 0
\(415\) 8.99635 0.441613
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 6.19770 0.302777 0.151389 0.988474i \(-0.451626\pi\)
0.151389 + 0.988474i \(0.451626\pi\)
\(420\) 0 0
\(421\) −29.0754 −1.41705 −0.708524 0.705687i \(-0.750639\pi\)
−0.708524 + 0.705687i \(0.750639\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 6.65815 0.322967
\(426\) 0 0
\(427\) −2.77196 −0.134144
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −38.1612 −1.83816 −0.919081 0.394069i \(-0.871067\pi\)
−0.919081 + 0.394069i \(0.871067\pi\)
\(432\) 0 0
\(433\) −16.8261 −0.808609 −0.404304 0.914624i \(-0.632486\pi\)
−0.404304 + 0.914624i \(0.632486\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −13.9173 −0.665755
\(438\) 0 0
\(439\) −12.5718 −0.600019 −0.300010 0.953936i \(-0.596990\pi\)
−0.300010 + 0.953936i \(0.596990\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 6.17944 0.293594 0.146797 0.989167i \(-0.453104\pi\)
0.146797 + 0.989167i \(0.453104\pi\)
\(444\) 0 0
\(445\) 6.36736 0.301842
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −17.9723 −0.848167 −0.424083 0.905623i \(-0.639404\pi\)
−0.424083 + 0.905623i \(0.639404\pi\)
\(450\) 0 0
\(451\) 73.7122 3.47097
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −2.11500 −0.0991527
\(456\) 0 0
\(457\) −2.31994 −0.108522 −0.0542612 0.998527i \(-0.517280\pi\)
−0.0542612 + 0.998527i \(0.517280\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 39.1070 1.82140 0.910698 0.413073i \(-0.135545\pi\)
0.910698 + 0.413073i \(0.135545\pi\)
\(462\) 0 0
\(463\) 17.0234 0.791144 0.395572 0.918435i \(-0.370546\pi\)
0.395572 + 0.918435i \(0.370546\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −32.5395 −1.50575 −0.752875 0.658163i \(-0.771334\pi\)
−0.752875 + 0.658163i \(0.771334\pi\)
\(468\) 0 0
\(469\) −6.56089 −0.302954
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 54.7756 2.51858
\(474\) 0 0
\(475\) 3.33820 0.153167
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −9.94276 −0.454296 −0.227148 0.973860i \(-0.572940\pi\)
−0.227148 + 0.973860i \(0.572940\pi\)
\(480\) 0 0
\(481\) 11.8126 0.538607
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −16.4604 −0.747430
\(486\) 0 0
\(487\) −25.7040 −1.16476 −0.582380 0.812917i \(-0.697878\pi\)
−0.582380 + 0.812917i \(0.697878\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 17.9723 0.811080 0.405540 0.914077i \(-0.367084\pi\)
0.405540 + 0.914077i \(0.367084\pi\)
\(492\) 0 0
\(493\) −65.4312 −2.94687
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 6.63006 0.297399
\(498\) 0 0
\(499\) 18.6180 0.833455 0.416727 0.909031i \(-0.363177\pi\)
0.416727 + 0.909031i \(0.363177\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 26.4963 1.18141 0.590706 0.806887i \(-0.298849\pi\)
0.590706 + 0.806887i \(0.298849\pi\)
\(504\) 0 0
\(505\) −0.226856 −0.0100950
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −23.3528 −1.03510 −0.517548 0.855654i \(-0.673155\pi\)
−0.517548 + 0.855654i \(0.673155\pi\)
\(510\) 0 0
\(511\) −2.43191 −0.107581
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0.833008 0.0367067
\(516\) 0 0
\(517\) −78.2116 −3.43974
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −22.1378 −0.969874 −0.484937 0.874549i \(-0.661157\pi\)
−0.484937 + 0.874549i \(0.661157\pi\)
\(522\) 0 0
\(523\) −28.5743 −1.24947 −0.624733 0.780839i \(-0.714792\pi\)
−0.624733 + 0.780839i \(0.714792\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −34.4166 −1.49921
\(528\) 0 0
\(529\) −5.61860 −0.244287
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −43.5219 −1.88514
\(534\) 0 0
\(535\) −6.39230 −0.276363
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 42.5255 1.83170
\(540\) 0 0
\(541\) −33.1295 −1.42435 −0.712174 0.702003i \(-0.752289\pi\)
−0.712174 + 0.702003i \(0.752289\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 10.6332 0.455476
\(546\) 0 0
\(547\) 4.42039 0.189002 0.0945011 0.995525i \(-0.469874\pi\)
0.0945011 + 0.995525i \(0.469874\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −32.8053 −1.39755
\(552\) 0 0
\(553\) 4.20191 0.178684
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −42.5583 −1.80325 −0.901627 0.432515i \(-0.857626\pi\)
−0.901627 + 0.432515i \(0.857626\pi\)
\(558\) 0 0
\(559\) −32.3412 −1.36789
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 5.97752 0.251923 0.125961 0.992035i \(-0.459798\pi\)
0.125961 + 0.992035i \(0.459798\pi\)
\(564\) 0 0
\(565\) −7.48236 −0.314785
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −8.46986 −0.355075 −0.177538 0.984114i \(-0.556813\pi\)
−0.177538 + 0.984114i \(0.556813\pi\)
\(570\) 0 0
\(571\) −13.0297 −0.545277 −0.272639 0.962117i \(-0.587896\pi\)
−0.272639 + 0.962117i \(0.587896\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −4.16910 −0.173864
\(576\) 0 0
\(577\) 37.9713 1.58077 0.790384 0.612612i \(-0.209881\pi\)
0.790384 + 0.612612i \(0.209881\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −5.06449 −0.210111
\(582\) 0 0
\(583\) 2.76759 0.114622
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 29.6728 1.22473 0.612363 0.790577i \(-0.290219\pi\)
0.612363 + 0.790577i \(0.290219\pi\)
\(588\) 0 0
\(589\) −17.2555 −0.711001
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 5.34859 0.219640 0.109820 0.993951i \(-0.464973\pi\)
0.109820 + 0.993951i \(0.464973\pi\)
\(594\) 0 0
\(595\) −3.74820 −0.153661
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 12.9988 0.531117 0.265559 0.964095i \(-0.414444\pi\)
0.265559 + 0.964095i \(0.414444\pi\)
\(600\) 0 0
\(601\) −40.9489 −1.67034 −0.835170 0.549992i \(-0.814631\pi\)
−0.835170 + 0.549992i \(0.814631\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 29.4896 1.19892
\(606\) 0 0
\(607\) 17.0547 0.692228 0.346114 0.938193i \(-0.387501\pi\)
0.346114 + 0.938193i \(0.387501\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 46.1785 1.86818
\(612\) 0 0
\(613\) −29.0192 −1.17207 −0.586037 0.810284i \(-0.699313\pi\)
−0.586037 + 0.810284i \(0.699313\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −9.65758 −0.388800 −0.194400 0.980922i \(-0.562276\pi\)
−0.194400 + 0.980922i \(0.562276\pi\)
\(618\) 0 0
\(619\) 2.12836 0.0855462 0.0427731 0.999085i \(-0.486381\pi\)
0.0427731 + 0.999085i \(0.486381\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −3.58450 −0.143610
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 20.9343 0.834704
\(630\) 0 0
\(631\) −37.7111 −1.50125 −0.750627 0.660726i \(-0.770248\pi\)
−0.750627 + 0.660726i \(0.770248\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −11.4912 −0.456012
\(636\) 0 0
\(637\) −25.1083 −0.994828
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 21.3820 0.844537 0.422268 0.906471i \(-0.361234\pi\)
0.422268 + 0.906471i \(0.361234\pi\)
\(642\) 0 0
\(643\) 22.4562 0.885587 0.442794 0.896624i \(-0.353987\pi\)
0.442794 + 0.896624i \(0.353987\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −26.0061 −1.02240 −0.511202 0.859461i \(-0.670800\pi\)
−0.511202 + 0.859461i \(0.670800\pi\)
\(648\) 0 0
\(649\) −11.0213 −0.432623
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −2.82606 −0.110592 −0.0552961 0.998470i \(-0.517610\pi\)
−0.0552961 + 0.998470i \(0.517610\pi\)
\(654\) 0 0
\(655\) −5.19193 −0.202866
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 37.9432 1.47806 0.739028 0.673675i \(-0.235285\pi\)
0.739028 + 0.673675i \(0.235285\pi\)
\(660\) 0 0
\(661\) 16.6739 0.648541 0.324271 0.945964i \(-0.394881\pi\)
0.324271 + 0.945964i \(0.394881\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1.87924 −0.0728738
\(666\) 0 0
\(667\) 40.9708 1.58640
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −31.3320 −1.20956
\(672\) 0 0
\(673\) 43.8449 1.69010 0.845048 0.534690i \(-0.179572\pi\)
0.845048 + 0.534690i \(0.179572\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −17.3772 −0.667860 −0.333930 0.942598i \(-0.608375\pi\)
−0.333930 + 0.942598i \(0.608375\pi\)
\(678\) 0 0
\(679\) 9.26641 0.355612
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 40.0875 1.53391 0.766953 0.641703i \(-0.221772\pi\)
0.766953 + 0.641703i \(0.221772\pi\)
\(684\) 0 0
\(685\) −5.12590 −0.195851
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −1.63407 −0.0622532
\(690\) 0 0
\(691\) 1.92883 0.0733760 0.0366880 0.999327i \(-0.488319\pi\)
0.0366880 + 0.999327i \(0.488319\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −19.7762 −0.750153
\(696\) 0 0
\(697\) −77.1295 −2.92149
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 10.7585 0.406344 0.203172 0.979143i \(-0.434875\pi\)
0.203172 + 0.979143i \(0.434875\pi\)
\(702\) 0 0
\(703\) 10.4958 0.395858
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0.127709 0.00480298
\(708\) 0 0
\(709\) 38.0103 1.42751 0.713753 0.700398i \(-0.246994\pi\)
0.713753 + 0.700398i \(0.246994\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 21.5505 0.807073
\(714\) 0 0
\(715\) −23.9063 −0.894045
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 33.2019 1.23822 0.619110 0.785304i \(-0.287493\pi\)
0.619110 + 0.785304i \(0.287493\pi\)
\(720\) 0 0
\(721\) −0.468942 −0.0174643
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −9.82725 −0.364975
\(726\) 0 0
\(727\) 6.28980 0.233276 0.116638 0.993174i \(-0.462788\pi\)
0.116638 + 0.993174i \(0.462788\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −57.3150 −2.11987
\(732\) 0 0
\(733\) 13.2664 0.490006 0.245003 0.969522i \(-0.421211\pi\)
0.245003 + 0.969522i \(0.421211\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −74.1592 −2.73169
\(738\) 0 0
\(739\) 49.4520 1.81912 0.909560 0.415573i \(-0.136419\pi\)
0.909560 + 0.415573i \(0.136419\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 47.2293 1.73268 0.866338 0.499459i \(-0.166468\pi\)
0.866338 + 0.499459i \(0.166468\pi\)
\(744\) 0 0
\(745\) −14.5900 −0.534536
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 3.59855 0.131488
\(750\) 0 0
\(751\) −28.1508 −1.02724 −0.513618 0.858019i \(-0.671695\pi\)
−0.513618 + 0.858019i \(0.671695\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −3.21899 −0.117151
\(756\) 0 0
\(757\) 17.3178 0.629425 0.314713 0.949187i \(-0.398092\pi\)
0.314713 + 0.949187i \(0.398092\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1.48756 0.0539239 0.0269620 0.999636i \(-0.491417\pi\)
0.0269620 + 0.999636i \(0.491417\pi\)
\(762\) 0 0
\(763\) −5.98596 −0.216706
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 6.50730 0.234965
\(768\) 0 0
\(769\) −1.66355 −0.0599892 −0.0299946 0.999550i \(-0.509549\pi\)
−0.0299946 + 0.999550i \(0.509549\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −32.9483 −1.18507 −0.592534 0.805545i \(-0.701872\pi\)
−0.592534 + 0.805545i \(0.701872\pi\)
\(774\) 0 0
\(775\) −5.16910 −0.185680
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −38.6705 −1.38552
\(780\) 0 0
\(781\) 74.9411 2.68160
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 8.16334 0.291362
\(786\) 0 0
\(787\) −17.2439 −0.614680 −0.307340 0.951600i \(-0.599439\pi\)
−0.307340 + 0.951600i \(0.599439\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 4.21219 0.149768
\(792\) 0 0
\(793\) 18.4994 0.656932
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 22.0583 0.781346 0.390673 0.920530i \(-0.372242\pi\)
0.390673 + 0.920530i \(0.372242\pi\)
\(798\) 0 0
\(799\) 81.8376 2.89521
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −27.4884 −0.970045
\(804\) 0 0
\(805\) 2.34699 0.0827207
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 26.7394 0.940106 0.470053 0.882638i \(-0.344235\pi\)
0.470053 + 0.882638i \(0.344235\pi\)
\(810\) 0 0
\(811\) 20.3898 0.715984 0.357992 0.933725i \(-0.383461\pi\)
0.357992 + 0.933725i \(0.383461\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 6.12225 0.214453
\(816\) 0 0
\(817\) −28.7361 −1.00535
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 20.7013 0.722482 0.361241 0.932472i \(-0.382353\pi\)
0.361241 + 0.932472i \(0.382353\pi\)
\(822\) 0 0
\(823\) 9.67938 0.337402 0.168701 0.985667i \(-0.446043\pi\)
0.168701 + 0.985667i \(0.446043\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 30.1321 1.04779 0.523897 0.851781i \(-0.324478\pi\)
0.523897 + 0.851781i \(0.324478\pi\)
\(828\) 0 0
\(829\) −18.6332 −0.647158 −0.323579 0.946201i \(-0.604886\pi\)
−0.323579 + 0.946201i \(0.604886\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −44.4970 −1.54173
\(834\) 0 0
\(835\) 10.1721 0.352021
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 13.8188 0.477078 0.238539 0.971133i \(-0.423331\pi\)
0.238539 + 0.971133i \(0.423331\pi\)
\(840\) 0 0
\(841\) 67.5748 2.33016
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 1.11500 0.0383571
\(846\) 0 0
\(847\) −16.6012 −0.570423
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −13.1083 −0.449347
\(852\) 0 0
\(853\) −19.9702 −0.683767 −0.341884 0.939742i \(-0.611065\pi\)
−0.341884 + 0.939742i \(0.611065\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −13.5098 −0.461485 −0.230742 0.973015i \(-0.574115\pi\)
−0.230742 + 0.973015i \(0.574115\pi\)
\(858\) 0 0
\(859\) 51.3595 1.75236 0.876182 0.481981i \(-0.160083\pi\)
0.876182 + 0.481981i \(0.160083\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −24.0967 −0.820263 −0.410131 0.912027i \(-0.634517\pi\)
−0.410131 + 0.912027i \(0.634517\pi\)
\(864\) 0 0
\(865\) −15.0973 −0.513324
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 47.4952 1.61116
\(870\) 0 0
\(871\) 43.7858 1.48363
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −0.562950 −0.0190312
\(876\) 0 0
\(877\) −13.6134 −0.459692 −0.229846 0.973227i \(-0.573822\pi\)
−0.229846 + 0.973227i \(0.573822\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 22.3090 0.751611 0.375805 0.926699i \(-0.377366\pi\)
0.375805 + 0.926699i \(0.377366\pi\)
\(882\) 0 0
\(883\) 41.7444 1.40481 0.702406 0.711776i \(-0.252109\pi\)
0.702406 + 0.711776i \(0.252109\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −13.2975 −0.446487 −0.223243 0.974763i \(-0.571665\pi\)
−0.223243 + 0.974763i \(0.571665\pi\)
\(888\) 0 0
\(889\) 6.46894 0.216961
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 41.0310 1.37305
\(894\) 0 0
\(895\) −11.5842 −0.387218
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 50.7980 1.69421
\(900\) 0 0
\(901\) −2.89590 −0.0964765
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −1.50730 −0.0501045
\(906\) 0 0
\(907\) −12.0292 −0.399423 −0.199712 0.979855i \(-0.564001\pi\)
−0.199712 + 0.979855i \(0.564001\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −35.5930 −1.17925 −0.589625 0.807677i \(-0.700724\pi\)
−0.589625 + 0.807677i \(0.700724\pi\)
\(912\) 0 0
\(913\) −57.2451 −1.89453
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 2.92280 0.0965193
\(918\) 0 0
\(919\) 6.53836 0.215681 0.107840 0.994168i \(-0.465606\pi\)
0.107840 + 0.994168i \(0.465606\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −44.2475 −1.45642
\(924\) 0 0
\(925\) 3.14416 0.103379
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −2.21771 −0.0727606 −0.0363803 0.999338i \(-0.511583\pi\)
−0.0363803 + 0.999338i \(0.511583\pi\)
\(930\) 0 0
\(931\) −22.3095 −0.731164
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −42.3667 −1.38554
\(936\) 0 0
\(937\) −41.3662 −1.35137 −0.675687 0.737189i \(-0.736153\pi\)
−0.675687 + 0.737189i \(0.736153\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 11.0603 0.360555 0.180277 0.983616i \(-0.442300\pi\)
0.180277 + 0.983616i \(0.442300\pi\)
\(942\) 0 0
\(943\) 48.2959 1.57273
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 48.5504 1.57768 0.788838 0.614601i \(-0.210683\pi\)
0.788838 + 0.614601i \(0.210683\pi\)
\(948\) 0 0
\(949\) 16.2300 0.526848
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 48.1965 1.56124 0.780618 0.625008i \(-0.214904\pi\)
0.780618 + 0.625008i \(0.214904\pi\)
\(954\) 0 0
\(955\) 1.62955 0.0527310
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 2.88562 0.0931817
\(960\) 0 0
\(961\) −4.28039 −0.138077
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −7.92033 −0.254965
\(966\) 0 0
\(967\) 33.2043 1.06778 0.533890 0.845554i \(-0.320730\pi\)
0.533890 + 0.845554i \(0.320730\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −2.27217 −0.0729173 −0.0364587 0.999335i \(-0.511608\pi\)
−0.0364587 + 0.999335i \(0.511608\pi\)
\(972\) 0 0
\(973\) 11.1330 0.356907
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 30.3309 0.970371 0.485186 0.874411i \(-0.338752\pi\)
0.485186 + 0.874411i \(0.338752\pi\)
\(978\) 0 0
\(979\) −40.5164 −1.29491
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 5.42404 0.173000 0.0865000 0.996252i \(-0.472432\pi\)
0.0865000 + 0.996252i \(0.472432\pi\)
\(984\) 0 0
\(985\) −14.4708 −0.461078
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 35.8887 1.14119
\(990\) 0 0
\(991\) −29.2025 −0.927649 −0.463824 0.885927i \(-0.653523\pi\)
−0.463824 + 0.885927i \(0.653523\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −5.41422 −0.171642
\(996\) 0 0
\(997\) 19.0958 0.604769 0.302384 0.953186i \(-0.402217\pi\)
0.302384 + 0.953186i \(0.402217\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6480.2.a.ca.1.3 4
3.2 odd 2 6480.2.a.by.1.3 4
4.3 odd 2 3240.2.a.v.1.2 yes 4
12.11 even 2 3240.2.a.t.1.2 4
36.7 odd 6 3240.2.q.bg.1081.3 8
36.11 even 6 3240.2.q.bh.1081.3 8
36.23 even 6 3240.2.q.bh.2161.3 8
36.31 odd 6 3240.2.q.bg.2161.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3240.2.a.t.1.2 4 12.11 even 2
3240.2.a.v.1.2 yes 4 4.3 odd 2
3240.2.q.bg.1081.3 8 36.7 odd 6
3240.2.q.bg.2161.3 8 36.31 odd 6
3240.2.q.bh.1081.3 8 36.11 even 6
3240.2.q.bh.2161.3 8 36.23 even 6
6480.2.a.by.1.3 4 3.2 odd 2
6480.2.a.ca.1.3 4 1.1 even 1 trivial