Properties

Label 6480.2.a.ca.1.1
Level $6480$
Weight $2$
Character 6480.1
Self dual yes
Analytic conductor $51.743$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6480,2,Mod(1,6480)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6480, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6480.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6480 = 2^{4} \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6480.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(51.7430605098\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.62352.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 11x^{2} + 12x + 24 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 3240)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.16910\) of defining polynomial
Character \(\chi\) \(=\) 6480.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{5} -3.90115 q^{7} +6.09520 q^{11} -2.02494 q^{13} -2.46199 q^{17} -3.33820 q^{19} -0.830899 q^{23} +1.00000 q^{25} +2.63109 q^{29} -1.83090 q^{31} -3.90115 q^{35} +5.58789 q^{37} +6.65604 q^{41} -11.0520 q^{43} -0.166992 q^{47} +8.21899 q^{49} +12.0234 q^{53} +6.09520 q^{55} +1.73205 q^{59} -13.3163 q^{61} -2.02494 q^{65} -13.2622 q^{67} -10.8829 q^{71} +1.87621 q^{73} -23.7783 q^{77} -7.46410 q^{79} -6.80019 q^{83} -2.46199 q^{85} +12.1493 q^{89} +7.89961 q^{91} -3.33820 q^{95} -0.663907 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{5} - 2 q^{7} - 4 q^{11} - 2 q^{17} - 10 q^{23} + 4 q^{25} - 4 q^{29} - 14 q^{31} - 2 q^{35} + 14 q^{37} + 4 q^{41} - 22 q^{43} + 10 q^{49} - 8 q^{53} - 4 q^{55} + 4 q^{61} - 24 q^{67} - 28 q^{71}+ \cdots - 10 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) −3.90115 −1.47450 −0.737248 0.675622i \(-0.763875\pi\)
−0.737248 + 0.675622i \(0.763875\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 6.09520 1.83777 0.918885 0.394525i \(-0.129091\pi\)
0.918885 + 0.394525i \(0.129091\pi\)
\(12\) 0 0
\(13\) −2.02494 −0.561618 −0.280809 0.959764i \(-0.590603\pi\)
−0.280809 + 0.959764i \(0.590603\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2.46199 −0.597121 −0.298560 0.954391i \(-0.596506\pi\)
−0.298560 + 0.954391i \(0.596506\pi\)
\(18\) 0 0
\(19\) −3.33820 −0.765836 −0.382918 0.923782i \(-0.625081\pi\)
−0.382918 + 0.923782i \(0.625081\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −0.830899 −0.173254 −0.0866272 0.996241i \(-0.527609\pi\)
−0.0866272 + 0.996241i \(0.527609\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 2.63109 0.488582 0.244291 0.969702i \(-0.421445\pi\)
0.244291 + 0.969702i \(0.421445\pi\)
\(30\) 0 0
\(31\) −1.83090 −0.328839 −0.164420 0.986390i \(-0.552575\pi\)
−0.164420 + 0.986390i \(0.552575\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −3.90115 −0.659415
\(36\) 0 0
\(37\) 5.58789 0.918644 0.459322 0.888270i \(-0.348092\pi\)
0.459322 + 0.888270i \(0.348092\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 6.65604 1.03950 0.519749 0.854319i \(-0.326025\pi\)
0.519749 + 0.854319i \(0.326025\pi\)
\(42\) 0 0
\(43\) −11.0520 −1.68541 −0.842707 0.538373i \(-0.819039\pi\)
−0.842707 + 0.538373i \(0.819039\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −0.166992 −0.0243583 −0.0121792 0.999926i \(-0.503877\pi\)
−0.0121792 + 0.999926i \(0.503877\pi\)
\(48\) 0 0
\(49\) 8.21899 1.17414
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 12.0234 1.65154 0.825770 0.564006i \(-0.190741\pi\)
0.825770 + 0.564006i \(0.190741\pi\)
\(54\) 0 0
\(55\) 6.09520 0.821876
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 1.73205 0.225494 0.112747 0.993624i \(-0.464035\pi\)
0.112747 + 0.993624i \(0.464035\pi\)
\(60\) 0 0
\(61\) −13.3163 −1.70498 −0.852488 0.522747i \(-0.824907\pi\)
−0.852488 + 0.522747i \(0.824907\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −2.02494 −0.251163
\(66\) 0 0
\(67\) −13.2622 −1.62023 −0.810117 0.586268i \(-0.800596\pi\)
−0.810117 + 0.586268i \(0.800596\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −10.8829 −1.29156 −0.645781 0.763523i \(-0.723468\pi\)
−0.645781 + 0.763523i \(0.723468\pi\)
\(72\) 0 0
\(73\) 1.87621 0.219594 0.109797 0.993954i \(-0.464980\pi\)
0.109797 + 0.993954i \(0.464980\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −23.7783 −2.70979
\(78\) 0 0
\(79\) −7.46410 −0.839777 −0.419889 0.907576i \(-0.637931\pi\)
−0.419889 + 0.907576i \(0.637931\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −6.80019 −0.746418 −0.373209 0.927747i \(-0.621743\pi\)
−0.373209 + 0.927747i \(0.621743\pi\)
\(84\) 0 0
\(85\) −2.46199 −0.267041
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 12.1493 1.28782 0.643912 0.765100i \(-0.277310\pi\)
0.643912 + 0.765100i \(0.277310\pi\)
\(90\) 0 0
\(91\) 7.89961 0.828104
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −3.33820 −0.342492
\(96\) 0 0
\(97\) −0.663907 −0.0674095 −0.0337048 0.999432i \(-0.510731\pi\)
−0.0337048 + 0.999432i \(0.510731\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −19.3616 −1.92655 −0.963276 0.268515i \(-0.913467\pi\)
−0.963276 + 0.268515i \(0.913467\pi\)
\(102\) 0 0
\(103\) 13.2913 1.30964 0.654818 0.755787i \(-0.272745\pi\)
0.654818 + 0.755787i \(0.272745\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −6.39230 −0.617967 −0.308984 0.951067i \(-0.599989\pi\)
−0.308984 + 0.951067i \(0.599989\pi\)
\(108\) 0 0
\(109\) 7.29500 0.698734 0.349367 0.936986i \(-0.386397\pi\)
0.349367 + 0.936986i \(0.386397\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −3.24969 −0.305705 −0.152853 0.988249i \(-0.548846\pi\)
−0.152853 + 0.988249i \(0.548846\pi\)
\(114\) 0 0
\(115\) −0.830899 −0.0774817
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 9.60461 0.880453
\(120\) 0 0
\(121\) 26.1514 2.37740
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −14.8294 −1.31589 −0.657946 0.753065i \(-0.728575\pi\)
−0.657946 + 0.753065i \(0.728575\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 13.0483 1.14004 0.570019 0.821631i \(-0.306936\pi\)
0.570019 + 0.821631i \(0.306936\pi\)
\(132\) 0 0
\(133\) 13.0228 1.12922
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −11.8023 −1.00834 −0.504169 0.863605i \(-0.668201\pi\)
−0.504169 + 0.863605i \(0.668201\pi\)
\(138\) 0 0
\(139\) 16.7044 1.41685 0.708423 0.705788i \(-0.249407\pi\)
0.708423 + 0.705788i \(0.249407\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −12.3424 −1.03213
\(144\) 0 0
\(145\) 2.63109 0.218500
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −21.2664 −1.74221 −0.871106 0.491095i \(-0.836597\pi\)
−0.871106 + 0.491095i \(0.836597\pi\)
\(150\) 0 0
\(151\) 11.6831 0.950756 0.475378 0.879782i \(-0.342311\pi\)
0.475378 + 0.879782i \(0.342311\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −1.83090 −0.147061
\(156\) 0 0
\(157\) −20.0915 −1.60348 −0.801740 0.597673i \(-0.796092\pi\)
−0.801740 + 0.597673i \(0.796092\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 3.24146 0.255463
\(162\) 0 0
\(163\) −2.99789 −0.234813 −0.117406 0.993084i \(-0.537458\pi\)
−0.117406 + 0.993084i \(0.537458\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −10.5119 −0.813434 −0.406717 0.913554i \(-0.633326\pi\)
−0.406717 + 0.913554i \(0.633326\pi\)
\(168\) 0 0
\(169\) −8.89961 −0.684585
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −11.7591 −0.894028 −0.447014 0.894527i \(-0.647513\pi\)
−0.447014 + 0.894527i \(0.647513\pi\)
\(174\) 0 0
\(175\) −3.90115 −0.294899
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 6.65604 0.497496 0.248748 0.968568i \(-0.419981\pi\)
0.248748 + 0.968568i \(0.419981\pi\)
\(180\) 0 0
\(181\) 8.50730 0.632343 0.316171 0.948702i \(-0.397603\pi\)
0.316171 + 0.948702i \(0.397603\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 5.58789 0.410830
\(186\) 0 0
\(187\) −15.0063 −1.09737
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −17.5052 −1.26663 −0.633316 0.773894i \(-0.718307\pi\)
−0.633316 + 0.773894i \(0.718307\pi\)
\(192\) 0 0
\(193\) 26.1165 1.87991 0.939953 0.341304i \(-0.110869\pi\)
0.939953 + 0.341304i \(0.110869\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −12.9215 −0.920620 −0.460310 0.887758i \(-0.652262\pi\)
−0.460310 + 0.887758i \(0.652262\pi\)
\(198\) 0 0
\(199\) −16.9781 −1.20354 −0.601772 0.798668i \(-0.705539\pi\)
−0.601772 + 0.798668i \(0.705539\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −10.2643 −0.720412
\(204\) 0 0
\(205\) 6.65604 0.464878
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −20.3470 −1.40743
\(210\) 0 0
\(211\) −11.4422 −0.787713 −0.393856 0.919172i \(-0.628859\pi\)
−0.393856 + 0.919172i \(0.628859\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −11.0520 −0.753740
\(216\) 0 0
\(217\) 7.14261 0.484872
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 4.98539 0.335354
\(222\) 0 0
\(223\) −15.6545 −1.04830 −0.524151 0.851625i \(-0.675617\pi\)
−0.524151 + 0.851625i \(0.675617\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 15.0520 0.999036 0.499518 0.866304i \(-0.333510\pi\)
0.499518 + 0.866304i \(0.333510\pi\)
\(228\) 0 0
\(229\) 16.6764 1.10201 0.551004 0.834503i \(-0.314245\pi\)
0.551004 + 0.834503i \(0.314245\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −2.99789 −0.196398 −0.0981992 0.995167i \(-0.531308\pi\)
−0.0981992 + 0.995167i \(0.531308\pi\)
\(234\) 0 0
\(235\) −0.166992 −0.0108934
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −15.4641 −1.00029 −0.500145 0.865942i \(-0.666720\pi\)
−0.500145 + 0.865942i \(0.666720\pi\)
\(240\) 0 0
\(241\) 16.3054 1.05032 0.525161 0.851003i \(-0.324005\pi\)
0.525161 + 0.851003i \(0.324005\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 8.21899 0.525092
\(246\) 0 0
\(247\) 6.75967 0.430107
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −27.6295 −1.74396 −0.871981 0.489540i \(-0.837165\pi\)
−0.871981 + 0.489540i \(0.837165\pi\)
\(252\) 0 0
\(253\) −5.06449 −0.318402
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −2.14781 −0.133977 −0.0669884 0.997754i \(-0.521339\pi\)
−0.0669884 + 0.997754i \(0.521339\pi\)
\(258\) 0 0
\(259\) −21.7992 −1.35454
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 5.60707 0.345747 0.172873 0.984944i \(-0.444695\pi\)
0.172873 + 0.984944i \(0.444695\pi\)
\(264\) 0 0
\(265\) 12.0234 0.738592
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −5.36469 −0.327091 −0.163545 0.986536i \(-0.552293\pi\)
−0.163545 + 0.986536i \(0.552293\pi\)
\(270\) 0 0
\(271\) 8.59000 0.521805 0.260903 0.965365i \(-0.415980\pi\)
0.260903 + 0.965365i \(0.415980\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 6.09520 0.367554
\(276\) 0 0
\(277\) −24.7679 −1.48816 −0.744081 0.668090i \(-0.767112\pi\)
−0.744081 + 0.668090i \(0.767112\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 25.4276 1.51689 0.758443 0.651740i \(-0.225961\pi\)
0.758443 + 0.651740i \(0.225961\pi\)
\(282\) 0 0
\(283\) −2.87410 −0.170848 −0.0854238 0.996345i \(-0.527224\pi\)
−0.0854238 + 0.996345i \(0.527224\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −25.9662 −1.53274
\(288\) 0 0
\(289\) −10.9386 −0.643447
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 9.53317 0.556934 0.278467 0.960446i \(-0.410174\pi\)
0.278467 + 0.960446i \(0.410174\pi\)
\(294\) 0 0
\(295\) 1.73205 0.100844
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 1.68252 0.0973028
\(300\) 0 0
\(301\) 43.1155 2.48514
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −13.3163 −0.762489
\(306\) 0 0
\(307\) −4.02402 −0.229663 −0.114831 0.993385i \(-0.536633\pi\)
−0.114831 + 0.993385i \(0.536633\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −9.65722 −0.547611 −0.273805 0.961785i \(-0.588282\pi\)
−0.273805 + 0.961785i \(0.588282\pi\)
\(312\) 0 0
\(313\) −34.0925 −1.92702 −0.963510 0.267672i \(-0.913746\pi\)
−0.963510 + 0.267672i \(0.913746\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −18.5052 −1.03936 −0.519678 0.854362i \(-0.673948\pi\)
−0.519678 + 0.854362i \(0.673948\pi\)
\(318\) 0 0
\(319\) 16.0370 0.897901
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 8.21863 0.457297
\(324\) 0 0
\(325\) −2.02494 −0.112324
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0.651462 0.0359163
\(330\) 0 0
\(331\) −18.3230 −1.00712 −0.503561 0.863960i \(-0.667977\pi\)
−0.503561 + 0.863960i \(0.667977\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −13.2622 −0.724591
\(336\) 0 0
\(337\) −28.0468 −1.52781 −0.763903 0.645331i \(-0.776720\pi\)
−0.763903 + 0.645331i \(0.776720\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −11.1597 −0.604331
\(342\) 0 0
\(343\) −4.75545 −0.256770
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2.07812 0.111560 0.0557798 0.998443i \(-0.482236\pi\)
0.0557798 + 0.998443i \(0.482236\pi\)
\(348\) 0 0
\(349\) 15.3814 0.823348 0.411674 0.911331i \(-0.364944\pi\)
0.411674 + 0.911331i \(0.364944\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −2.55261 −0.135862 −0.0679310 0.997690i \(-0.521640\pi\)
−0.0679310 + 0.997690i \(0.521640\pi\)
\(354\) 0 0
\(355\) −10.8829 −0.577604
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −4.57699 −0.241564 −0.120782 0.992679i \(-0.538540\pi\)
−0.120782 + 0.992679i \(0.538540\pi\)
\(360\) 0 0
\(361\) −7.85641 −0.413495
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1.87621 0.0982053
\(366\) 0 0
\(367\) −22.4921 −1.17408 −0.587038 0.809559i \(-0.699706\pi\)
−0.587038 + 0.809559i \(0.699706\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −46.9051 −2.43519
\(372\) 0 0
\(373\) −31.1311 −1.61191 −0.805953 0.591979i \(-0.798347\pi\)
−0.805953 + 0.591979i \(0.798347\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −5.32781 −0.274396
\(378\) 0 0
\(379\) 35.4136 1.81907 0.909537 0.415623i \(-0.136436\pi\)
0.909537 + 0.415623i \(0.136436\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 16.8735 0.862194 0.431097 0.902305i \(-0.358127\pi\)
0.431097 + 0.902305i \(0.358127\pi\)
\(384\) 0 0
\(385\) −23.7783 −1.21185
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −10.4787 −0.531292 −0.265646 0.964071i \(-0.585585\pi\)
−0.265646 + 0.964071i \(0.585585\pi\)
\(390\) 0 0
\(391\) 2.04567 0.103454
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −7.46410 −0.375560
\(396\) 0 0
\(397\) −1.55781 −0.0781843 −0.0390921 0.999236i \(-0.512447\pi\)
−0.0390921 + 0.999236i \(0.512447\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 6.65568 0.332369 0.166184 0.986095i \(-0.446855\pi\)
0.166184 + 0.986095i \(0.446855\pi\)
\(402\) 0 0
\(403\) 3.70746 0.184682
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 34.0593 1.68826
\(408\) 0 0
\(409\) −35.6904 −1.76478 −0.882388 0.470522i \(-0.844066\pi\)
−0.882388 + 0.470522i \(0.844066\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −6.75699 −0.332490
\(414\) 0 0
\(415\) −6.80019 −0.333808
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 12.8741 0.628941 0.314470 0.949267i \(-0.398173\pi\)
0.314470 + 0.949267i \(0.398173\pi\)
\(420\) 0 0
\(421\) −14.1733 −0.690765 −0.345383 0.938462i \(-0.612251\pi\)
−0.345383 + 0.938462i \(0.612251\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −2.46199 −0.119424
\(426\) 0 0
\(427\) 51.9489 2.51398
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −0.786211 −0.0378704 −0.0189352 0.999821i \(-0.506028\pi\)
−0.0189352 + 0.999821i \(0.506028\pi\)
\(432\) 0 0
\(433\) 31.2184 1.50026 0.750129 0.661291i \(-0.229991\pi\)
0.750129 + 0.661291i \(0.229991\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2.77371 0.132684
\(438\) 0 0
\(439\) 29.0359 1.38581 0.692904 0.721030i \(-0.256331\pi\)
0.692904 + 0.721030i \(0.256331\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 17.0885 0.811900 0.405950 0.913895i \(-0.366941\pi\)
0.405950 + 0.913895i \(0.366941\pi\)
\(444\) 0 0
\(445\) 12.1493 0.575932
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 18.5082 0.873457 0.436729 0.899593i \(-0.356137\pi\)
0.436729 + 0.899593i \(0.356137\pi\)
\(450\) 0 0
\(451\) 40.5698 1.91036
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 7.89961 0.370339
\(456\) 0 0
\(457\) 0.123791 0.00579068 0.00289534 0.999996i \(-0.499078\pi\)
0.00289534 + 0.999996i \(0.499078\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 16.8737 0.785889 0.392944 0.919562i \(-0.371457\pi\)
0.392944 + 0.919562i \(0.371457\pi\)
\(462\) 0 0
\(463\) 4.56506 0.212156 0.106078 0.994358i \(-0.466171\pi\)
0.106078 + 0.994358i \(0.466171\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 34.8793 1.61402 0.807011 0.590537i \(-0.201084\pi\)
0.807011 + 0.590537i \(0.201084\pi\)
\(468\) 0 0
\(469\) 51.7378 2.38903
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −67.3641 −3.09740
\(474\) 0 0
\(475\) −3.33820 −0.153167
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −42.4303 −1.93869 −0.969345 0.245703i \(-0.920981\pi\)
−0.969345 + 0.245703i \(0.920981\pi\)
\(480\) 0 0
\(481\) −11.3152 −0.515927
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −0.663907 −0.0301465
\(486\) 0 0
\(487\) −18.1331 −0.821691 −0.410846 0.911705i \(-0.634767\pi\)
−0.410846 + 0.911705i \(0.634767\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −18.5082 −0.835264 −0.417632 0.908616i \(-0.637140\pi\)
−0.417632 + 0.908616i \(0.637140\pi\)
\(492\) 0 0
\(493\) −6.47773 −0.291742
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 42.4558 1.90440
\(498\) 0 0
\(499\) 2.16664 0.0969919 0.0484960 0.998823i \(-0.484557\pi\)
0.0484960 + 0.998823i \(0.484557\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 21.6088 0.963490 0.481745 0.876311i \(-0.340003\pi\)
0.481745 + 0.876311i \(0.340003\pi\)
\(504\) 0 0
\(505\) −19.3616 −0.861580
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 3.35281 0.148611 0.0743053 0.997236i \(-0.476326\pi\)
0.0743053 + 0.997236i \(0.476326\pi\)
\(510\) 0 0
\(511\) −7.31938 −0.323790
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 13.2913 0.585687
\(516\) 0 0
\(517\) −1.01785 −0.0447650
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 33.4775 1.46668 0.733338 0.679864i \(-0.237961\pi\)
0.733338 + 0.679864i \(0.237961\pi\)
\(522\) 0 0
\(523\) 32.8230 1.43525 0.717624 0.696431i \(-0.245230\pi\)
0.717624 + 0.696431i \(0.245230\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 4.50766 0.196357
\(528\) 0 0
\(529\) −22.3096 −0.969983
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −13.4781 −0.583801
\(534\) 0 0
\(535\) −6.39230 −0.276363
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 50.0963 2.15780
\(540\) 0 0
\(541\) −24.9038 −1.07070 −0.535350 0.844631i \(-0.679820\pi\)
−0.535350 + 0.844631i \(0.679820\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 7.29500 0.312483
\(546\) 0 0
\(547\) −40.5255 −1.73275 −0.866373 0.499398i \(-0.833555\pi\)
−0.866373 + 0.499398i \(0.833555\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −8.78312 −0.374174
\(552\) 0 0
\(553\) 29.1186 1.23825
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −25.8673 −1.09603 −0.548016 0.836468i \(-0.684617\pi\)
−0.548016 + 0.836468i \(0.684617\pi\)
\(558\) 0 0
\(559\) 22.3797 0.946558
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −8.03008 −0.338428 −0.169214 0.985579i \(-0.554123\pi\)
−0.169214 + 0.985579i \(0.554123\pi\)
\(564\) 0 0
\(565\) −3.24969 −0.136715
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −33.3865 −1.39964 −0.699818 0.714321i \(-0.746736\pi\)
−0.699818 + 0.714321i \(0.746736\pi\)
\(570\) 0 0
\(571\) −27.9318 −1.16891 −0.584455 0.811426i \(-0.698692\pi\)
−0.584455 + 0.811426i \(0.698692\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −0.830899 −0.0346509
\(576\) 0 0
\(577\) −2.74187 −0.114146 −0.0570729 0.998370i \(-0.518177\pi\)
−0.0570729 + 0.998370i \(0.518177\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 26.5286 1.10059
\(582\) 0 0
\(583\) 73.2850 3.03515
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0.523401 0.0216031 0.0108015 0.999942i \(-0.496562\pi\)
0.0108015 + 0.999942i \(0.496562\pi\)
\(588\) 0 0
\(589\) 6.11191 0.251837
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −39.5973 −1.62607 −0.813033 0.582217i \(-0.802185\pi\)
−0.813033 + 0.582217i \(0.802185\pi\)
\(594\) 0 0
\(595\) 9.60461 0.393751
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −22.5873 −0.922891 −0.461445 0.887169i \(-0.652669\pi\)
−0.461445 + 0.887169i \(0.652669\pi\)
\(600\) 0 0
\(601\) 13.7720 0.561770 0.280885 0.959741i \(-0.409372\pi\)
0.280885 + 0.959741i \(0.409372\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 26.1514 1.06321
\(606\) 0 0
\(607\) 26.1748 1.06240 0.531201 0.847246i \(-0.321741\pi\)
0.531201 + 0.847246i \(0.321741\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0.338150 0.0136801
\(612\) 0 0
\(613\) 1.67943 0.0678317 0.0339159 0.999425i \(-0.489202\pi\)
0.0339159 + 0.999425i \(0.489202\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1.90629 0.0767444 0.0383722 0.999264i \(-0.487783\pi\)
0.0383722 + 0.999264i \(0.487783\pi\)
\(618\) 0 0
\(619\) −10.9848 −0.441515 −0.220758 0.975329i \(-0.570853\pi\)
−0.220758 + 0.975329i \(0.570853\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −47.3963 −1.89889
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −13.7573 −0.548541
\(630\) 0 0
\(631\) 0.318756 0.0126895 0.00634473 0.999980i \(-0.497980\pi\)
0.00634473 + 0.999980i \(0.497980\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −14.8294 −0.588485
\(636\) 0 0
\(637\) −16.6430 −0.659419
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 7.13469 0.281803 0.140902 0.990024i \(-0.455000\pi\)
0.140902 + 0.990024i \(0.455000\pi\)
\(642\) 0 0
\(643\) −11.5806 −0.456694 −0.228347 0.973580i \(-0.573332\pi\)
−0.228347 + 0.973580i \(0.573332\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 8.68555 0.341464 0.170732 0.985317i \(-0.445387\pi\)
0.170732 + 0.985317i \(0.445387\pi\)
\(648\) 0 0
\(649\) 10.5572 0.414406
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 45.2184 1.76953 0.884766 0.466036i \(-0.154318\pi\)
0.884766 + 0.466036i \(0.154318\pi\)
\(654\) 0 0
\(655\) 13.0483 0.509841
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −10.9957 −0.428333 −0.214166 0.976797i \(-0.568703\pi\)
−0.214166 + 0.976797i \(0.568703\pi\)
\(660\) 0 0
\(661\) 23.1107 0.898901 0.449450 0.893305i \(-0.351620\pi\)
0.449450 + 0.893305i \(0.351620\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 13.0228 0.505004
\(666\) 0 0
\(667\) −2.18617 −0.0846490
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −81.1654 −3.13336
\(672\) 0 0
\(673\) −5.98848 −0.230839 −0.115419 0.993317i \(-0.536821\pi\)
−0.115419 + 0.993317i \(0.536821\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 17.5541 0.674659 0.337329 0.941387i \(-0.390476\pi\)
0.337329 + 0.941387i \(0.390476\pi\)
\(678\) 0 0
\(679\) 2.59000 0.0993951
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 24.9458 0.954524 0.477262 0.878761i \(-0.341629\pi\)
0.477262 + 0.878761i \(0.341629\pi\)
\(684\) 0 0
\(685\) −11.8023 −0.450943
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −24.3467 −0.927535
\(690\) 0 0
\(691\) 35.0712 1.33417 0.667085 0.744981i \(-0.267542\pi\)
0.667085 + 0.744981i \(0.267542\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 16.7044 0.633633
\(696\) 0 0
\(697\) −16.3871 −0.620706
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 11.6530 0.440128 0.220064 0.975485i \(-0.429373\pi\)
0.220064 + 0.975485i \(0.429373\pi\)
\(702\) 0 0
\(703\) −18.6535 −0.703531
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 75.5325 2.84069
\(708\) 0 0
\(709\) 21.5589 0.809663 0.404832 0.914391i \(-0.367330\pi\)
0.404832 + 0.914391i \(0.367330\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 1.52129 0.0569728
\(714\) 0 0
\(715\) −12.3424 −0.461580
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 27.4199 1.02259 0.511295 0.859405i \(-0.329166\pi\)
0.511295 + 0.859405i \(0.329166\pi\)
\(720\) 0 0
\(721\) −51.8516 −1.93105
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 2.63109 0.0977164
\(726\) 0 0
\(727\) −12.8449 −0.476392 −0.238196 0.971217i \(-0.576556\pi\)
−0.238196 + 0.971217i \(0.576556\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 27.2099 1.00640
\(732\) 0 0
\(733\) 6.59000 0.243407 0.121704 0.992566i \(-0.461164\pi\)
0.121704 + 0.992566i \(0.461164\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −80.8356 −2.97762
\(738\) 0 0
\(739\) −33.5238 −1.23319 −0.616596 0.787280i \(-0.711489\pi\)
−0.616596 + 0.787280i \(0.711489\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −36.6409 −1.34422 −0.672111 0.740450i \(-0.734612\pi\)
−0.672111 + 0.740450i \(0.734612\pi\)
\(744\) 0 0
\(745\) −21.2664 −0.779141
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 24.9374 0.911191
\(750\) 0 0
\(751\) 1.65336 0.0603320 0.0301660 0.999545i \(-0.490396\pi\)
0.0301660 + 0.999545i \(0.490396\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 11.6831 0.425191
\(756\) 0 0
\(757\) −24.9447 −0.906631 −0.453315 0.891350i \(-0.649759\pi\)
−0.453315 + 0.891350i \(0.649759\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 19.7278 0.715133 0.357567 0.933888i \(-0.383606\pi\)
0.357567 + 0.933888i \(0.383606\pi\)
\(762\) 0 0
\(763\) −28.4589 −1.03028
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −3.50730 −0.126641
\(768\) 0 0
\(769\) −46.3698 −1.67214 −0.836068 0.548625i \(-0.815151\pi\)
−0.836068 + 0.548625i \(0.815151\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 24.2163 0.870998 0.435499 0.900189i \(-0.356572\pi\)
0.435499 + 0.900189i \(0.356572\pi\)
\(774\) 0 0
\(775\) −1.83090 −0.0657678
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −22.2192 −0.796085
\(780\) 0 0
\(781\) −66.3334 −2.37359
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −20.0915 −0.717098
\(786\) 0 0
\(787\) 3.44008 0.122626 0.0613128 0.998119i \(-0.480471\pi\)
0.0613128 + 0.998119i \(0.480471\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 12.6775 0.450761
\(792\) 0 0
\(793\) 26.9647 0.957545
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 46.9750 1.66394 0.831970 0.554821i \(-0.187213\pi\)
0.831970 + 0.554821i \(0.187213\pi\)
\(798\) 0 0
\(799\) 0.411134 0.0145449
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 11.4359 0.403563
\(804\) 0 0
\(805\) 3.24146 0.114247
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −24.8829 −0.874838 −0.437419 0.899258i \(-0.644107\pi\)
−0.437419 + 0.899258i \(0.644107\pi\)
\(810\) 0 0
\(811\) 40.1794 1.41089 0.705444 0.708765i \(-0.250747\pi\)
0.705444 + 0.708765i \(0.250747\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −2.99789 −0.105012
\(816\) 0 0
\(817\) 36.8938 1.29075
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1.56660 0.0546748 0.0273374 0.999626i \(-0.491297\pi\)
0.0273374 + 0.999626i \(0.491297\pi\)
\(822\) 0 0
\(823\) 31.4975 1.09793 0.548967 0.835844i \(-0.315021\pi\)
0.548967 + 0.835844i \(0.315021\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −19.7013 −0.685081 −0.342540 0.939503i \(-0.611287\pi\)
−0.342540 + 0.939503i \(0.611287\pi\)
\(828\) 0 0
\(829\) −15.2950 −0.531217 −0.265609 0.964081i \(-0.585573\pi\)
−0.265609 + 0.964081i \(0.585573\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −20.2351 −0.701104
\(834\) 0 0
\(835\) −10.5119 −0.363779
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −35.1201 −1.21248 −0.606240 0.795282i \(-0.707323\pi\)
−0.606240 + 0.795282i \(0.707323\pi\)
\(840\) 0 0
\(841\) −22.0773 −0.761288
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −8.89961 −0.306156
\(846\) 0 0
\(847\) −102.021 −3.50547
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −4.64297 −0.159159
\(852\) 0 0
\(853\) 25.6305 0.877571 0.438785 0.898592i \(-0.355409\pi\)
0.438785 + 0.898592i \(0.355409\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 16.2944 0.556605 0.278303 0.960493i \(-0.410228\pi\)
0.278303 + 0.960493i \(0.410228\pi\)
\(858\) 0 0
\(859\) 23.1046 0.788319 0.394160 0.919042i \(-0.371036\pi\)
0.394160 + 0.919042i \(0.371036\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −18.3148 −0.623443 −0.311722 0.950173i \(-0.600906\pi\)
−0.311722 + 0.950173i \(0.600906\pi\)
\(864\) 0 0
\(865\) −11.7591 −0.399821
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −45.4952 −1.54332
\(870\) 0 0
\(871\) 26.8552 0.909953
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −3.90115 −0.131883
\(876\) 0 0
\(877\) −7.83146 −0.264450 −0.132225 0.991220i \(-0.542212\pi\)
−0.132225 + 0.991220i \(0.542212\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 3.17430 0.106945 0.0534724 0.998569i \(-0.482971\pi\)
0.0534724 + 0.998569i \(0.482971\pi\)
\(882\) 0 0
\(883\) 34.4132 1.15810 0.579049 0.815293i \(-0.303424\pi\)
0.579049 + 0.815293i \(0.303424\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 55.6706 1.86924 0.934618 0.355654i \(-0.115742\pi\)
0.934618 + 0.355654i \(0.115742\pi\)
\(888\) 0 0
\(889\) 57.8516 1.94028
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0.557454 0.0186545
\(894\) 0 0
\(895\) 6.65604 0.222487
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −4.81727 −0.160665
\(900\) 0 0
\(901\) −29.6015 −0.986170
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 8.50730 0.282792
\(906\) 0 0
\(907\) 28.0292 0.930695 0.465347 0.885128i \(-0.345929\pi\)
0.465347 + 0.885128i \(0.345929\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −24.9236 −0.825757 −0.412878 0.910786i \(-0.635477\pi\)
−0.412878 + 0.910786i \(0.635477\pi\)
\(912\) 0 0
\(913\) −41.4485 −1.37175
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −50.9036 −1.68098
\(918\) 0 0
\(919\) −13.2512 −0.437116 −0.218558 0.975824i \(-0.570135\pi\)
−0.218558 + 0.975824i \(0.570135\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 22.0372 0.725364
\(924\) 0 0
\(925\) 5.58789 0.183729
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −42.6913 −1.40065 −0.700327 0.713822i \(-0.746963\pi\)
−0.700327 + 0.713822i \(0.746963\pi\)
\(930\) 0 0
\(931\) −27.4366 −0.899199
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −15.0063 −0.490759
\(936\) 0 0
\(937\) −11.5620 −0.377715 −0.188857 0.982005i \(-0.560478\pi\)
−0.188857 + 0.982005i \(0.560478\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −38.7731 −1.26397 −0.631983 0.774982i \(-0.717759\pi\)
−0.631983 + 0.774982i \(0.717759\pi\)
\(942\) 0 0
\(943\) −5.53049 −0.180098
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 50.3393 1.63581 0.817904 0.575354i \(-0.195136\pi\)
0.817904 + 0.575354i \(0.195136\pi\)
\(948\) 0 0
\(949\) −3.79922 −0.123328
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −11.4118 −0.369666 −0.184833 0.982770i \(-0.559174\pi\)
−0.184833 + 0.982770i \(0.559174\pi\)
\(954\) 0 0
\(955\) −17.5052 −0.566455
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 46.0426 1.48679
\(960\) 0 0
\(961\) −27.6478 −0.891865
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 26.1165 0.840719
\(966\) 0 0
\(967\) 7.63285 0.245456 0.122728 0.992440i \(-0.460836\pi\)
0.122728 + 0.992440i \(0.460836\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −20.5124 −0.658276 −0.329138 0.944282i \(-0.606758\pi\)
−0.329138 + 0.944282i \(0.606758\pi\)
\(972\) 0 0
\(973\) −65.1663 −2.08914
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −7.93859 −0.253978 −0.126989 0.991904i \(-0.540531\pi\)
−0.126989 + 0.991904i \(0.540531\pi\)
\(978\) 0 0
\(979\) 74.0523 2.36672
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −23.7253 −0.756720 −0.378360 0.925659i \(-0.623512\pi\)
−0.378360 + 0.925659i \(0.623512\pi\)
\(984\) 0 0
\(985\) −12.9215 −0.411714
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 9.18309 0.292005
\(990\) 0 0
\(991\) −4.04618 −0.128531 −0.0642656 0.997933i \(-0.520470\pi\)
−0.0642656 + 0.997933i \(0.520470\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −16.9781 −0.538242
\(996\) 0 0
\(997\) 9.08115 0.287603 0.143802 0.989607i \(-0.454067\pi\)
0.143802 + 0.989607i \(0.454067\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6480.2.a.ca.1.1 4
3.2 odd 2 6480.2.a.by.1.1 4
4.3 odd 2 3240.2.a.v.1.4 yes 4
12.11 even 2 3240.2.a.t.1.4 4
36.7 odd 6 3240.2.q.bg.1081.1 8
36.11 even 6 3240.2.q.bh.1081.1 8
36.23 even 6 3240.2.q.bh.2161.1 8
36.31 odd 6 3240.2.q.bg.2161.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3240.2.a.t.1.4 4 12.11 even 2
3240.2.a.v.1.4 yes 4 4.3 odd 2
3240.2.q.bg.1081.1 8 36.7 odd 6
3240.2.q.bg.2161.1 8 36.31 odd 6
3240.2.q.bh.1081.1 8 36.11 even 6
3240.2.q.bh.2161.1 8 36.23 even 6
6480.2.a.by.1.1 4 3.2 odd 2
6480.2.a.ca.1.1 4 1.1 even 1 trivial