Properties

Label 6480.2.a.bx.1.2
Level $6480$
Weight $2$
Character 6480.1
Self dual yes
Analytic conductor $51.743$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6480,2,Mod(1,6480)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6480, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6480.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6480 = 2^{4} \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6480.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(51.7430605098\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.564.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 5x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 360)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.51414\) of defining polynomial
Character \(\chi\) \(=\) 6480.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{5} +1.19325 q^{7} +3.32088 q^{11} +1.70739 q^{13} -6.34916 q^{17} -1.32088 q^{19} -6.86330 q^{23} +1.00000 q^{25} +2.02827 q^{29} +2.67912 q^{31} +1.19325 q^{35} +3.32088 q^{37} +2.32088 q^{41} +6.34916 q^{43} +12.7694 q^{47} -5.57615 q^{49} +1.02827 q^{53} +3.32088 q^{55} +11.6700 q^{59} -9.73566 q^{61} +1.70739 q^{65} +10.5707 q^{67} +1.06562 q^{71} +14.0565 q^{73} +3.96265 q^{77} -1.41478 q^{79} +11.8350 q^{83} -6.34916 q^{85} -11.0000 q^{89} +2.03735 q^{91} -1.32088 q^{95} +16.2553 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{5} + 5 q^{7} + 2 q^{11} + 2 q^{17} + 4 q^{19} + 7 q^{23} + 3 q^{25} - 7 q^{29} + 16 q^{31} + 5 q^{35} + 2 q^{37} - q^{41} - 2 q^{43} + 13 q^{47} + 10 q^{49} - 10 q^{53} + 2 q^{55} + 6 q^{59}+ \cdots + 30 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 1.19325 0.451007 0.225504 0.974242i \(-0.427597\pi\)
0.225504 + 0.974242i \(0.427597\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 3.32088 1.00128 0.500642 0.865654i \(-0.333097\pi\)
0.500642 + 0.865654i \(0.333097\pi\)
\(12\) 0 0
\(13\) 1.70739 0.473545 0.236772 0.971565i \(-0.423910\pi\)
0.236772 + 0.971565i \(0.423910\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −6.34916 −1.53990 −0.769949 0.638106i \(-0.779718\pi\)
−0.769949 + 0.638106i \(0.779718\pi\)
\(18\) 0 0
\(19\) −1.32088 −0.303032 −0.151516 0.988455i \(-0.548415\pi\)
−0.151516 + 0.988455i \(0.548415\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −6.86330 −1.43110 −0.715548 0.698564i \(-0.753823\pi\)
−0.715548 + 0.698564i \(0.753823\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 2.02827 0.376641 0.188321 0.982108i \(-0.439696\pi\)
0.188321 + 0.982108i \(0.439696\pi\)
\(30\) 0 0
\(31\) 2.67912 0.481183 0.240592 0.970626i \(-0.422659\pi\)
0.240592 + 0.970626i \(0.422659\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.19325 0.201696
\(36\) 0 0
\(37\) 3.32088 0.545950 0.272975 0.962021i \(-0.411992\pi\)
0.272975 + 0.962021i \(0.411992\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 2.32088 0.362461 0.181231 0.983441i \(-0.441992\pi\)
0.181231 + 0.983441i \(0.441992\pi\)
\(42\) 0 0
\(43\) 6.34916 0.968238 0.484119 0.875002i \(-0.339140\pi\)
0.484119 + 0.875002i \(0.339140\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 12.7694 1.86261 0.931304 0.364242i \(-0.118672\pi\)
0.931304 + 0.364242i \(0.118672\pi\)
\(48\) 0 0
\(49\) −5.57615 −0.796593
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 1.02827 0.141244 0.0706221 0.997503i \(-0.477502\pi\)
0.0706221 + 0.997503i \(0.477502\pi\)
\(54\) 0 0
\(55\) 3.32088 0.447788
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 11.6700 1.51931 0.759655 0.650326i \(-0.225368\pi\)
0.759655 + 0.650326i \(0.225368\pi\)
\(60\) 0 0
\(61\) −9.73566 −1.24652 −0.623262 0.782013i \(-0.714193\pi\)
−0.623262 + 0.782013i \(0.714193\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.70739 0.211776
\(66\) 0 0
\(67\) 10.5707 1.29141 0.645707 0.763585i \(-0.276563\pi\)
0.645707 + 0.763585i \(0.276563\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 1.06562 0.126466 0.0632329 0.997999i \(-0.479859\pi\)
0.0632329 + 0.997999i \(0.479859\pi\)
\(72\) 0 0
\(73\) 14.0565 1.64519 0.822597 0.568624i \(-0.192524\pi\)
0.822597 + 0.568624i \(0.192524\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 3.96265 0.451586
\(78\) 0 0
\(79\) −1.41478 −0.159175 −0.0795875 0.996828i \(-0.525360\pi\)
−0.0795875 + 0.996828i \(0.525360\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 11.8350 1.29906 0.649531 0.760335i \(-0.274965\pi\)
0.649531 + 0.760335i \(0.274965\pi\)
\(84\) 0 0
\(85\) −6.34916 −0.688663
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −11.0000 −1.16600 −0.582999 0.812473i \(-0.698121\pi\)
−0.582999 + 0.812473i \(0.698121\pi\)
\(90\) 0 0
\(91\) 2.03735 0.213572
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −1.32088 −0.135520
\(96\) 0 0
\(97\) 16.2553 1.65047 0.825236 0.564788i \(-0.191042\pi\)
0.825236 + 0.564788i \(0.191042\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −2.38650 −0.237466 −0.118733 0.992926i \(-0.537883\pi\)
−0.118733 + 0.992926i \(0.537883\pi\)
\(102\) 0 0
\(103\) −9.76394 −0.962069 −0.481035 0.876702i \(-0.659739\pi\)
−0.481035 + 0.876702i \(0.659739\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 7.57976 0.732763 0.366381 0.930465i \(-0.380597\pi\)
0.366381 + 0.930465i \(0.380597\pi\)
\(108\) 0 0
\(109\) 16.5761 1.58771 0.793854 0.608109i \(-0.208072\pi\)
0.793854 + 0.608109i \(0.208072\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −21.0848 −1.98349 −0.991747 0.128214i \(-0.959076\pi\)
−0.991747 + 0.128214i \(0.959076\pi\)
\(114\) 0 0
\(115\) −6.86330 −0.640006
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −7.57615 −0.694504
\(120\) 0 0
\(121\) 0.0282739 0.00257035
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 15.4112 1.36752 0.683760 0.729707i \(-0.260343\pi\)
0.683760 + 0.729707i \(0.260343\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 3.35823 0.293410 0.146705 0.989180i \(-0.453133\pi\)
0.146705 + 0.989180i \(0.453133\pi\)
\(132\) 0 0
\(133\) −1.57615 −0.136669
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −7.61350 −0.650465 −0.325232 0.945634i \(-0.605443\pi\)
−0.325232 + 0.945634i \(0.605443\pi\)
\(138\) 0 0
\(139\) −13.2835 −1.12669 −0.563347 0.826220i \(-0.690487\pi\)
−0.563347 + 0.826220i \(0.690487\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 5.67004 0.474153
\(144\) 0 0
\(145\) 2.02827 0.168439
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −17.9909 −1.47387 −0.736937 0.675961i \(-0.763729\pi\)
−0.736937 + 0.675961i \(0.763729\pi\)
\(150\) 0 0
\(151\) 8.67912 0.706296 0.353148 0.935567i \(-0.385111\pi\)
0.353148 + 0.935567i \(0.385111\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 2.67912 0.215192
\(156\) 0 0
\(157\) 18.8970 1.50815 0.754074 0.656790i \(-0.228086\pi\)
0.754074 + 0.656790i \(0.228086\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −8.18964 −0.645434
\(162\) 0 0
\(163\) 0.990927 0.0776154 0.0388077 0.999247i \(-0.487644\pi\)
0.0388077 + 0.999247i \(0.487644\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −13.5990 −1.05232 −0.526160 0.850386i \(-0.676369\pi\)
−0.526160 + 0.850386i \(0.676369\pi\)
\(168\) 0 0
\(169\) −10.0848 −0.775756
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −0.187788 −0.0142773 −0.00713865 0.999975i \(-0.502272\pi\)
−0.00713865 + 0.999975i \(0.502272\pi\)
\(174\) 0 0
\(175\) 1.19325 0.0902014
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −9.76394 −0.729791 −0.364895 0.931048i \(-0.618895\pi\)
−0.364895 + 0.931048i \(0.618895\pi\)
\(180\) 0 0
\(181\) −16.0848 −1.19558 −0.597788 0.801654i \(-0.703953\pi\)
−0.597788 + 0.801654i \(0.703953\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 3.32088 0.244156
\(186\) 0 0
\(187\) −21.0848 −1.54187
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 3.06562 0.221821 0.110910 0.993830i \(-0.464623\pi\)
0.110910 + 0.993830i \(0.464623\pi\)
\(192\) 0 0
\(193\) 0.236063 0.0169922 0.00849609 0.999964i \(-0.497296\pi\)
0.00849609 + 0.999964i \(0.497296\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −1.74474 −0.124307 −0.0621536 0.998067i \(-0.519797\pi\)
−0.0621536 + 0.998067i \(0.519797\pi\)
\(198\) 0 0
\(199\) 22.7922 1.61570 0.807848 0.589390i \(-0.200632\pi\)
0.807848 + 0.589390i \(0.200632\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 2.42024 0.169868
\(204\) 0 0
\(205\) 2.32088 0.162098
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −4.38650 −0.303421
\(210\) 0 0
\(211\) 13.3774 0.920940 0.460470 0.887675i \(-0.347681\pi\)
0.460470 + 0.887675i \(0.347681\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 6.34916 0.433009
\(216\) 0 0
\(217\) 3.19686 0.217017
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −10.8405 −0.729210
\(222\) 0 0
\(223\) 9.48586 0.635220 0.317610 0.948221i \(-0.397120\pi\)
0.317610 + 0.948221i \(0.397120\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −3.50867 −0.232879 −0.116439 0.993198i \(-0.537148\pi\)
−0.116439 + 0.993198i \(0.537148\pi\)
\(228\) 0 0
\(229\) 18.7266 1.23749 0.618744 0.785593i \(-0.287642\pi\)
0.618744 + 0.785593i \(0.287642\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 2.15044 0.140880 0.0704401 0.997516i \(-0.477560\pi\)
0.0704401 + 0.997516i \(0.477560\pi\)
\(234\) 0 0
\(235\) 12.7694 0.832984
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 25.5953 1.65563 0.827813 0.561004i \(-0.189585\pi\)
0.827813 + 0.561004i \(0.189585\pi\)
\(240\) 0 0
\(241\) 4.76394 0.306872 0.153436 0.988159i \(-0.450966\pi\)
0.153436 + 0.988159i \(0.450966\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −5.57615 −0.356247
\(246\) 0 0
\(247\) −2.25526 −0.143499
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −7.76394 −0.490055 −0.245028 0.969516i \(-0.578797\pi\)
−0.245028 + 0.969516i \(0.578797\pi\)
\(252\) 0 0
\(253\) −22.7922 −1.43293
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 19.2835 1.20287 0.601437 0.798920i \(-0.294595\pi\)
0.601437 + 0.798920i \(0.294595\pi\)
\(258\) 0 0
\(259\) 3.96265 0.246227
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −7.70739 −0.475258 −0.237629 0.971356i \(-0.576370\pi\)
−0.237629 + 0.971356i \(0.576370\pi\)
\(264\) 0 0
\(265\) 1.02827 0.0631664
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 14.1222 0.861044 0.430522 0.902580i \(-0.358330\pi\)
0.430522 + 0.902580i \(0.358330\pi\)
\(270\) 0 0
\(271\) 3.26434 0.198294 0.0991472 0.995073i \(-0.468389\pi\)
0.0991472 + 0.995073i \(0.468389\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 3.32088 0.200257
\(276\) 0 0
\(277\) 26.4623 1.58996 0.794981 0.606634i \(-0.207481\pi\)
0.794981 + 0.606634i \(0.207481\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 19.4057 1.15765 0.578824 0.815453i \(-0.303512\pi\)
0.578824 + 0.815453i \(0.303512\pi\)
\(282\) 0 0
\(283\) 5.39197 0.320519 0.160260 0.987075i \(-0.448767\pi\)
0.160260 + 0.987075i \(0.448767\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 2.76940 0.163473
\(288\) 0 0
\(289\) 23.3118 1.37128
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −32.9162 −1.92299 −0.961493 0.274828i \(-0.911379\pi\)
−0.961493 + 0.274828i \(0.911379\pi\)
\(294\) 0 0
\(295\) 11.6700 0.679456
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −11.7183 −0.677688
\(300\) 0 0
\(301\) 7.57615 0.436682
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −9.73566 −0.557462
\(306\) 0 0
\(307\) −6.27807 −0.358309 −0.179154 0.983821i \(-0.557336\pi\)
−0.179154 + 0.983821i \(0.557336\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 20.4623 1.16031 0.580154 0.814507i \(-0.302992\pi\)
0.580154 + 0.814507i \(0.302992\pi\)
\(312\) 0 0
\(313\) 23.3774 1.32137 0.660685 0.750663i \(-0.270266\pi\)
0.660685 + 0.750663i \(0.270266\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −2.09389 −0.117605 −0.0588024 0.998270i \(-0.518728\pi\)
−0.0588024 + 0.998270i \(0.518728\pi\)
\(318\) 0 0
\(319\) 6.73566 0.377125
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 8.38650 0.466638
\(324\) 0 0
\(325\) 1.70739 0.0947089
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 15.2371 0.840050
\(330\) 0 0
\(331\) 26.3118 1.44623 0.723114 0.690729i \(-0.242710\pi\)
0.723114 + 0.690729i \(0.242710\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 10.5707 0.577538
\(336\) 0 0
\(337\) −23.0667 −1.25652 −0.628261 0.778003i \(-0.716233\pi\)
−0.628261 + 0.778003i \(0.716233\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 8.89703 0.481801
\(342\) 0 0
\(343\) −15.0065 −0.810276
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 14.5369 0.780384 0.390192 0.920733i \(-0.372409\pi\)
0.390192 + 0.920733i \(0.372409\pi\)
\(348\) 0 0
\(349\) −22.9819 −1.23019 −0.615095 0.788453i \(-0.710882\pi\)
−0.615095 + 0.788453i \(0.710882\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 21.3966 1.13883 0.569414 0.822051i \(-0.307170\pi\)
0.569414 + 0.822051i \(0.307170\pi\)
\(354\) 0 0
\(355\) 1.06562 0.0565573
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −22.5935 −1.19244 −0.596220 0.802821i \(-0.703331\pi\)
−0.596220 + 0.802821i \(0.703331\pi\)
\(360\) 0 0
\(361\) −17.2553 −0.908172
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 14.0565 0.735753
\(366\) 0 0
\(367\) −8.29261 −0.432871 −0.216435 0.976297i \(-0.569443\pi\)
−0.216435 + 0.976297i \(0.569443\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 1.22699 0.0637022
\(372\) 0 0
\(373\) 19.4823 1.00875 0.504376 0.863484i \(-0.331722\pi\)
0.504376 + 0.863484i \(0.331722\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 3.46305 0.178356
\(378\) 0 0
\(379\) −22.0000 −1.13006 −0.565032 0.825069i \(-0.691136\pi\)
−0.565032 + 0.825069i \(0.691136\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −11.5196 −0.588624 −0.294312 0.955709i \(-0.595090\pi\)
−0.294312 + 0.955709i \(0.595090\pi\)
\(384\) 0 0
\(385\) 3.96265 0.201956
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −22.3774 −1.13458 −0.567290 0.823518i \(-0.692008\pi\)
−0.567290 + 0.823518i \(0.692008\pi\)
\(390\) 0 0
\(391\) 43.5761 2.20374
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −1.41478 −0.0711852
\(396\) 0 0
\(397\) −9.34009 −0.468765 −0.234383 0.972144i \(-0.575307\pi\)
−0.234383 + 0.972144i \(0.575307\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −9.72659 −0.485723 −0.242861 0.970061i \(-0.578086\pi\)
−0.242861 + 0.970061i \(0.578086\pi\)
\(402\) 0 0
\(403\) 4.57429 0.227862
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 11.0283 0.546651
\(408\) 0 0
\(409\) 10.1878 0.503754 0.251877 0.967759i \(-0.418952\pi\)
0.251877 + 0.967759i \(0.418952\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 13.9253 0.685220
\(414\) 0 0
\(415\) 11.8350 0.580958
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −12.0192 −0.587176 −0.293588 0.955932i \(-0.594849\pi\)
−0.293588 + 0.955932i \(0.594849\pi\)
\(420\) 0 0
\(421\) 19.4713 0.948974 0.474487 0.880262i \(-0.342634\pi\)
0.474487 + 0.880262i \(0.342634\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −6.34916 −0.307979
\(426\) 0 0
\(427\) −11.6171 −0.562191
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 16.8296 0.810651 0.405326 0.914172i \(-0.367158\pi\)
0.405326 + 0.914172i \(0.367158\pi\)
\(432\) 0 0
\(433\) −8.40571 −0.403952 −0.201976 0.979390i \(-0.564736\pi\)
−0.201976 + 0.979390i \(0.564736\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 9.06562 0.433667
\(438\) 0 0
\(439\) 29.0848 1.38814 0.694071 0.719906i \(-0.255815\pi\)
0.694071 + 0.719906i \(0.255815\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −14.1842 −0.673911 −0.336955 0.941521i \(-0.609397\pi\)
−0.336955 + 0.941521i \(0.609397\pi\)
\(444\) 0 0
\(445\) −11.0000 −0.521450
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −26.6874 −1.25946 −0.629728 0.776816i \(-0.716834\pi\)
−0.629728 + 0.776816i \(0.716834\pi\)
\(450\) 0 0
\(451\) 7.70739 0.362927
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 2.03735 0.0955123
\(456\) 0 0
\(457\) 15.9061 0.744056 0.372028 0.928221i \(-0.378662\pi\)
0.372028 + 0.928221i \(0.378662\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −38.0667 −1.77294 −0.886471 0.462784i \(-0.846850\pi\)
−0.886471 + 0.462784i \(0.846850\pi\)
\(462\) 0 0
\(463\) 35.9445 1.67048 0.835241 0.549883i \(-0.185328\pi\)
0.835241 + 0.549883i \(0.185328\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 26.4623 1.22453 0.612264 0.790654i \(-0.290259\pi\)
0.612264 + 0.790654i \(0.290259\pi\)
\(468\) 0 0
\(469\) 12.6135 0.582437
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 21.0848 0.969481
\(474\) 0 0
\(475\) −1.32088 −0.0606063
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −38.1131 −1.74143 −0.870716 0.491786i \(-0.836344\pi\)
−0.870716 + 0.491786i \(0.836344\pi\)
\(480\) 0 0
\(481\) 5.67004 0.258532
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 16.2553 0.738114
\(486\) 0 0
\(487\) −38.6610 −1.75190 −0.875948 0.482406i \(-0.839763\pi\)
−0.875948 + 0.482406i \(0.839763\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −31.7266 −1.43180 −0.715900 0.698202i \(-0.753984\pi\)
−0.715900 + 0.698202i \(0.753984\pi\)
\(492\) 0 0
\(493\) −12.8778 −0.579988
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1.27155 0.0570370
\(498\) 0 0
\(499\) −38.4815 −1.72267 −0.861333 0.508040i \(-0.830370\pi\)
−0.861333 + 0.508040i \(0.830370\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −11.0994 −0.494896 −0.247448 0.968901i \(-0.579592\pi\)
−0.247448 + 0.968901i \(0.579592\pi\)
\(504\) 0 0
\(505\) −2.38650 −0.106198
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 26.5279 1.17583 0.587914 0.808924i \(-0.299949\pi\)
0.587914 + 0.808924i \(0.299949\pi\)
\(510\) 0 0
\(511\) 16.7730 0.741994
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −9.76394 −0.430250
\(516\) 0 0
\(517\) 42.4057 1.86500
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −9.89703 −0.433597 −0.216798 0.976216i \(-0.569561\pi\)
−0.216798 + 0.976216i \(0.569561\pi\)
\(522\) 0 0
\(523\) −28.4394 −1.24357 −0.621785 0.783188i \(-0.713592\pi\)
−0.621785 + 0.783188i \(0.713592\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −17.0101 −0.740973
\(528\) 0 0
\(529\) 24.1048 1.04804
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 3.96265 0.171642
\(534\) 0 0
\(535\) 7.57976 0.327701
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −18.5177 −0.797616
\(540\) 0 0
\(541\) 13.1131 0.563776 0.281888 0.959447i \(-0.409039\pi\)
0.281888 + 0.959447i \(0.409039\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 16.5761 0.710044
\(546\) 0 0
\(547\) −24.7321 −1.05747 −0.528733 0.848788i \(-0.677333\pi\)
−0.528733 + 0.848788i \(0.677333\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −2.67912 −0.114134
\(552\) 0 0
\(553\) −1.68819 −0.0717891
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 22.7730 0.964923 0.482462 0.875917i \(-0.339743\pi\)
0.482462 + 0.875917i \(0.339743\pi\)
\(558\) 0 0
\(559\) 10.8405 0.458504
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −29.4112 −1.23953 −0.619767 0.784786i \(-0.712773\pi\)
−0.619767 + 0.784786i \(0.712773\pi\)
\(564\) 0 0
\(565\) −21.0848 −0.887045
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −36.5671 −1.53297 −0.766486 0.642261i \(-0.777996\pi\)
−0.766486 + 0.642261i \(0.777996\pi\)
\(570\) 0 0
\(571\) −4.37558 −0.183112 −0.0915561 0.995800i \(-0.529184\pi\)
−0.0915561 + 0.995800i \(0.529184\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −6.86330 −0.286219
\(576\) 0 0
\(577\) 9.02827 0.375852 0.187926 0.982183i \(-0.439823\pi\)
0.187926 + 0.982183i \(0.439823\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 14.1222 0.585886
\(582\) 0 0
\(583\) 3.41478 0.141426
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 3.26795 0.134883 0.0674413 0.997723i \(-0.478516\pi\)
0.0674413 + 0.997723i \(0.478516\pi\)
\(588\) 0 0
\(589\) −3.53880 −0.145814
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 3.39558 0.139440 0.0697198 0.997567i \(-0.477789\pi\)
0.0697198 + 0.997567i \(0.477789\pi\)
\(594\) 0 0
\(595\) −7.57615 −0.310592
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −0.603367 −0.0246529 −0.0123264 0.999924i \(-0.503924\pi\)
−0.0123264 + 0.999924i \(0.503924\pi\)
\(600\) 0 0
\(601\) −41.9253 −1.71017 −0.855084 0.518489i \(-0.826495\pi\)
−0.855084 + 0.518489i \(0.826495\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0.0282739 0.00114950
\(606\) 0 0
\(607\) 5.42932 0.220369 0.110185 0.993911i \(-0.464856\pi\)
0.110185 + 0.993911i \(0.464856\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 21.8023 0.882028
\(612\) 0 0
\(613\) 2.42385 0.0978984 0.0489492 0.998801i \(-0.484413\pi\)
0.0489492 + 0.998801i \(0.484413\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 29.0848 1.17091 0.585455 0.810705i \(-0.300916\pi\)
0.585455 + 0.810705i \(0.300916\pi\)
\(618\) 0 0
\(619\) −7.45213 −0.299526 −0.149763 0.988722i \(-0.547851\pi\)
−0.149763 + 0.988722i \(0.547851\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −13.1258 −0.525873
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −21.0848 −0.840707
\(630\) 0 0
\(631\) 27.8013 1.10675 0.553376 0.832932i \(-0.313339\pi\)
0.553376 + 0.832932i \(0.313339\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 15.4112 0.611574
\(636\) 0 0
\(637\) −9.52066 −0.377222
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 34.0475 1.34479 0.672397 0.740191i \(-0.265265\pi\)
0.672397 + 0.740191i \(0.265265\pi\)
\(642\) 0 0
\(643\) 13.8542 0.546357 0.273179 0.961963i \(-0.411925\pi\)
0.273179 + 0.961963i \(0.411925\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 5.11750 0.201190 0.100595 0.994927i \(-0.467925\pi\)
0.100595 + 0.994927i \(0.467925\pi\)
\(648\) 0 0
\(649\) 38.7549 1.52126
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −7.39558 −0.289411 −0.144706 0.989475i \(-0.546224\pi\)
−0.144706 + 0.989475i \(0.546224\pi\)
\(654\) 0 0
\(655\) 3.35823 0.131217
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 17.0848 0.665530 0.332765 0.943010i \(-0.392018\pi\)
0.332765 + 0.943010i \(0.392018\pi\)
\(660\) 0 0
\(661\) −38.6236 −1.50228 −0.751142 0.660140i \(-0.770497\pi\)
−0.751142 + 0.660140i \(0.770497\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1.57615 −0.0611204
\(666\) 0 0
\(667\) −13.9206 −0.539009
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −32.3310 −1.24812
\(672\) 0 0
\(673\) 26.5297 1.02265 0.511323 0.859389i \(-0.329156\pi\)
0.511323 + 0.859389i \(0.329156\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 38.0192 1.46120 0.730598 0.682808i \(-0.239241\pi\)
0.730598 + 0.682808i \(0.239241\pi\)
\(678\) 0 0
\(679\) 19.3966 0.744374
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −6.23606 −0.238616 −0.119308 0.992857i \(-0.538068\pi\)
−0.119308 + 0.992857i \(0.538068\pi\)
\(684\) 0 0
\(685\) −7.61350 −0.290897
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 1.75566 0.0668855
\(690\) 0 0
\(691\) −3.17044 −0.120609 −0.0603047 0.998180i \(-0.519207\pi\)
−0.0603047 + 0.998180i \(0.519207\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −13.2835 −0.503873
\(696\) 0 0
\(697\) −14.7357 −0.558153
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 51.5863 1.94839 0.974193 0.225715i \(-0.0724718\pi\)
0.974193 + 0.225715i \(0.0724718\pi\)
\(702\) 0 0
\(703\) −4.38650 −0.165440
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −2.84770 −0.107099
\(708\) 0 0
\(709\) 12.8578 0.482886 0.241443 0.970415i \(-0.422379\pi\)
0.241443 + 0.970415i \(0.422379\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −18.3876 −0.688620
\(714\) 0 0
\(715\) 5.67004 0.212048
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −4.84049 −0.180520 −0.0902598 0.995918i \(-0.528770\pi\)
−0.0902598 + 0.995918i \(0.528770\pi\)
\(720\) 0 0
\(721\) −11.6508 −0.433900
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 2.02827 0.0753282
\(726\) 0 0
\(727\) 41.0703 1.52321 0.761606 0.648040i \(-0.224411\pi\)
0.761606 + 0.648040i \(0.224411\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −40.3118 −1.49099
\(732\) 0 0
\(733\) 35.3966 1.30740 0.653702 0.756752i \(-0.273215\pi\)
0.653702 + 0.756752i \(0.273215\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 35.1040 1.29307
\(738\) 0 0
\(739\) 19.4823 0.716666 0.358333 0.933594i \(-0.383345\pi\)
0.358333 + 0.933594i \(0.383345\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 16.2034 0.594444 0.297222 0.954808i \(-0.403940\pi\)
0.297222 + 0.954808i \(0.403940\pi\)
\(744\) 0 0
\(745\) −17.9909 −0.659137
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 9.04456 0.330481
\(750\) 0 0
\(751\) −14.3492 −0.523608 −0.261804 0.965121i \(-0.584317\pi\)
−0.261804 + 0.965121i \(0.584317\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 8.67912 0.315865
\(756\) 0 0
\(757\) 16.7466 0.608665 0.304333 0.952566i \(-0.401567\pi\)
0.304333 + 0.952566i \(0.401567\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −19.6308 −0.711617 −0.355809 0.934559i \(-0.615795\pi\)
−0.355809 + 0.934559i \(0.615795\pi\)
\(762\) 0 0
\(763\) 19.7795 0.716067
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 19.9253 0.719461
\(768\) 0 0
\(769\) −42.9144 −1.54753 −0.773766 0.633471i \(-0.781629\pi\)
−0.773766 + 0.633471i \(0.781629\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −7.22699 −0.259937 −0.129968 0.991518i \(-0.541488\pi\)
−0.129968 + 0.991518i \(0.541488\pi\)
\(774\) 0 0
\(775\) 2.67912 0.0962367
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −3.06562 −0.109837
\(780\) 0 0
\(781\) 3.53880 0.126628
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 18.8970 0.674464
\(786\) 0 0
\(787\) −30.2361 −1.07780 −0.538900 0.842370i \(-0.681160\pi\)
−0.538900 + 0.842370i \(0.681160\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −25.1595 −0.894569
\(792\) 0 0
\(793\) −16.6226 −0.590285
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −27.4158 −0.971119 −0.485559 0.874204i \(-0.661384\pi\)
−0.485559 + 0.874204i \(0.661384\pi\)
\(798\) 0 0
\(799\) −81.0749 −2.86823
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 46.6802 1.64731
\(804\) 0 0
\(805\) −8.18964 −0.288647
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 28.1806 0.990776 0.495388 0.868672i \(-0.335026\pi\)
0.495388 + 0.868672i \(0.335026\pi\)
\(810\) 0 0
\(811\) −20.1312 −0.706903 −0.353452 0.935453i \(-0.614992\pi\)
−0.353452 + 0.935453i \(0.614992\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0.990927 0.0347107
\(816\) 0 0
\(817\) −8.38650 −0.293407
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 12.2462 0.427395 0.213698 0.976900i \(-0.431449\pi\)
0.213698 + 0.976900i \(0.431449\pi\)
\(822\) 0 0
\(823\) 27.9289 0.973541 0.486770 0.873530i \(-0.338175\pi\)
0.486770 + 0.873530i \(0.338175\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −8.57068 −0.298032 −0.149016 0.988835i \(-0.547611\pi\)
−0.149016 + 0.988835i \(0.547611\pi\)
\(828\) 0 0
\(829\) −19.7357 −0.685448 −0.342724 0.939436i \(-0.611350\pi\)
−0.342724 + 0.939436i \(0.611350\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 35.4039 1.22667
\(834\) 0 0
\(835\) −13.5990 −0.470611
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −46.7175 −1.61287 −0.806434 0.591324i \(-0.798605\pi\)
−0.806434 + 0.591324i \(0.798605\pi\)
\(840\) 0 0
\(841\) −24.8861 −0.858142
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −10.0848 −0.346928
\(846\) 0 0
\(847\) 0.0337379 0.00115925
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −22.7922 −0.781307
\(852\) 0 0
\(853\) 5.39558 0.184741 0.0923705 0.995725i \(-0.470556\pi\)
0.0923705 + 0.995725i \(0.470556\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 28.6719 0.979413 0.489707 0.871887i \(-0.337104\pi\)
0.489707 + 0.871887i \(0.337104\pi\)
\(858\) 0 0
\(859\) −22.7466 −0.776104 −0.388052 0.921638i \(-0.626852\pi\)
−0.388052 + 0.921638i \(0.626852\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0.202325 0.00688723 0.00344361 0.999994i \(-0.498904\pi\)
0.00344361 + 0.999994i \(0.498904\pi\)
\(864\) 0 0
\(865\) −0.187788 −0.00638500
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −4.69832 −0.159379
\(870\) 0 0
\(871\) 18.0483 0.611542
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 1.19325 0.0403393
\(876\) 0 0
\(877\) 12.9728 0.438060 0.219030 0.975718i \(-0.429711\pi\)
0.219030 + 0.975718i \(0.429711\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 16.4905 0.555580 0.277790 0.960642i \(-0.410398\pi\)
0.277790 + 0.960642i \(0.410398\pi\)
\(882\) 0 0
\(883\) 8.38290 0.282107 0.141053 0.990002i \(-0.454951\pi\)
0.141053 + 0.990002i \(0.454951\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 58.4623 1.96297 0.981485 0.191538i \(-0.0613475\pi\)
0.981485 + 0.191538i \(0.0613475\pi\)
\(888\) 0 0
\(889\) 18.3894 0.616761
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −16.8669 −0.564429
\(894\) 0 0
\(895\) −9.76394 −0.326372
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 5.43398 0.181233
\(900\) 0 0
\(901\) −6.52867 −0.217502
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −16.0848 −0.534678
\(906\) 0 0
\(907\) −30.7019 −1.01944 −0.509720 0.860340i \(-0.670251\pi\)
−0.509720 + 0.860340i \(0.670251\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 34.3118 1.13680 0.568401 0.822752i \(-0.307562\pi\)
0.568401 + 0.822752i \(0.307562\pi\)
\(912\) 0 0
\(913\) 39.3027 1.30073
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 4.00722 0.132330
\(918\) 0 0
\(919\) 18.8861 0.622995 0.311498 0.950247i \(-0.399169\pi\)
0.311498 + 0.950247i \(0.399169\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 1.81943 0.0598872
\(924\) 0 0
\(925\) 3.32088 0.109190
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 8.09495 0.265587 0.132793 0.991144i \(-0.457605\pi\)
0.132793 + 0.991144i \(0.457605\pi\)
\(930\) 0 0
\(931\) 7.36545 0.241393
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −21.0848 −0.689547
\(936\) 0 0
\(937\) 29.7084 0.970533 0.485266 0.874366i \(-0.338723\pi\)
0.485266 + 0.874366i \(0.338723\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 10.4823 0.341712 0.170856 0.985296i \(-0.445347\pi\)
0.170856 + 0.985296i \(0.445347\pi\)
\(942\) 0 0
\(943\) −15.9289 −0.518717
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −4.65631 −0.151310 −0.0756548 0.997134i \(-0.524105\pi\)
−0.0756548 + 0.997134i \(0.524105\pi\)
\(948\) 0 0
\(949\) 24.0000 0.779073
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −21.9445 −0.710852 −0.355426 0.934704i \(-0.615664\pi\)
−0.355426 + 0.934704i \(0.615664\pi\)
\(954\) 0 0
\(955\) 3.06562 0.0992011
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −9.08482 −0.293364
\(960\) 0 0
\(961\) −23.8223 −0.768463
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0.236063 0.00759913
\(966\) 0 0
\(967\) −60.7030 −1.95208 −0.976038 0.217600i \(-0.930177\pi\)
−0.976038 + 0.217600i \(0.930177\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −38.9053 −1.24853 −0.624265 0.781212i \(-0.714602\pi\)
−0.624265 + 0.781212i \(0.714602\pi\)
\(972\) 0 0
\(973\) −15.8506 −0.508147
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −14.4166 −0.461229 −0.230614 0.973045i \(-0.574074\pi\)
−0.230614 + 0.973045i \(0.574074\pi\)
\(978\) 0 0
\(979\) −36.5297 −1.16750
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −25.9025 −0.826161 −0.413081 0.910694i \(-0.635547\pi\)
−0.413081 + 0.910694i \(0.635547\pi\)
\(984\) 0 0
\(985\) −1.74474 −0.0555919
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −43.5761 −1.38564
\(990\) 0 0
\(991\) 26.1987 0.832230 0.416115 0.909312i \(-0.363391\pi\)
0.416115 + 0.909312i \(0.363391\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 22.7922 0.722562
\(996\) 0 0
\(997\) −24.7658 −0.784341 −0.392170 0.919893i \(-0.628276\pi\)
−0.392170 + 0.919893i \(0.628276\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6480.2.a.bx.1.2 3
3.2 odd 2 6480.2.a.bu.1.2 3
4.3 odd 2 3240.2.a.r.1.2 3
9.2 odd 6 2160.2.q.j.1441.2 6
9.4 even 3 720.2.q.j.241.2 6
9.5 odd 6 2160.2.q.j.721.2 6
9.7 even 3 720.2.q.j.481.2 6
12.11 even 2 3240.2.a.q.1.2 3
36.7 odd 6 360.2.q.d.121.2 6
36.11 even 6 1080.2.q.d.361.2 6
36.23 even 6 1080.2.q.d.721.2 6
36.31 odd 6 360.2.q.d.241.2 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
360.2.q.d.121.2 6 36.7 odd 6
360.2.q.d.241.2 yes 6 36.31 odd 6
720.2.q.j.241.2 6 9.4 even 3
720.2.q.j.481.2 6 9.7 even 3
1080.2.q.d.361.2 6 36.11 even 6
1080.2.q.d.721.2 6 36.23 even 6
2160.2.q.j.721.2 6 9.5 odd 6
2160.2.q.j.1441.2 6 9.2 odd 6
3240.2.a.q.1.2 3 12.11 even 2
3240.2.a.r.1.2 3 4.3 odd 2
6480.2.a.bu.1.2 3 3.2 odd 2
6480.2.a.bx.1.2 3 1.1 even 1 trivial