Properties

Label 6480.2.a.bx.1.1
Level $6480$
Weight $2$
Character 6480.1
Self dual yes
Analytic conductor $51.743$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6480,2,Mod(1,6480)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6480, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6480.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6480 = 2^{4} \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6480.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(51.7430605098\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.564.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 5x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 360)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-2.08613\) of defining polynomial
Character \(\chi\) \(=\) 6480.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{5} -1.43807 q^{7} +1.35194 q^{11} -5.52420 q^{13} +4.82032 q^{17} +0.648061 q^{19} +8.90645 q^{23} +1.00000 q^{25} -7.17226 q^{29} +4.64806 q^{31} -1.43807 q^{35} +1.35194 q^{37} +0.351939 q^{41} -4.82032 q^{43} +9.49389 q^{47} -4.93196 q^{49} -8.17226 q^{53} +1.35194 q^{55} -1.46838 q^{59} +6.69646 q^{61} -5.52420 q^{65} -12.4307 q^{67} -2.22808 q^{71} -4.34452 q^{73} -1.94418 q^{77} +13.0484 q^{79} +5.26581 q^{83} +4.82032 q^{85} -11.0000 q^{89} +7.94418 q^{91} +0.648061 q^{95} +17.5800 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{5} + 5 q^{7} + 2 q^{11} + 2 q^{17} + 4 q^{19} + 7 q^{23} + 3 q^{25} - 7 q^{29} + 16 q^{31} + 5 q^{35} + 2 q^{37} - q^{41} - 2 q^{43} + 13 q^{47} + 10 q^{49} - 10 q^{53} + 2 q^{55} + 6 q^{59}+ \cdots + 30 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) −1.43807 −0.543539 −0.271770 0.962362i \(-0.587609\pi\)
−0.271770 + 0.962362i \(0.587609\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.35194 0.407625 0.203813 0.979010i \(-0.434667\pi\)
0.203813 + 0.979010i \(0.434667\pi\)
\(12\) 0 0
\(13\) −5.52420 −1.53214 −0.766069 0.642759i \(-0.777790\pi\)
−0.766069 + 0.642759i \(0.777790\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 4.82032 1.16910 0.584550 0.811358i \(-0.301271\pi\)
0.584550 + 0.811358i \(0.301271\pi\)
\(18\) 0 0
\(19\) 0.648061 0.148675 0.0743377 0.997233i \(-0.476316\pi\)
0.0743377 + 0.997233i \(0.476316\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 8.90645 1.85712 0.928562 0.371178i \(-0.121046\pi\)
0.928562 + 0.371178i \(0.121046\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −7.17226 −1.33186 −0.665928 0.746016i \(-0.731964\pi\)
−0.665928 + 0.746016i \(0.731964\pi\)
\(30\) 0 0
\(31\) 4.64806 0.834816 0.417408 0.908719i \(-0.362939\pi\)
0.417408 + 0.908719i \(0.362939\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −1.43807 −0.243078
\(36\) 0 0
\(37\) 1.35194 0.222257 0.111129 0.993806i \(-0.464553\pi\)
0.111129 + 0.993806i \(0.464553\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0.351939 0.0549637 0.0274818 0.999622i \(-0.491251\pi\)
0.0274818 + 0.999622i \(0.491251\pi\)
\(42\) 0 0
\(43\) −4.82032 −0.735092 −0.367546 0.930005i \(-0.619802\pi\)
−0.367546 + 0.930005i \(0.619802\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 9.49389 1.38483 0.692413 0.721501i \(-0.256548\pi\)
0.692413 + 0.721501i \(0.256548\pi\)
\(48\) 0 0
\(49\) −4.93196 −0.704565
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −8.17226 −1.12255 −0.561273 0.827631i \(-0.689688\pi\)
−0.561273 + 0.827631i \(0.689688\pi\)
\(54\) 0 0
\(55\) 1.35194 0.182295
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −1.46838 −0.191167 −0.0955835 0.995421i \(-0.530472\pi\)
−0.0955835 + 0.995421i \(0.530472\pi\)
\(60\) 0 0
\(61\) 6.69646 0.857394 0.428697 0.903448i \(-0.358973\pi\)
0.428697 + 0.903448i \(0.358973\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −5.52420 −0.685193
\(66\) 0 0
\(67\) −12.4307 −1.51865 −0.759323 0.650714i \(-0.774470\pi\)
−0.759323 + 0.650714i \(0.774470\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −2.22808 −0.264424 −0.132212 0.991221i \(-0.542208\pi\)
−0.132212 + 0.991221i \(0.542208\pi\)
\(72\) 0 0
\(73\) −4.34452 −0.508488 −0.254244 0.967140i \(-0.581827\pi\)
−0.254244 + 0.967140i \(0.581827\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −1.94418 −0.221560
\(78\) 0 0
\(79\) 13.0484 1.46806 0.734030 0.679117i \(-0.237637\pi\)
0.734030 + 0.679117i \(0.237637\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 5.26581 0.577998 0.288999 0.957329i \(-0.406678\pi\)
0.288999 + 0.957329i \(0.406678\pi\)
\(84\) 0 0
\(85\) 4.82032 0.522837
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −11.0000 −1.16600 −0.582999 0.812473i \(-0.698121\pi\)
−0.582999 + 0.812473i \(0.698121\pi\)
\(90\) 0 0
\(91\) 7.94418 0.832777
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0.648061 0.0664896
\(96\) 0 0
\(97\) 17.5800 1.78498 0.892490 0.451067i \(-0.148956\pi\)
0.892490 + 0.451067i \(0.148956\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 2.87614 0.286187 0.143093 0.989709i \(-0.454295\pi\)
0.143093 + 0.989709i \(0.454295\pi\)
\(102\) 0 0
\(103\) 15.8687 1.56359 0.781796 0.623535i \(-0.214304\pi\)
0.781796 + 0.623535i \(0.214304\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −0.314208 −0.0303757 −0.0151878 0.999885i \(-0.504835\pi\)
−0.0151878 + 0.999885i \(0.504835\pi\)
\(108\) 0 0
\(109\) 15.9320 1.52600 0.763002 0.646396i \(-0.223724\pi\)
0.763002 + 0.646396i \(0.223724\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 6.51678 0.613047 0.306524 0.951863i \(-0.400834\pi\)
0.306524 + 0.951863i \(0.400834\pi\)
\(114\) 0 0
\(115\) 8.90645 0.830531
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −6.93196 −0.635451
\(120\) 0 0
\(121\) −9.17226 −0.833842
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 8.19777 0.727434 0.363717 0.931509i \(-0.381508\pi\)
0.363717 + 0.931509i \(0.381508\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 7.29612 0.637465 0.318733 0.947845i \(-0.396743\pi\)
0.318733 + 0.947845i \(0.396743\pi\)
\(132\) 0 0
\(133\) −0.931956 −0.0808109
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −12.8761 −1.10008 −0.550041 0.835137i \(-0.685388\pi\)
−0.550041 + 0.835137i \(0.685388\pi\)
\(138\) 0 0
\(139\) −5.40776 −0.458680 −0.229340 0.973346i \(-0.573657\pi\)
−0.229340 + 0.973346i \(0.573657\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −7.46838 −0.624537
\(144\) 0 0
\(145\) −7.17226 −0.595624
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −2.88356 −0.236230 −0.118115 0.993000i \(-0.537685\pi\)
−0.118115 + 0.993000i \(0.537685\pi\)
\(150\) 0 0
\(151\) 10.6481 0.866527 0.433263 0.901267i \(-0.357362\pi\)
0.433263 + 0.901267i \(0.357362\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 4.64806 0.373341
\(156\) 0 0
\(157\) 16.2839 1.29960 0.649798 0.760107i \(-0.274853\pi\)
0.649798 + 0.760107i \(0.274853\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −12.8081 −1.00942
\(162\) 0 0
\(163\) −14.1164 −1.10569 −0.552843 0.833286i \(-0.686457\pi\)
−0.552843 + 0.833286i \(0.686457\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 18.6029 1.43954 0.719768 0.694214i \(-0.244248\pi\)
0.719768 + 0.694214i \(0.244248\pi\)
\(168\) 0 0
\(169\) 17.5168 1.34744
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 24.8007 1.88556 0.942780 0.333415i \(-0.108201\pi\)
0.942780 + 0.333415i \(0.108201\pi\)
\(174\) 0 0
\(175\) −1.43807 −0.108708
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 15.8687 1.18608 0.593042 0.805172i \(-0.297927\pi\)
0.593042 + 0.805172i \(0.297927\pi\)
\(180\) 0 0
\(181\) 11.5168 0.856036 0.428018 0.903770i \(-0.359212\pi\)
0.428018 + 0.903770i \(0.359212\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1.35194 0.0993965
\(186\) 0 0
\(187\) 6.51678 0.476554
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −0.228078 −0.0165031 −0.00825157 0.999966i \(-0.502627\pi\)
−0.00825157 + 0.999966i \(0.502627\pi\)
\(192\) 0 0
\(193\) 25.8687 1.86207 0.931036 0.364928i \(-0.118907\pi\)
0.931036 + 0.364928i \(0.118907\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −0.419983 −0.0299225 −0.0149613 0.999888i \(-0.504762\pi\)
−0.0149613 + 0.999888i \(0.504762\pi\)
\(198\) 0 0
\(199\) −12.0410 −0.853562 −0.426781 0.904355i \(-0.640353\pi\)
−0.426781 + 0.904355i \(0.640353\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 10.3142 0.723915
\(204\) 0 0
\(205\) 0.351939 0.0245805
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0.876139 0.0606038
\(210\) 0 0
\(211\) −6.99258 −0.481389 −0.240695 0.970601i \(-0.577375\pi\)
−0.240695 + 0.970601i \(0.577375\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −4.82032 −0.328743
\(216\) 0 0
\(217\) −6.68423 −0.453755
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −26.6284 −1.79122
\(222\) 0 0
\(223\) 14.0861 0.943277 0.471639 0.881792i \(-0.343663\pi\)
0.471639 + 0.881792i \(0.343663\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 23.4487 1.55635 0.778174 0.628049i \(-0.216146\pi\)
0.778174 + 0.628049i \(0.216146\pi\)
\(228\) 0 0
\(229\) −12.8129 −0.846700 −0.423350 0.905966i \(-0.639146\pi\)
−0.423350 + 0.905966i \(0.639146\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −28.7449 −1.88314 −0.941569 0.336820i \(-0.890649\pi\)
−0.941569 + 0.336820i \(0.890649\pi\)
\(234\) 0 0
\(235\) 9.49389 0.619313
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0.643253 0.0416086 0.0208043 0.999784i \(-0.493377\pi\)
0.0208043 + 0.999784i \(0.493377\pi\)
\(240\) 0 0
\(241\) −20.8687 −1.34427 −0.672136 0.740428i \(-0.734623\pi\)
−0.672136 + 0.740428i \(0.734623\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −4.93196 −0.315091
\(246\) 0 0
\(247\) −3.58002 −0.227791
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 17.8687 1.12786 0.563932 0.825821i \(-0.309288\pi\)
0.563932 + 0.825821i \(0.309288\pi\)
\(252\) 0 0
\(253\) 12.0410 0.757010
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 11.4078 0.711596 0.355798 0.934563i \(-0.384209\pi\)
0.355798 + 0.934563i \(0.384209\pi\)
\(258\) 0 0
\(259\) −1.94418 −0.120806
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −0.475800 −0.0293391 −0.0146696 0.999892i \(-0.504670\pi\)
−0.0146696 + 0.999892i \(0.504670\pi\)
\(264\) 0 0
\(265\) −8.17226 −0.502018
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −7.57260 −0.461709 −0.230855 0.972988i \(-0.574152\pi\)
−0.230855 + 0.972988i \(0.574152\pi\)
\(270\) 0 0
\(271\) 19.6965 1.19647 0.598237 0.801319i \(-0.295868\pi\)
0.598237 + 0.801319i \(0.295868\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.35194 0.0815250
\(276\) 0 0
\(277\) −21.5094 −1.29237 −0.646186 0.763180i \(-0.723637\pi\)
−0.646186 + 0.763180i \(0.723637\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −10.1648 −0.606384 −0.303192 0.952930i \(-0.598052\pi\)
−0.303192 + 0.952930i \(0.598052\pi\)
\(282\) 0 0
\(283\) 22.4865 1.33668 0.668341 0.743855i \(-0.267005\pi\)
0.668341 + 0.743855i \(0.267005\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −0.506113 −0.0298749
\(288\) 0 0
\(289\) 6.23550 0.366794
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −5.99519 −0.350243 −0.175121 0.984547i \(-0.556032\pi\)
−0.175121 + 0.984547i \(0.556032\pi\)
\(294\) 0 0
\(295\) −1.46838 −0.0854925
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −49.2010 −2.84537
\(300\) 0 0
\(301\) 6.93196 0.399551
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 6.69646 0.383438
\(306\) 0 0
\(307\) 23.9549 1.36718 0.683588 0.729868i \(-0.260419\pi\)
0.683588 + 0.729868i \(0.260419\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −27.5094 −1.55991 −0.779956 0.625834i \(-0.784759\pi\)
−0.779956 + 0.625834i \(0.784759\pi\)
\(312\) 0 0
\(313\) 3.00742 0.169989 0.0849947 0.996381i \(-0.472913\pi\)
0.0849947 + 0.996381i \(0.472913\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 10.4003 0.584141 0.292071 0.956397i \(-0.405656\pi\)
0.292071 + 0.956397i \(0.405656\pi\)
\(318\) 0 0
\(319\) −9.69646 −0.542898
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 3.12386 0.173816
\(324\) 0 0
\(325\) −5.52420 −0.306427
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −13.6529 −0.752707
\(330\) 0 0
\(331\) 9.23550 0.507629 0.253814 0.967253i \(-0.418315\pi\)
0.253814 + 0.967253i \(0.418315\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −12.4307 −0.679159
\(336\) 0 0
\(337\) 34.7497 1.89293 0.946467 0.322799i \(-0.104624\pi\)
0.946467 + 0.322799i \(0.104624\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 6.28390 0.340292
\(342\) 0 0
\(343\) 17.1590 0.926498
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −21.6210 −1.16068 −0.580338 0.814376i \(-0.697080\pi\)
−0.580338 + 0.814376i \(0.697080\pi\)
\(348\) 0 0
\(349\) 7.23289 0.387167 0.193584 0.981084i \(-0.437989\pi\)
0.193584 + 0.981084i \(0.437989\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −23.2813 −1.23914 −0.619569 0.784942i \(-0.712693\pi\)
−0.619569 + 0.784942i \(0.712693\pi\)
\(354\) 0 0
\(355\) −2.22808 −0.118254
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 31.9655 1.68708 0.843538 0.537070i \(-0.180469\pi\)
0.843538 + 0.537070i \(0.180469\pi\)
\(360\) 0 0
\(361\) −18.5800 −0.977896
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −4.34452 −0.227403
\(366\) 0 0
\(367\) −15.5242 −0.810357 −0.405178 0.914238i \(-0.632791\pi\)
−0.405178 + 0.914238i \(0.632791\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 11.7523 0.610148
\(372\) 0 0
\(373\) 31.3323 1.62232 0.811162 0.584821i \(-0.198835\pi\)
0.811162 + 0.584821i \(0.198835\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 39.6210 2.04059
\(378\) 0 0
\(379\) −22.0000 −1.13006 −0.565032 0.825069i \(-0.691136\pi\)
−0.565032 + 0.825069i \(0.691136\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −29.2765 −1.49596 −0.747979 0.663722i \(-0.768976\pi\)
−0.747979 + 0.663722i \(0.768976\pi\)
\(384\) 0 0
\(385\) −1.94418 −0.0990847
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −2.00742 −0.101780 −0.0508901 0.998704i \(-0.516206\pi\)
−0.0508901 + 0.998704i \(0.516206\pi\)
\(390\) 0 0
\(391\) 42.9320 2.17116
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 13.0484 0.656536
\(396\) 0 0
\(397\) 16.9368 0.850032 0.425016 0.905186i \(-0.360268\pi\)
0.425016 + 0.905186i \(0.360268\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 21.8129 1.08928 0.544642 0.838669i \(-0.316665\pi\)
0.544642 + 0.838669i \(0.316665\pi\)
\(402\) 0 0
\(403\) −25.6768 −1.27905
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.82774 0.0905977
\(408\) 0 0
\(409\) −14.8007 −0.731846 −0.365923 0.930645i \(-0.619247\pi\)
−0.365923 + 0.930645i \(0.619247\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 2.11164 0.103907
\(414\) 0 0
\(415\) 5.26581 0.258488
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 12.2887 0.600342 0.300171 0.953885i \(-0.402956\pi\)
0.300171 + 0.953885i \(0.402956\pi\)
\(420\) 0 0
\(421\) −13.3929 −0.652731 −0.326365 0.945244i \(-0.605824\pi\)
−0.326365 + 0.945244i \(0.605824\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 4.82032 0.233820
\(426\) 0 0
\(427\) −9.62997 −0.466027
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −12.0968 −0.582682 −0.291341 0.956619i \(-0.594101\pi\)
−0.291341 + 0.956619i \(0.594101\pi\)
\(432\) 0 0
\(433\) 21.1648 1.01712 0.508559 0.861027i \(-0.330178\pi\)
0.508559 + 0.861027i \(0.330178\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 5.77192 0.276108
\(438\) 0 0
\(439\) 1.48322 0.0707902 0.0353951 0.999373i \(-0.488731\pi\)
0.0353951 + 0.999373i \(0.488731\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 3.55451 0.168880 0.0844400 0.996429i \(-0.473090\pi\)
0.0844400 + 0.996429i \(0.473090\pi\)
\(444\) 0 0
\(445\) −11.0000 −0.521450
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 40.3659 1.90498 0.952491 0.304566i \(-0.0985114\pi\)
0.952491 + 0.304566i \(0.0985114\pi\)
\(450\) 0 0
\(451\) 0.475800 0.0224046
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 7.94418 0.372429
\(456\) 0 0
\(457\) 28.4003 1.32851 0.664256 0.747505i \(-0.268749\pi\)
0.664256 + 0.747505i \(0.268749\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 19.7497 0.919834 0.459917 0.887962i \(-0.347879\pi\)
0.459917 + 0.887962i \(0.347879\pi\)
\(462\) 0 0
\(463\) −0.177068 −0.00822905 −0.00411452 0.999992i \(-0.501310\pi\)
−0.00411452 + 0.999992i \(0.501310\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −21.5094 −0.995335 −0.497667 0.867368i \(-0.665810\pi\)
−0.497667 + 0.867368i \(0.665810\pi\)
\(468\) 0 0
\(469\) 17.8761 0.825443
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −6.51678 −0.299642
\(474\) 0 0
\(475\) 0.648061 0.0297351
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −1.31096 −0.0598992 −0.0299496 0.999551i \(-0.509535\pi\)
−0.0299496 + 0.999551i \(0.509535\pi\)
\(480\) 0 0
\(481\) −7.46838 −0.340529
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 17.5800 0.798267
\(486\) 0 0
\(487\) −10.4152 −0.471957 −0.235978 0.971758i \(-0.575829\pi\)
−0.235978 + 0.971758i \(0.575829\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −0.187097 −0.00844358 −0.00422179 0.999991i \(-0.501344\pi\)
−0.00422179 + 0.999991i \(0.501344\pi\)
\(492\) 0 0
\(493\) −34.5726 −1.55707
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 3.20413 0.143725
\(498\) 0 0
\(499\) 33.7981 1.51301 0.756505 0.653988i \(-0.226905\pi\)
0.756505 + 0.653988i \(0.226905\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −20.9623 −0.934661 −0.467331 0.884083i \(-0.654784\pi\)
−0.467331 + 0.884083i \(0.654784\pi\)
\(504\) 0 0
\(505\) 2.87614 0.127986
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −24.7374 −1.09647 −0.548234 0.836325i \(-0.684700\pi\)
−0.548234 + 0.836325i \(0.684700\pi\)
\(510\) 0 0
\(511\) 6.24772 0.276383
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 15.8687 0.699259
\(516\) 0 0
\(517\) 12.8352 0.564490
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −7.28390 −0.319113 −0.159557 0.987189i \(-0.551006\pi\)
−0.159557 + 0.987189i \(0.551006\pi\)
\(522\) 0 0
\(523\) −12.0255 −0.525839 −0.262919 0.964818i \(-0.584685\pi\)
−0.262919 + 0.964818i \(0.584685\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 22.4051 0.975983
\(528\) 0 0
\(529\) 56.3249 2.44891
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −1.94418 −0.0842119
\(534\) 0 0
\(535\) −0.314208 −0.0135844
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −6.66771 −0.287198
\(540\) 0 0
\(541\) −23.6890 −1.01847 −0.509236 0.860627i \(-0.670072\pi\)
−0.509236 + 0.860627i \(0.670072\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 15.9320 0.682450
\(546\) 0 0
\(547\) −15.5497 −0.664857 −0.332429 0.943128i \(-0.607868\pi\)
−0.332429 + 0.943128i \(0.607868\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −4.64806 −0.198014
\(552\) 0 0
\(553\) −18.7645 −0.797948
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 12.2477 0.518953 0.259476 0.965749i \(-0.416450\pi\)
0.259476 + 0.965749i \(0.416450\pi\)
\(558\) 0 0
\(559\) 26.6284 1.12626
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −22.1978 −0.935524 −0.467762 0.883854i \(-0.654940\pi\)
−0.467762 + 0.883854i \(0.654940\pi\)
\(564\) 0 0
\(565\) 6.51678 0.274163
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −20.8155 −0.872632 −0.436316 0.899794i \(-0.643717\pi\)
−0.436316 + 0.899794i \(0.643717\pi\)
\(570\) 0 0
\(571\) 45.6014 1.90836 0.954179 0.299238i \(-0.0967323\pi\)
0.954179 + 0.299238i \(0.0967323\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 8.90645 0.371425
\(576\) 0 0
\(577\) −0.172260 −0.00717129 −0.00358565 0.999994i \(-0.501141\pi\)
−0.00358565 + 0.999994i \(0.501141\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −7.57260 −0.314164
\(582\) 0 0
\(583\) −11.0484 −0.457578
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 12.4503 0.513879 0.256939 0.966428i \(-0.417286\pi\)
0.256939 + 0.966428i \(0.417286\pi\)
\(588\) 0 0
\(589\) 3.01223 0.124117
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 13.2403 0.543714 0.271857 0.962338i \(-0.412362\pi\)
0.271857 + 0.962338i \(0.412362\pi\)
\(594\) 0 0
\(595\) −6.93196 −0.284183
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −45.2813 −1.85014 −0.925072 0.379793i \(-0.875995\pi\)
−0.925072 + 0.379793i \(0.875995\pi\)
\(600\) 0 0
\(601\) −30.1116 −1.22828 −0.614140 0.789197i \(-0.710497\pi\)
−0.614140 + 0.789197i \(0.710497\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −9.17226 −0.372905
\(606\) 0 0
\(607\) 28.4307 1.15396 0.576982 0.816757i \(-0.304230\pi\)
0.576982 + 0.816757i \(0.304230\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −52.4461 −2.12174
\(612\) 0 0
\(613\) 3.06804 0.123917 0.0619586 0.998079i \(-0.480265\pi\)
0.0619586 + 0.998079i \(0.480265\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1.48322 0.0597121 0.0298561 0.999554i \(-0.490495\pi\)
0.0298561 + 0.999554i \(0.490495\pi\)
\(618\) 0 0
\(619\) 1.10422 0.0443822 0.0221911 0.999754i \(-0.492936\pi\)
0.0221911 + 0.999754i \(0.492936\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 15.8188 0.633765
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 6.51678 0.259841
\(630\) 0 0
\(631\) 8.07546 0.321479 0.160740 0.986997i \(-0.448612\pi\)
0.160740 + 0.986997i \(0.448612\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 8.19777 0.325318
\(636\) 0 0
\(637\) 27.2451 1.07949
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0.539036 0.0212907 0.0106453 0.999943i \(-0.496611\pi\)
0.0106453 + 0.999943i \(0.496611\pi\)
\(642\) 0 0
\(643\) −17.0229 −0.671317 −0.335659 0.941984i \(-0.608959\pi\)
−0.335659 + 0.941984i \(0.608959\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 45.1952 1.77680 0.888402 0.459065i \(-0.151816\pi\)
0.888402 + 0.459065i \(0.151816\pi\)
\(648\) 0 0
\(649\) −1.98516 −0.0779245
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −17.2403 −0.674665 −0.337333 0.941386i \(-0.609525\pi\)
−0.337333 + 0.941386i \(0.609525\pi\)
\(654\) 0 0
\(655\) 7.29612 0.285083
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −10.5168 −0.409676 −0.204838 0.978796i \(-0.565667\pi\)
−0.204838 + 0.978796i \(0.565667\pi\)
\(660\) 0 0
\(661\) −4.47099 −0.173901 −0.0869507 0.996213i \(-0.527712\pi\)
−0.0869507 + 0.996213i \(0.527712\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −0.931956 −0.0361397
\(666\) 0 0
\(667\) −63.8794 −2.47342
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 9.05321 0.349495
\(672\) 0 0
\(673\) 4.87133 0.187776 0.0938880 0.995583i \(-0.470070\pi\)
0.0938880 + 0.995583i \(0.470070\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 13.7113 0.526968 0.263484 0.964664i \(-0.415128\pi\)
0.263484 + 0.964664i \(0.415128\pi\)
\(678\) 0 0
\(679\) −25.2813 −0.970207
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −31.8687 −1.21942 −0.609711 0.792624i \(-0.708715\pi\)
−0.609711 + 0.792624i \(0.708715\pi\)
\(684\) 0 0
\(685\) −12.8761 −0.491972
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 45.1452 1.71990
\(690\) 0 0
\(691\) −32.0968 −1.22102 −0.610510 0.792009i \(-0.709035\pi\)
−0.610510 + 0.792009i \(0.709035\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −5.40776 −0.205128
\(696\) 0 0
\(697\) 1.69646 0.0642580
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 11.5268 0.435362 0.217681 0.976020i \(-0.430151\pi\)
0.217681 + 0.976020i \(0.430151\pi\)
\(702\) 0 0
\(703\) 0.876139 0.0330442
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −4.13609 −0.155554
\(708\) 0 0
\(709\) −25.2691 −0.948999 −0.474500 0.880256i \(-0.657371\pi\)
−0.474500 + 0.880256i \(0.657371\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 41.3977 1.55036
\(714\) 0 0
\(715\) −7.46838 −0.279302
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −20.6284 −0.769310 −0.384655 0.923060i \(-0.625680\pi\)
−0.384655 + 0.923060i \(0.625680\pi\)
\(720\) 0 0
\(721\) −22.8203 −0.849873
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −7.17226 −0.266371
\(726\) 0 0
\(727\) −23.9958 −0.889956 −0.444978 0.895541i \(-0.646789\pi\)
−0.444978 + 0.895541i \(0.646789\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −23.2355 −0.859396
\(732\) 0 0
\(733\) −9.28128 −0.342812 −0.171406 0.985200i \(-0.554831\pi\)
−0.171406 + 0.985200i \(0.554831\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −16.8055 −0.619038
\(738\) 0 0
\(739\) 31.3323 1.15258 0.576289 0.817246i \(-0.304500\pi\)
0.576289 + 0.817246i \(0.304500\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −25.8432 −0.948096 −0.474048 0.880499i \(-0.657208\pi\)
−0.474048 + 0.880499i \(0.657208\pi\)
\(744\) 0 0
\(745\) −2.88356 −0.105645
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0.451853 0.0165104
\(750\) 0 0
\(751\) −3.17968 −0.116028 −0.0580141 0.998316i \(-0.518477\pi\)
−0.0580141 + 0.998316i \(0.518477\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 10.6481 0.387523
\(756\) 0 0
\(757\) 45.0288 1.63660 0.818299 0.574793i \(-0.194917\pi\)
0.818299 + 0.574793i \(0.194917\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 29.0213 1.05202 0.526011 0.850478i \(-0.323687\pi\)
0.526011 + 0.850478i \(0.323687\pi\)
\(762\) 0 0
\(763\) −22.9113 −0.829443
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 8.11164 0.292894
\(768\) 0 0
\(769\) 13.6136 0.490918 0.245459 0.969407i \(-0.421061\pi\)
0.245459 + 0.969407i \(0.421061\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −17.7523 −0.638505 −0.319253 0.947670i \(-0.603432\pi\)
−0.319253 + 0.947670i \(0.603432\pi\)
\(774\) 0 0
\(775\) 4.64806 0.166963
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0.228078 0.00817174
\(780\) 0 0
\(781\) −3.01223 −0.107786
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 16.2839 0.581197
\(786\) 0 0
\(787\) −55.8687 −1.99150 −0.995752 0.0920715i \(-0.970651\pi\)
−0.995752 + 0.0920715i \(0.970651\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −9.37158 −0.333215
\(792\) 0 0
\(793\) −36.9926 −1.31365
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 41.5700 1.47248 0.736242 0.676718i \(-0.236598\pi\)
0.736242 + 0.676718i \(0.236598\pi\)
\(798\) 0 0
\(799\) 45.7636 1.61900
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −5.87353 −0.207272
\(804\) 0 0
\(805\) −12.8081 −0.451426
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 17.6917 0.622005 0.311003 0.950409i \(-0.399335\pi\)
0.311003 + 0.950409i \(0.399335\pi\)
\(810\) 0 0
\(811\) −13.5438 −0.475589 −0.237794 0.971316i \(-0.576424\pi\)
−0.237794 + 0.971316i \(0.576424\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −14.1164 −0.494477
\(816\) 0 0
\(817\) −3.12386 −0.109290
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −1.53643 −0.0536216 −0.0268108 0.999641i \(-0.508535\pi\)
−0.0268108 + 0.999641i \(0.508535\pi\)
\(822\) 0 0
\(823\) 8.86547 0.309031 0.154515 0.987990i \(-0.450618\pi\)
0.154515 + 0.987990i \(0.450618\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 14.4307 0.501803 0.250901 0.968013i \(-0.419273\pi\)
0.250901 + 0.968013i \(0.419273\pi\)
\(828\) 0 0
\(829\) −3.30354 −0.114737 −0.0573683 0.998353i \(-0.518271\pi\)
−0.0573683 + 0.998353i \(0.518271\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −23.7736 −0.823707
\(834\) 0 0
\(835\) 18.6029 0.643780
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −0.0706544 −0.00243926 −0.00121963 0.999999i \(-0.500388\pi\)
−0.00121963 + 0.999999i \(0.500388\pi\)
\(840\) 0 0
\(841\) 22.4413 0.773839
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 17.5168 0.602596
\(846\) 0 0
\(847\) 13.1903 0.453226
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 12.0410 0.412760
\(852\) 0 0
\(853\) 15.2403 0.521818 0.260909 0.965363i \(-0.415978\pi\)
0.260909 + 0.965363i \(0.415978\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 45.1404 1.54197 0.770983 0.636856i \(-0.219765\pi\)
0.770983 + 0.636856i \(0.219765\pi\)
\(858\) 0 0
\(859\) −51.0288 −1.74108 −0.870539 0.492099i \(-0.836230\pi\)
−0.870539 + 0.492099i \(0.836230\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 12.6784 0.431577 0.215788 0.976440i \(-0.430768\pi\)
0.215788 + 0.976440i \(0.430768\pi\)
\(864\) 0 0
\(865\) 24.8007 0.843248
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 17.6406 0.598418
\(870\) 0 0
\(871\) 68.6694 2.32677
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −1.43807 −0.0486156
\(876\) 0 0
\(877\) −32.3493 −1.09236 −0.546180 0.837668i \(-0.683918\pi\)
−0.546180 + 0.837668i \(0.683918\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −40.6816 −1.37060 −0.685299 0.728261i \(-0.740329\pi\)
−0.685299 + 0.728261i \(0.740329\pi\)
\(882\) 0 0
\(883\) 10.3700 0.348979 0.174490 0.984659i \(-0.444172\pi\)
0.174490 + 0.984659i \(0.444172\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 10.4906 0.352241 0.176121 0.984369i \(-0.443645\pi\)
0.176121 + 0.984369i \(0.443645\pi\)
\(888\) 0 0
\(889\) −11.7890 −0.395389
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 6.15262 0.205889
\(894\) 0 0
\(895\) 15.8687 0.530433
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −33.3371 −1.11185
\(900\) 0 0
\(901\) −39.3929 −1.31237
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 11.5168 0.382831
\(906\) 0 0
\(907\) −1.11319 −0.0369630 −0.0184815 0.999829i \(-0.505883\pi\)
−0.0184815 + 0.999829i \(0.505883\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 17.2355 0.571037 0.285519 0.958373i \(-0.407834\pi\)
0.285519 + 0.958373i \(0.407834\pi\)
\(912\) 0 0
\(913\) 7.11905 0.235606
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −10.4923 −0.346487
\(918\) 0 0
\(919\) −28.4413 −0.938193 −0.469096 0.883147i \(-0.655420\pi\)
−0.469096 + 0.883147i \(0.655420\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 12.3083 0.405134
\(924\) 0 0
\(925\) 1.35194 0.0444515
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −58.9219 −1.93317 −0.966583 0.256354i \(-0.917479\pi\)
−0.966583 + 0.256354i \(0.917479\pi\)
\(930\) 0 0
\(931\) −3.19621 −0.104751
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 6.51678 0.213122
\(936\) 0 0
\(937\) −32.0458 −1.04689 −0.523445 0.852059i \(-0.675353\pi\)
−0.523445 + 0.852059i \(0.675353\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 22.3323 0.728012 0.364006 0.931397i \(-0.381409\pi\)
0.364006 + 0.931397i \(0.381409\pi\)
\(942\) 0 0
\(943\) 3.13453 0.102074
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −38.1829 −1.24078 −0.620389 0.784294i \(-0.713025\pi\)
−0.620389 + 0.784294i \(0.713025\pi\)
\(948\) 0 0
\(949\) 24.0000 0.779073
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 14.1771 0.459240 0.229620 0.973280i \(-0.426252\pi\)
0.229620 + 0.973280i \(0.426252\pi\)
\(954\) 0 0
\(955\) −0.228078 −0.00738043
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 18.5168 0.597938
\(960\) 0 0
\(961\) −9.39553 −0.303082
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 25.8687 0.832744
\(966\) 0 0
\(967\) 23.4084 0.752763 0.376382 0.926465i \(-0.377168\pi\)
0.376382 + 0.926465i \(0.377168\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 32.7300 1.05036 0.525178 0.850992i \(-0.323999\pi\)
0.525178 + 0.850992i \(0.323999\pi\)
\(972\) 0 0
\(973\) 7.77673 0.249311
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −29.5604 −0.945720 −0.472860 0.881138i \(-0.656778\pi\)
−0.472860 + 0.881138i \(0.656778\pi\)
\(978\) 0 0
\(979\) −14.8713 −0.475290
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −45.6465 −1.45590 −0.727949 0.685632i \(-0.759526\pi\)
−0.727949 + 0.685632i \(0.759526\pi\)
\(984\) 0 0
\(985\) −0.419983 −0.0133818
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −42.9320 −1.36516
\(990\) 0 0
\(991\) 45.9245 1.45884 0.729421 0.684066i \(-0.239790\pi\)
0.729421 + 0.684066i \(0.239790\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −12.0410 −0.381725
\(996\) 0 0
\(997\) −28.7401 −0.910207 −0.455103 0.890439i \(-0.650398\pi\)
−0.455103 + 0.890439i \(0.650398\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6480.2.a.bx.1.1 3
3.2 odd 2 6480.2.a.bu.1.1 3
4.3 odd 2 3240.2.a.r.1.3 3
9.2 odd 6 2160.2.q.j.1441.3 6
9.4 even 3 720.2.q.j.241.3 6
9.5 odd 6 2160.2.q.j.721.3 6
9.7 even 3 720.2.q.j.481.3 6
12.11 even 2 3240.2.a.q.1.3 3
36.7 odd 6 360.2.q.d.121.1 6
36.11 even 6 1080.2.q.d.361.1 6
36.23 even 6 1080.2.q.d.721.1 6
36.31 odd 6 360.2.q.d.241.1 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
360.2.q.d.121.1 6 36.7 odd 6
360.2.q.d.241.1 yes 6 36.31 odd 6
720.2.q.j.241.3 6 9.4 even 3
720.2.q.j.481.3 6 9.7 even 3
1080.2.q.d.361.1 6 36.11 even 6
1080.2.q.d.721.1 6 36.23 even 6
2160.2.q.j.721.3 6 9.5 odd 6
2160.2.q.j.1441.3 6 9.2 odd 6
3240.2.a.q.1.3 3 12.11 even 2
3240.2.a.r.1.3 3 4.3 odd 2
6480.2.a.bu.1.1 3 3.2 odd 2
6480.2.a.bx.1.1 3 1.1 even 1 trivial