Properties

Label 6480.2.a.br.1.2
Level $6480$
Weight $2$
Character 6480.1
Self dual yes
Analytic conductor $51.743$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6480,2,Mod(1,6480)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6480, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6480.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6480 = 2^{4} \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6480.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(51.7430605098\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 405)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.73205\) of defining polynomial
Character \(\chi\) \(=\) 6480.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{5} +4.73205 q^{7} +5.73205 q^{11} +1.46410 q^{13} -2.73205 q^{17} -4.46410 q^{19} +3.46410 q^{23} +1.00000 q^{25} +3.19615 q^{29} +3.00000 q^{31} +4.73205 q^{35} -2.73205 q^{37} -7.19615 q^{41} -0.196152 q^{43} +8.73205 q^{47} +15.3923 q^{49} +6.73205 q^{53} +5.73205 q^{55} +8.26795 q^{59} +4.00000 q^{61} +1.46410 q^{65} -3.46410 q^{67} +3.73205 q^{71} -7.66025 q^{73} +27.1244 q^{77} -15.4641 q^{79} -2.19615 q^{83} -2.73205 q^{85} +5.19615 q^{89} +6.92820 q^{91} -4.46410 q^{95} -9.66025 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{5} + 6 q^{7} + 8 q^{11} - 4 q^{13} - 2 q^{17} - 2 q^{19} + 2 q^{25} - 4 q^{29} + 6 q^{31} + 6 q^{35} - 2 q^{37} - 4 q^{41} + 10 q^{43} + 14 q^{47} + 10 q^{49} + 10 q^{53} + 8 q^{55} + 20 q^{59}+ \cdots - 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 4.73205 1.78855 0.894274 0.447521i \(-0.147693\pi\)
0.894274 + 0.447521i \(0.147693\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 5.73205 1.72828 0.864139 0.503253i \(-0.167864\pi\)
0.864139 + 0.503253i \(0.167864\pi\)
\(12\) 0 0
\(13\) 1.46410 0.406069 0.203034 0.979172i \(-0.434920\pi\)
0.203034 + 0.979172i \(0.434920\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2.73205 −0.662620 −0.331310 0.943522i \(-0.607491\pi\)
−0.331310 + 0.943522i \(0.607491\pi\)
\(18\) 0 0
\(19\) −4.46410 −1.02414 −0.512068 0.858945i \(-0.671120\pi\)
−0.512068 + 0.858945i \(0.671120\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.46410 0.722315 0.361158 0.932505i \(-0.382382\pi\)
0.361158 + 0.932505i \(0.382382\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.19615 0.593511 0.296755 0.954954i \(-0.404095\pi\)
0.296755 + 0.954954i \(0.404095\pi\)
\(30\) 0 0
\(31\) 3.00000 0.538816 0.269408 0.963026i \(-0.413172\pi\)
0.269408 + 0.963026i \(0.413172\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 4.73205 0.799863
\(36\) 0 0
\(37\) −2.73205 −0.449146 −0.224573 0.974457i \(-0.572099\pi\)
−0.224573 + 0.974457i \(0.572099\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −7.19615 −1.12385 −0.561925 0.827188i \(-0.689939\pi\)
−0.561925 + 0.827188i \(0.689939\pi\)
\(42\) 0 0
\(43\) −0.196152 −0.0299130 −0.0149565 0.999888i \(-0.504761\pi\)
−0.0149565 + 0.999888i \(0.504761\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 8.73205 1.27370 0.636850 0.770988i \(-0.280237\pi\)
0.636850 + 0.770988i \(0.280237\pi\)
\(48\) 0 0
\(49\) 15.3923 2.19890
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 6.73205 0.924718 0.462359 0.886693i \(-0.347003\pi\)
0.462359 + 0.886693i \(0.347003\pi\)
\(54\) 0 0
\(55\) 5.73205 0.772910
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 8.26795 1.07640 0.538198 0.842819i \(-0.319105\pi\)
0.538198 + 0.842819i \(0.319105\pi\)
\(60\) 0 0
\(61\) 4.00000 0.512148 0.256074 0.966657i \(-0.417571\pi\)
0.256074 + 0.966657i \(0.417571\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.46410 0.181599
\(66\) 0 0
\(67\) −3.46410 −0.423207 −0.211604 0.977356i \(-0.567869\pi\)
−0.211604 + 0.977356i \(0.567869\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 3.73205 0.442913 0.221456 0.975170i \(-0.428919\pi\)
0.221456 + 0.975170i \(0.428919\pi\)
\(72\) 0 0
\(73\) −7.66025 −0.896565 −0.448282 0.893892i \(-0.647964\pi\)
−0.448282 + 0.893892i \(0.647964\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 27.1244 3.09111
\(78\) 0 0
\(79\) −15.4641 −1.73985 −0.869924 0.493186i \(-0.835832\pi\)
−0.869924 + 0.493186i \(0.835832\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −2.19615 −0.241059 −0.120530 0.992710i \(-0.538459\pi\)
−0.120530 + 0.992710i \(0.538459\pi\)
\(84\) 0 0
\(85\) −2.73205 −0.296333
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 5.19615 0.550791 0.275396 0.961331i \(-0.411191\pi\)
0.275396 + 0.961331i \(0.411191\pi\)
\(90\) 0 0
\(91\) 6.92820 0.726273
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −4.46410 −0.458007
\(96\) 0 0
\(97\) −9.66025 −0.980850 −0.490425 0.871483i \(-0.663158\pi\)
−0.490425 + 0.871483i \(0.663158\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −2.66025 −0.264705 −0.132353 0.991203i \(-0.542253\pi\)
−0.132353 + 0.991203i \(0.542253\pi\)
\(102\) 0 0
\(103\) 0.535898 0.0528036 0.0264018 0.999651i \(-0.491595\pi\)
0.0264018 + 0.999651i \(0.491595\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 8.53590 0.825196 0.412598 0.910913i \(-0.364621\pi\)
0.412598 + 0.910913i \(0.364621\pi\)
\(108\) 0 0
\(109\) −6.07180 −0.581573 −0.290786 0.956788i \(-0.593917\pi\)
−0.290786 + 0.956788i \(0.593917\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −19.1244 −1.79907 −0.899534 0.436851i \(-0.856094\pi\)
−0.899534 + 0.436851i \(0.856094\pi\)
\(114\) 0 0
\(115\) 3.46410 0.323029
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −12.9282 −1.18513
\(120\) 0 0
\(121\) 21.8564 1.98695
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 14.5885 1.29452 0.647258 0.762271i \(-0.275916\pi\)
0.647258 + 0.762271i \(0.275916\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −15.5885 −1.36197 −0.680985 0.732297i \(-0.738448\pi\)
−0.680985 + 0.732297i \(0.738448\pi\)
\(132\) 0 0
\(133\) −21.1244 −1.83171
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2.53590 0.216656 0.108328 0.994115i \(-0.465450\pi\)
0.108328 + 0.994115i \(0.465450\pi\)
\(138\) 0 0
\(139\) −0.607695 −0.0515440 −0.0257720 0.999668i \(-0.508204\pi\)
−0.0257720 + 0.999668i \(0.508204\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 8.39230 0.701800
\(144\) 0 0
\(145\) 3.19615 0.265426
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −8.00000 −0.655386 −0.327693 0.944784i \(-0.606271\pi\)
−0.327693 + 0.944784i \(0.606271\pi\)
\(150\) 0 0
\(151\) −5.39230 −0.438820 −0.219410 0.975633i \(-0.570413\pi\)
−0.219410 + 0.975633i \(0.570413\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 3.00000 0.240966
\(156\) 0 0
\(157\) −19.1244 −1.52629 −0.763145 0.646227i \(-0.776346\pi\)
−0.763145 + 0.646227i \(0.776346\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 16.3923 1.29189
\(162\) 0 0
\(163\) −12.7321 −0.997251 −0.498626 0.866817i \(-0.666162\pi\)
−0.498626 + 0.866817i \(0.666162\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 17.6603 1.36659 0.683296 0.730142i \(-0.260546\pi\)
0.683296 + 0.730142i \(0.260546\pi\)
\(168\) 0 0
\(169\) −10.8564 −0.835108
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 8.53590 0.648972 0.324486 0.945890i \(-0.394809\pi\)
0.324486 + 0.945890i \(0.394809\pi\)
\(174\) 0 0
\(175\) 4.73205 0.357709
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −8.12436 −0.607243 −0.303621 0.952793i \(-0.598196\pi\)
−0.303621 + 0.952793i \(0.598196\pi\)
\(180\) 0 0
\(181\) 26.4641 1.96706 0.983531 0.180742i \(-0.0578498\pi\)
0.983531 + 0.180742i \(0.0578498\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −2.73205 −0.200864
\(186\) 0 0
\(187\) −15.6603 −1.14519
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 8.12436 0.587858 0.293929 0.955827i \(-0.405037\pi\)
0.293929 + 0.955827i \(0.405037\pi\)
\(192\) 0 0
\(193\) −5.26795 −0.379195 −0.189598 0.981862i \(-0.560718\pi\)
−0.189598 + 0.981862i \(0.560718\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −13.8564 −0.987228 −0.493614 0.869681i \(-0.664324\pi\)
−0.493614 + 0.869681i \(0.664324\pi\)
\(198\) 0 0
\(199\) 2.00000 0.141776 0.0708881 0.997484i \(-0.477417\pi\)
0.0708881 + 0.997484i \(0.477417\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 15.1244 1.06152
\(204\) 0 0
\(205\) −7.19615 −0.502601
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −25.5885 −1.76999
\(210\) 0 0
\(211\) 8.85641 0.609700 0.304850 0.952400i \(-0.401394\pi\)
0.304850 + 0.952400i \(0.401394\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −0.196152 −0.0133775
\(216\) 0 0
\(217\) 14.1962 0.963698
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −4.00000 −0.269069
\(222\) 0 0
\(223\) −16.7846 −1.12398 −0.561990 0.827144i \(-0.689964\pi\)
−0.561990 + 0.827144i \(0.689964\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 18.0526 1.19819 0.599095 0.800678i \(-0.295527\pi\)
0.599095 + 0.800678i \(0.295527\pi\)
\(228\) 0 0
\(229\) −12.0000 −0.792982 −0.396491 0.918039i \(-0.629772\pi\)
−0.396491 + 0.918039i \(0.629772\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −28.0526 −1.83778 −0.918892 0.394509i \(-0.870915\pi\)
−0.918892 + 0.394509i \(0.870915\pi\)
\(234\) 0 0
\(235\) 8.73205 0.569616
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0.535898 0.0346644 0.0173322 0.999850i \(-0.494483\pi\)
0.0173322 + 0.999850i \(0.494483\pi\)
\(240\) 0 0
\(241\) −16.3205 −1.05130 −0.525648 0.850702i \(-0.676177\pi\)
−0.525648 + 0.850702i \(0.676177\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 15.3923 0.983378
\(246\) 0 0
\(247\) −6.53590 −0.415869
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 10.3923 0.655956 0.327978 0.944685i \(-0.393633\pi\)
0.327978 + 0.944685i \(0.393633\pi\)
\(252\) 0 0
\(253\) 19.8564 1.24836
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 10.3923 0.648254 0.324127 0.946014i \(-0.394929\pi\)
0.324127 + 0.946014i \(0.394929\pi\)
\(258\) 0 0
\(259\) −12.9282 −0.803319
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −21.3205 −1.31468 −0.657339 0.753595i \(-0.728318\pi\)
−0.657339 + 0.753595i \(0.728318\pi\)
\(264\) 0 0
\(265\) 6.73205 0.413547
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 10.6603 0.649967 0.324984 0.945720i \(-0.394641\pi\)
0.324984 + 0.945720i \(0.394641\pi\)
\(270\) 0 0
\(271\) 2.92820 0.177876 0.0889378 0.996037i \(-0.471653\pi\)
0.0889378 + 0.996037i \(0.471653\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 5.73205 0.345656
\(276\) 0 0
\(277\) 3.80385 0.228551 0.114276 0.993449i \(-0.463545\pi\)
0.114276 + 0.993449i \(0.463545\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 15.4641 0.922511 0.461255 0.887267i \(-0.347399\pi\)
0.461255 + 0.887267i \(0.347399\pi\)
\(282\) 0 0
\(283\) 29.3205 1.74292 0.871462 0.490464i \(-0.163173\pi\)
0.871462 + 0.490464i \(0.163173\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −34.0526 −2.01006
\(288\) 0 0
\(289\) −9.53590 −0.560935
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 28.7321 1.67854 0.839272 0.543712i \(-0.182981\pi\)
0.839272 + 0.543712i \(0.182981\pi\)
\(294\) 0 0
\(295\) 8.26795 0.481379
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 5.07180 0.293310
\(300\) 0 0
\(301\) −0.928203 −0.0535007
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 4.00000 0.229039
\(306\) 0 0
\(307\) −14.0526 −0.802022 −0.401011 0.916073i \(-0.631341\pi\)
−0.401011 + 0.916073i \(0.631341\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −19.7321 −1.11890 −0.559451 0.828863i \(-0.688988\pi\)
−0.559451 + 0.828863i \(0.688988\pi\)
\(312\) 0 0
\(313\) −9.07180 −0.512768 −0.256384 0.966575i \(-0.582531\pi\)
−0.256384 + 0.966575i \(0.582531\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 6.19615 0.348011 0.174005 0.984745i \(-0.444329\pi\)
0.174005 + 0.984745i \(0.444329\pi\)
\(318\) 0 0
\(319\) 18.3205 1.02575
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 12.1962 0.678612
\(324\) 0 0
\(325\) 1.46410 0.0812137
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 41.3205 2.27807
\(330\) 0 0
\(331\) 0.464102 0.0255093 0.0127547 0.999919i \(-0.495940\pi\)
0.0127547 + 0.999919i \(0.495940\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −3.46410 −0.189264
\(336\) 0 0
\(337\) 27.3205 1.48824 0.744121 0.668044i \(-0.232868\pi\)
0.744121 + 0.668044i \(0.232868\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 17.1962 0.931224
\(342\) 0 0
\(343\) 39.7128 2.14429
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 28.5885 1.53471 0.767354 0.641223i \(-0.221573\pi\)
0.767354 + 0.641223i \(0.221573\pi\)
\(348\) 0 0
\(349\) −18.8564 −1.00936 −0.504680 0.863306i \(-0.668390\pi\)
−0.504680 + 0.863306i \(0.668390\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 25.5167 1.35811 0.679057 0.734085i \(-0.262389\pi\)
0.679057 + 0.734085i \(0.262389\pi\)
\(354\) 0 0
\(355\) 3.73205 0.198077
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 6.12436 0.323231 0.161616 0.986854i \(-0.448330\pi\)
0.161616 + 0.986854i \(0.448330\pi\)
\(360\) 0 0
\(361\) 0.928203 0.0488528
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −7.66025 −0.400956
\(366\) 0 0
\(367\) −31.1769 −1.62742 −0.813711 0.581270i \(-0.802556\pi\)
−0.813711 + 0.581270i \(0.802556\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 31.8564 1.65390
\(372\) 0 0
\(373\) 20.0526 1.03828 0.519141 0.854689i \(-0.326252\pi\)
0.519141 + 0.854689i \(0.326252\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 4.67949 0.241006
\(378\) 0 0
\(379\) −2.39230 −0.122884 −0.0614422 0.998111i \(-0.519570\pi\)
−0.0614422 + 0.998111i \(0.519570\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −2.53590 −0.129578 −0.0647892 0.997899i \(-0.520637\pi\)
−0.0647892 + 0.997899i \(0.520637\pi\)
\(384\) 0 0
\(385\) 27.1244 1.38239
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 27.4641 1.39249 0.696243 0.717807i \(-0.254854\pi\)
0.696243 + 0.717807i \(0.254854\pi\)
\(390\) 0 0
\(391\) −9.46410 −0.478620
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −15.4641 −0.778083
\(396\) 0 0
\(397\) 14.3923 0.722329 0.361165 0.932502i \(-0.382379\pi\)
0.361165 + 0.932502i \(0.382379\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 24.9282 1.24486 0.622428 0.782677i \(-0.286147\pi\)
0.622428 + 0.782677i \(0.286147\pi\)
\(402\) 0 0
\(403\) 4.39230 0.218796
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −15.6603 −0.776250
\(408\) 0 0
\(409\) −17.8564 −0.882942 −0.441471 0.897275i \(-0.645543\pi\)
−0.441471 + 0.897275i \(0.645543\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 39.1244 1.92518
\(414\) 0 0
\(415\) −2.19615 −0.107805
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −20.3923 −0.996229 −0.498115 0.867111i \(-0.665974\pi\)
−0.498115 + 0.867111i \(0.665974\pi\)
\(420\) 0 0
\(421\) 33.7846 1.64656 0.823281 0.567635i \(-0.192141\pi\)
0.823281 + 0.567635i \(0.192141\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −2.73205 −0.132524
\(426\) 0 0
\(427\) 18.9282 0.916000
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 21.3397 1.02790 0.513950 0.857820i \(-0.328182\pi\)
0.513950 + 0.857820i \(0.328182\pi\)
\(432\) 0 0
\(433\) −35.4641 −1.70430 −0.852148 0.523301i \(-0.824700\pi\)
−0.852148 + 0.523301i \(0.824700\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −15.4641 −0.739748
\(438\) 0 0
\(439\) −5.39230 −0.257361 −0.128680 0.991686i \(-0.541074\pi\)
−0.128680 + 0.991686i \(0.541074\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0.339746 0.0161418 0.00807091 0.999967i \(-0.497431\pi\)
0.00807091 + 0.999967i \(0.497431\pi\)
\(444\) 0 0
\(445\) 5.19615 0.246321
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 8.12436 0.383412 0.191706 0.981452i \(-0.438598\pi\)
0.191706 + 0.981452i \(0.438598\pi\)
\(450\) 0 0
\(451\) −41.2487 −1.94233
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 6.92820 0.324799
\(456\) 0 0
\(457\) 2.73205 0.127800 0.0639000 0.997956i \(-0.479646\pi\)
0.0639000 + 0.997956i \(0.479646\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −37.0526 −1.72571 −0.862855 0.505452i \(-0.831326\pi\)
−0.862855 + 0.505452i \(0.831326\pi\)
\(462\) 0 0
\(463\) 10.3923 0.482971 0.241486 0.970404i \(-0.422365\pi\)
0.241486 + 0.970404i \(0.422365\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −37.3731 −1.72942 −0.864710 0.502272i \(-0.832498\pi\)
−0.864710 + 0.502272i \(0.832498\pi\)
\(468\) 0 0
\(469\) −16.3923 −0.756926
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −1.12436 −0.0516979
\(474\) 0 0
\(475\) −4.46410 −0.204827
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 11.8756 0.542612 0.271306 0.962493i \(-0.412544\pi\)
0.271306 + 0.962493i \(0.412544\pi\)
\(480\) 0 0
\(481\) −4.00000 −0.182384
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −9.66025 −0.438650
\(486\) 0 0
\(487\) −24.3923 −1.10532 −0.552660 0.833407i \(-0.686387\pi\)
−0.552660 + 0.833407i \(0.686387\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 13.8756 0.626199 0.313100 0.949720i \(-0.398633\pi\)
0.313100 + 0.949720i \(0.398633\pi\)
\(492\) 0 0
\(493\) −8.73205 −0.393272
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 17.6603 0.792171
\(498\) 0 0
\(499\) −24.3205 −1.08874 −0.544368 0.838847i \(-0.683230\pi\)
−0.544368 + 0.838847i \(0.683230\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 7.32051 0.326405 0.163203 0.986593i \(-0.447818\pi\)
0.163203 + 0.986593i \(0.447818\pi\)
\(504\) 0 0
\(505\) −2.66025 −0.118380
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −6.78461 −0.300723 −0.150361 0.988631i \(-0.548044\pi\)
−0.150361 + 0.988631i \(0.548044\pi\)
\(510\) 0 0
\(511\) −36.2487 −1.60355
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0.535898 0.0236145
\(516\) 0 0
\(517\) 50.0526 2.20131
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 19.4641 0.852738 0.426369 0.904549i \(-0.359793\pi\)
0.426369 + 0.904549i \(0.359793\pi\)
\(522\) 0 0
\(523\) −22.2487 −0.972868 −0.486434 0.873717i \(-0.661703\pi\)
−0.486434 + 0.873717i \(0.661703\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −8.19615 −0.357030
\(528\) 0 0
\(529\) −11.0000 −0.478261
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −10.5359 −0.456360
\(534\) 0 0
\(535\) 8.53590 0.369039
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 88.2295 3.80031
\(540\) 0 0
\(541\) −24.4641 −1.05179 −0.525897 0.850548i \(-0.676270\pi\)
−0.525897 + 0.850548i \(0.676270\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −6.07180 −0.260087
\(546\) 0 0
\(547\) 33.8564 1.44760 0.723798 0.690012i \(-0.242395\pi\)
0.723798 + 0.690012i \(0.242395\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −14.2679 −0.607835
\(552\) 0 0
\(553\) −73.1769 −3.11180
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −2.53590 −0.107449 −0.0537247 0.998556i \(-0.517109\pi\)
−0.0537247 + 0.998556i \(0.517109\pi\)
\(558\) 0 0
\(559\) −0.287187 −0.0121467
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 16.7321 0.705172 0.352586 0.935779i \(-0.385302\pi\)
0.352586 + 0.935779i \(0.385302\pi\)
\(564\) 0 0
\(565\) −19.1244 −0.804568
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −32.9090 −1.37962 −0.689808 0.723993i \(-0.742305\pi\)
−0.689808 + 0.723993i \(0.742305\pi\)
\(570\) 0 0
\(571\) 39.7846 1.66493 0.832467 0.554075i \(-0.186928\pi\)
0.832467 + 0.554075i \(0.186928\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 3.46410 0.144463
\(576\) 0 0
\(577\) 15.2679 0.635613 0.317807 0.948156i \(-0.397054\pi\)
0.317807 + 0.948156i \(0.397054\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −10.3923 −0.431145
\(582\) 0 0
\(583\) 38.5885 1.59817
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 11.6603 0.481270 0.240635 0.970616i \(-0.422644\pi\)
0.240635 + 0.970616i \(0.422644\pi\)
\(588\) 0 0
\(589\) −13.3923 −0.551820
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −0.143594 −0.00589668 −0.00294834 0.999996i \(-0.500938\pi\)
−0.00294834 + 0.999996i \(0.500938\pi\)
\(594\) 0 0
\(595\) −12.9282 −0.530005
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −27.1962 −1.11120 −0.555602 0.831448i \(-0.687512\pi\)
−0.555602 + 0.831448i \(0.687512\pi\)
\(600\) 0 0
\(601\) −31.2487 −1.27466 −0.637331 0.770590i \(-0.719961\pi\)
−0.637331 + 0.770590i \(0.719961\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 21.8564 0.888589
\(606\) 0 0
\(607\) 16.1962 0.657382 0.328691 0.944438i \(-0.393393\pi\)
0.328691 + 0.944438i \(0.393393\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 12.7846 0.517210
\(612\) 0 0
\(613\) 1.46410 0.0591345 0.0295673 0.999563i \(-0.490587\pi\)
0.0295673 + 0.999563i \(0.490587\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −6.92820 −0.278919 −0.139459 0.990228i \(-0.544536\pi\)
−0.139459 + 0.990228i \(0.544536\pi\)
\(618\) 0 0
\(619\) 11.8564 0.476549 0.238275 0.971198i \(-0.423418\pi\)
0.238275 + 0.971198i \(0.423418\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 24.5885 0.985116
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 7.46410 0.297613
\(630\) 0 0
\(631\) 32.7128 1.30228 0.651138 0.758959i \(-0.274292\pi\)
0.651138 + 0.758959i \(0.274292\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 14.5885 0.578925
\(636\) 0 0
\(637\) 22.5359 0.892905
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 9.33975 0.368898 0.184449 0.982842i \(-0.440950\pi\)
0.184449 + 0.982842i \(0.440950\pi\)
\(642\) 0 0
\(643\) −41.6603 −1.64292 −0.821460 0.570266i \(-0.806840\pi\)
−0.821460 + 0.570266i \(0.806840\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −11.4641 −0.450700 −0.225350 0.974278i \(-0.572353\pi\)
−0.225350 + 0.974278i \(0.572353\pi\)
\(648\) 0 0
\(649\) 47.3923 1.86031
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −17.4641 −0.683423 −0.341712 0.939805i \(-0.611007\pi\)
−0.341712 + 0.939805i \(0.611007\pi\)
\(654\) 0 0
\(655\) −15.5885 −0.609091
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 1.46410 0.0570333 0.0285167 0.999593i \(-0.490922\pi\)
0.0285167 + 0.999593i \(0.490922\pi\)
\(660\) 0 0
\(661\) 18.3205 0.712585 0.356293 0.934374i \(-0.384041\pi\)
0.356293 + 0.934374i \(0.384041\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −21.1244 −0.819167
\(666\) 0 0
\(667\) 11.0718 0.428702
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 22.9282 0.885133
\(672\) 0 0
\(673\) −10.3923 −0.400594 −0.200297 0.979735i \(-0.564191\pi\)
−0.200297 + 0.979735i \(0.564191\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −18.0000 −0.691796 −0.345898 0.938272i \(-0.612426\pi\)
−0.345898 + 0.938272i \(0.612426\pi\)
\(678\) 0 0
\(679\) −45.7128 −1.75430
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 19.6077 0.750268 0.375134 0.926971i \(-0.377597\pi\)
0.375134 + 0.926971i \(0.377597\pi\)
\(684\) 0 0
\(685\) 2.53590 0.0968917
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 9.85641 0.375499
\(690\) 0 0
\(691\) 17.7128 0.673827 0.336914 0.941536i \(-0.390617\pi\)
0.336914 + 0.941536i \(0.390617\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −0.607695 −0.0230512
\(696\) 0 0
\(697\) 19.6603 0.744685
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −20.8038 −0.785750 −0.392875 0.919592i \(-0.628520\pi\)
−0.392875 + 0.919592i \(0.628520\pi\)
\(702\) 0 0
\(703\) 12.1962 0.459987
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −12.5885 −0.473438
\(708\) 0 0
\(709\) −22.5359 −0.846353 −0.423177 0.906047i \(-0.639085\pi\)
−0.423177 + 0.906047i \(0.639085\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 10.3923 0.389195
\(714\) 0 0
\(715\) 8.39230 0.313854
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −8.41154 −0.313698 −0.156849 0.987623i \(-0.550134\pi\)
−0.156849 + 0.987623i \(0.550134\pi\)
\(720\) 0 0
\(721\) 2.53590 0.0944418
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 3.19615 0.118702
\(726\) 0 0
\(727\) 8.39230 0.311253 0.155627 0.987816i \(-0.450260\pi\)
0.155627 + 0.987816i \(0.450260\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0.535898 0.0198209
\(732\) 0 0
\(733\) 34.7846 1.28480 0.642399 0.766370i \(-0.277939\pi\)
0.642399 + 0.766370i \(0.277939\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −19.8564 −0.731420
\(738\) 0 0
\(739\) −22.4641 −0.826355 −0.413178 0.910650i \(-0.635581\pi\)
−0.413178 + 0.910650i \(0.635581\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −19.9090 −0.730389 −0.365195 0.930931i \(-0.618998\pi\)
−0.365195 + 0.930931i \(0.618998\pi\)
\(744\) 0 0
\(745\) −8.00000 −0.293097
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 40.3923 1.47590
\(750\) 0 0
\(751\) −48.7846 −1.78018 −0.890088 0.455789i \(-0.849357\pi\)
−0.890088 + 0.455789i \(0.849357\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −5.39230 −0.196246
\(756\) 0 0
\(757\) −9.17691 −0.333541 −0.166770 0.985996i \(-0.553334\pi\)
−0.166770 + 0.985996i \(0.553334\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 23.4449 0.849876 0.424938 0.905223i \(-0.360296\pi\)
0.424938 + 0.905223i \(0.360296\pi\)
\(762\) 0 0
\(763\) −28.7321 −1.04017
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 12.1051 0.437090
\(768\) 0 0
\(769\) −9.53590 −0.343873 −0.171937 0.985108i \(-0.555002\pi\)
−0.171937 + 0.985108i \(0.555002\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 1.51666 0.0545505 0.0272752 0.999628i \(-0.491317\pi\)
0.0272752 + 0.999628i \(0.491317\pi\)
\(774\) 0 0
\(775\) 3.00000 0.107763
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 32.1244 1.15097
\(780\) 0 0
\(781\) 21.3923 0.765477
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −19.1244 −0.682578
\(786\) 0 0
\(787\) 48.0526 1.71289 0.856444 0.516239i \(-0.172668\pi\)
0.856444 + 0.516239i \(0.172668\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −90.4974 −3.21772
\(792\) 0 0
\(793\) 5.85641 0.207967
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −15.6077 −0.552853 −0.276426 0.961035i \(-0.589150\pi\)
−0.276426 + 0.961035i \(0.589150\pi\)
\(798\) 0 0
\(799\) −23.8564 −0.843979
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −43.9090 −1.54951
\(804\) 0 0
\(805\) 16.3923 0.577753
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 45.4449 1.59776 0.798878 0.601493i \(-0.205427\pi\)
0.798878 + 0.601493i \(0.205427\pi\)
\(810\) 0 0
\(811\) 18.4641 0.648362 0.324181 0.945995i \(-0.394911\pi\)
0.324181 + 0.945995i \(0.394911\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −12.7321 −0.445984
\(816\) 0 0
\(817\) 0.875644 0.0306349
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −37.7321 −1.31686 −0.658429 0.752643i \(-0.728779\pi\)
−0.658429 + 0.752643i \(0.728779\pi\)
\(822\) 0 0
\(823\) −3.85641 −0.134426 −0.0672129 0.997739i \(-0.521411\pi\)
−0.0672129 + 0.997739i \(0.521411\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 11.6077 0.403639 0.201820 0.979423i \(-0.435315\pi\)
0.201820 + 0.979423i \(0.435315\pi\)
\(828\) 0 0
\(829\) −23.7846 −0.826074 −0.413037 0.910714i \(-0.635532\pi\)
−0.413037 + 0.910714i \(0.635532\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −42.0526 −1.45703
\(834\) 0 0
\(835\) 17.6603 0.611158
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −33.1962 −1.14606 −0.573029 0.819535i \(-0.694232\pi\)
−0.573029 + 0.819535i \(0.694232\pi\)
\(840\) 0 0
\(841\) −18.7846 −0.647745
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −10.8564 −0.373472
\(846\) 0 0
\(847\) 103.426 3.55375
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −9.46410 −0.324425
\(852\) 0 0
\(853\) 10.4833 0.358943 0.179471 0.983763i \(-0.442561\pi\)
0.179471 + 0.983763i \(0.442561\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 44.4974 1.52000 0.760002 0.649921i \(-0.225198\pi\)
0.760002 + 0.649921i \(0.225198\pi\)
\(858\) 0 0
\(859\) 11.0000 0.375315 0.187658 0.982235i \(-0.439910\pi\)
0.187658 + 0.982235i \(0.439910\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 23.1244 0.787162 0.393581 0.919290i \(-0.371236\pi\)
0.393581 + 0.919290i \(0.371236\pi\)
\(864\) 0 0
\(865\) 8.53590 0.290229
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −88.6410 −3.00694
\(870\) 0 0
\(871\) −5.07180 −0.171851
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 4.73205 0.159973
\(876\) 0 0
\(877\) 33.4641 1.13000 0.565001 0.825090i \(-0.308876\pi\)
0.565001 + 0.825090i \(0.308876\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −47.0526 −1.58524 −0.792620 0.609715i \(-0.791284\pi\)
−0.792620 + 0.609715i \(0.791284\pi\)
\(882\) 0 0
\(883\) 30.1962 1.01618 0.508091 0.861304i \(-0.330351\pi\)
0.508091 + 0.861304i \(0.330351\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −33.8038 −1.13502 −0.567511 0.823366i \(-0.692094\pi\)
−0.567511 + 0.823366i \(0.692094\pi\)
\(888\) 0 0
\(889\) 69.0333 2.31530
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −38.9808 −1.30444
\(894\) 0 0
\(895\) −8.12436 −0.271567
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 9.58846 0.319793
\(900\) 0 0
\(901\) −18.3923 −0.612737
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 26.4641 0.879697
\(906\) 0 0
\(907\) 30.0000 0.996134 0.498067 0.867139i \(-0.334043\pi\)
0.498067 + 0.867139i \(0.334043\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −23.5885 −0.781520 −0.390760 0.920493i \(-0.627788\pi\)
−0.390760 + 0.920493i \(0.627788\pi\)
\(912\) 0 0
\(913\) −12.5885 −0.416617
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −73.7654 −2.43595
\(918\) 0 0
\(919\) 56.9615 1.87899 0.939494 0.342566i \(-0.111296\pi\)
0.939494 + 0.342566i \(0.111296\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 5.46410 0.179853
\(924\) 0 0
\(925\) −2.73205 −0.0898293
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −44.3731 −1.45583 −0.727917 0.685666i \(-0.759511\pi\)
−0.727917 + 0.685666i \(0.759511\pi\)
\(930\) 0 0
\(931\) −68.7128 −2.25197
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −15.6603 −0.512145
\(936\) 0 0
\(937\) −4.14359 −0.135365 −0.0676827 0.997707i \(-0.521561\pi\)
−0.0676827 + 0.997707i \(0.521561\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 35.1769 1.14673 0.573367 0.819298i \(-0.305637\pi\)
0.573367 + 0.819298i \(0.305637\pi\)
\(942\) 0 0
\(943\) −24.9282 −0.811774
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 57.7128 1.87541 0.937707 0.347427i \(-0.112944\pi\)
0.937707 + 0.347427i \(0.112944\pi\)
\(948\) 0 0
\(949\) −11.2154 −0.364067
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 36.3923 1.17886 0.589431 0.807819i \(-0.299352\pi\)
0.589431 + 0.807819i \(0.299352\pi\)
\(954\) 0 0
\(955\) 8.12436 0.262898
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 12.0000 0.387500
\(960\) 0 0
\(961\) −22.0000 −0.709677
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −5.26795 −0.169581
\(966\) 0 0
\(967\) 25.8038 0.829796 0.414898 0.909868i \(-0.363817\pi\)
0.414898 + 0.909868i \(0.363817\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −17.4449 −0.559832 −0.279916 0.960024i \(-0.590307\pi\)
−0.279916 + 0.960024i \(0.590307\pi\)
\(972\) 0 0
\(973\) −2.87564 −0.0921889
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 5.46410 0.174812 0.0874060 0.996173i \(-0.472142\pi\)
0.0874060 + 0.996173i \(0.472142\pi\)
\(978\) 0 0
\(979\) 29.7846 0.951920
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −48.5885 −1.54973 −0.774866 0.632126i \(-0.782182\pi\)
−0.774866 + 0.632126i \(0.782182\pi\)
\(984\) 0 0
\(985\) −13.8564 −0.441502
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −0.679492 −0.0216066
\(990\) 0 0
\(991\) −30.8564 −0.980186 −0.490093 0.871670i \(-0.663037\pi\)
−0.490093 + 0.871670i \(0.663037\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 2.00000 0.0634043
\(996\) 0 0
\(997\) 25.5167 0.808121 0.404060 0.914732i \(-0.367599\pi\)
0.404060 + 0.914732i \(0.367599\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6480.2.a.br.1.2 2
3.2 odd 2 6480.2.a.bi.1.2 2
4.3 odd 2 405.2.a.g.1.2 2
12.11 even 2 405.2.a.h.1.1 yes 2
20.3 even 4 2025.2.b.g.649.2 4
20.7 even 4 2025.2.b.g.649.3 4
20.19 odd 2 2025.2.a.m.1.1 2
36.7 odd 6 405.2.e.l.271.1 4
36.11 even 6 405.2.e.i.271.2 4
36.23 even 6 405.2.e.i.136.2 4
36.31 odd 6 405.2.e.l.136.1 4
60.23 odd 4 2025.2.b.h.649.3 4
60.47 odd 4 2025.2.b.h.649.2 4
60.59 even 2 2025.2.a.g.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
405.2.a.g.1.2 2 4.3 odd 2
405.2.a.h.1.1 yes 2 12.11 even 2
405.2.e.i.136.2 4 36.23 even 6
405.2.e.i.271.2 4 36.11 even 6
405.2.e.l.136.1 4 36.31 odd 6
405.2.e.l.271.1 4 36.7 odd 6
2025.2.a.g.1.2 2 60.59 even 2
2025.2.a.m.1.1 2 20.19 odd 2
2025.2.b.g.649.2 4 20.3 even 4
2025.2.b.g.649.3 4 20.7 even 4
2025.2.b.h.649.2 4 60.47 odd 4
2025.2.b.h.649.3 4 60.23 odd 4
6480.2.a.bi.1.2 2 3.2 odd 2
6480.2.a.br.1.2 2 1.1 even 1 trivial