Properties

Label 6480.2.a.bq.1.1
Level $6480$
Weight $2$
Character 6480.1
Self dual yes
Analytic conductor $51.743$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6480,2,Mod(1,6480)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6480, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6480.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6480 = 2^{4} \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6480.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(51.7430605098\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 3240)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.73205\) of defining polynomial
Character \(\chi\) \(=\) 6480.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{5} -0.732051 q^{7} +3.73205 q^{11} -5.46410 q^{13} +4.19615 q^{17} -1.00000 q^{19} -0.535898 q^{23} +1.00000 q^{25} -3.73205 q^{29} -4.46410 q^{31} -0.732051 q^{35} -10.7321 q^{37} -4.26795 q^{41} +4.19615 q^{43} -8.73205 q^{47} -6.46410 q^{49} -1.26795 q^{53} +3.73205 q^{55} +9.19615 q^{59} -1.07180 q^{61} -5.46410 q^{65} +7.46410 q^{67} -12.1244 q^{71} -4.73205 q^{73} -2.73205 q^{77} +15.4641 q^{79} +13.1244 q^{83} +4.19615 q^{85} +5.19615 q^{89} +4.00000 q^{91} -1.00000 q^{95} +0.196152 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{5} + 2 q^{7} + 4 q^{11} - 4 q^{13} - 2 q^{17} - 2 q^{19} - 8 q^{23} + 2 q^{25} - 4 q^{29} - 2 q^{31} + 2 q^{35} - 18 q^{37} - 12 q^{41} - 2 q^{43} - 14 q^{47} - 6 q^{49} - 6 q^{53} + 4 q^{55}+ \cdots - 10 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) −0.732051 −0.276689 −0.138345 0.990384i \(-0.544178\pi\)
−0.138345 + 0.990384i \(0.544178\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 3.73205 1.12526 0.562628 0.826710i \(-0.309790\pi\)
0.562628 + 0.826710i \(0.309790\pi\)
\(12\) 0 0
\(13\) −5.46410 −1.51547 −0.757735 0.652563i \(-0.773694\pi\)
−0.757735 + 0.652563i \(0.773694\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 4.19615 1.01772 0.508858 0.860850i \(-0.330068\pi\)
0.508858 + 0.860850i \(0.330068\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416 −0.114708 0.993399i \(-0.536593\pi\)
−0.114708 + 0.993399i \(0.536593\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −0.535898 −0.111743 −0.0558713 0.998438i \(-0.517794\pi\)
−0.0558713 + 0.998438i \(0.517794\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −3.73205 −0.693024 −0.346512 0.938045i \(-0.612634\pi\)
−0.346512 + 0.938045i \(0.612634\pi\)
\(30\) 0 0
\(31\) −4.46410 −0.801776 −0.400888 0.916127i \(-0.631298\pi\)
−0.400888 + 0.916127i \(0.631298\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.732051 −0.123739
\(36\) 0 0
\(37\) −10.7321 −1.76434 −0.882169 0.470933i \(-0.843917\pi\)
−0.882169 + 0.470933i \(0.843917\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −4.26795 −0.666542 −0.333271 0.942831i \(-0.608152\pi\)
−0.333271 + 0.942831i \(0.608152\pi\)
\(42\) 0 0
\(43\) 4.19615 0.639907 0.319954 0.947433i \(-0.396333\pi\)
0.319954 + 0.947433i \(0.396333\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −8.73205 −1.27370 −0.636850 0.770988i \(-0.719763\pi\)
−0.636850 + 0.770988i \(0.719763\pi\)
\(48\) 0 0
\(49\) −6.46410 −0.923443
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −1.26795 −0.174166 −0.0870831 0.996201i \(-0.527755\pi\)
−0.0870831 + 0.996201i \(0.527755\pi\)
\(54\) 0 0
\(55\) 3.73205 0.503230
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 9.19615 1.19724 0.598619 0.801034i \(-0.295717\pi\)
0.598619 + 0.801034i \(0.295717\pi\)
\(60\) 0 0
\(61\) −1.07180 −0.137230 −0.0686148 0.997643i \(-0.521858\pi\)
−0.0686148 + 0.997643i \(0.521858\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −5.46410 −0.677738
\(66\) 0 0
\(67\) 7.46410 0.911885 0.455943 0.890009i \(-0.349302\pi\)
0.455943 + 0.890009i \(0.349302\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −12.1244 −1.43890 −0.719448 0.694546i \(-0.755605\pi\)
−0.719448 + 0.694546i \(0.755605\pi\)
\(72\) 0 0
\(73\) −4.73205 −0.553845 −0.276922 0.960892i \(-0.589314\pi\)
−0.276922 + 0.960892i \(0.589314\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −2.73205 −0.311346
\(78\) 0 0
\(79\) 15.4641 1.73985 0.869924 0.493186i \(-0.164168\pi\)
0.869924 + 0.493186i \(0.164168\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 13.1244 1.44059 0.720293 0.693670i \(-0.244008\pi\)
0.720293 + 0.693670i \(0.244008\pi\)
\(84\) 0 0
\(85\) 4.19615 0.455137
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 5.19615 0.550791 0.275396 0.961331i \(-0.411191\pi\)
0.275396 + 0.961331i \(0.411191\pi\)
\(90\) 0 0
\(91\) 4.00000 0.419314
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −1.00000 −0.102598
\(96\) 0 0
\(97\) 0.196152 0.0199163 0.00995813 0.999950i \(-0.496830\pi\)
0.00995813 + 0.999950i \(0.496830\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −14.6603 −1.45875 −0.729375 0.684114i \(-0.760189\pi\)
−0.729375 + 0.684114i \(0.760189\pi\)
\(102\) 0 0
\(103\) −2.39230 −0.235721 −0.117860 0.993030i \(-0.537604\pi\)
−0.117860 + 0.993030i \(0.537604\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −15.4641 −1.49497 −0.747486 0.664278i \(-0.768739\pi\)
−0.747486 + 0.664278i \(0.768739\pi\)
\(108\) 0 0
\(109\) 5.92820 0.567819 0.283909 0.958851i \(-0.408368\pi\)
0.283909 + 0.958851i \(0.408368\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −8.19615 −0.771029 −0.385515 0.922702i \(-0.625976\pi\)
−0.385515 + 0.922702i \(0.625976\pi\)
\(114\) 0 0
\(115\) −0.535898 −0.0499728
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −3.07180 −0.281591
\(120\) 0 0
\(121\) 2.92820 0.266200
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −11.6603 −1.03468 −0.517340 0.855780i \(-0.673078\pi\)
−0.517340 + 0.855780i \(0.673078\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −7.73205 −0.675552 −0.337776 0.941226i \(-0.609675\pi\)
−0.337776 + 0.941226i \(0.609675\pi\)
\(132\) 0 0
\(133\) 0.732051 0.0634769
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −5.46410 −0.466830 −0.233415 0.972377i \(-0.574990\pi\)
−0.233415 + 0.972377i \(0.574990\pi\)
\(138\) 0 0
\(139\) 9.00000 0.763370 0.381685 0.924292i \(-0.375344\pi\)
0.381685 + 0.924292i \(0.375344\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −20.3923 −1.70529
\(144\) 0 0
\(145\) −3.73205 −0.309930
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 8.00000 0.655386 0.327693 0.944784i \(-0.393729\pi\)
0.327693 + 0.944784i \(0.393729\pi\)
\(150\) 0 0
\(151\) 14.8564 1.20900 0.604499 0.796606i \(-0.293373\pi\)
0.604499 + 0.796606i \(0.293373\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −4.46410 −0.358565
\(156\) 0 0
\(157\) −18.0526 −1.44075 −0.720376 0.693584i \(-0.756031\pi\)
−0.720376 + 0.693584i \(0.756031\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0.392305 0.0309180
\(162\) 0 0
\(163\) −1.12436 −0.0880663 −0.0440332 0.999030i \(-0.514021\pi\)
−0.0440332 + 0.999030i \(0.514021\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −10.7321 −0.830471 −0.415236 0.909714i \(-0.636301\pi\)
−0.415236 + 0.909714i \(0.636301\pi\)
\(168\) 0 0
\(169\) 16.8564 1.29665
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 4.53590 0.344858 0.172429 0.985022i \(-0.444838\pi\)
0.172429 + 0.985022i \(0.444838\pi\)
\(174\) 0 0
\(175\) −0.732051 −0.0553378
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −21.0526 −1.57354 −0.786771 0.617245i \(-0.788249\pi\)
−0.786771 + 0.617245i \(0.788249\pi\)
\(180\) 0 0
\(181\) −18.3205 −1.36175 −0.680876 0.732398i \(-0.738401\pi\)
−0.680876 + 0.732398i \(0.738401\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −10.7321 −0.789036
\(186\) 0 0
\(187\) 15.6603 1.14519
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 8.26795 0.598248 0.299124 0.954214i \(-0.403306\pi\)
0.299124 + 0.954214i \(0.403306\pi\)
\(192\) 0 0
\(193\) −16.1962 −1.16582 −0.582912 0.812535i \(-0.698087\pi\)
−0.582912 + 0.812535i \(0.698087\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 5.85641 0.417252 0.208626 0.977996i \(-0.433101\pi\)
0.208626 + 0.977996i \(0.433101\pi\)
\(198\) 0 0
\(199\) 22.0000 1.55954 0.779769 0.626067i \(-0.215336\pi\)
0.779769 + 0.626067i \(0.215336\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 2.73205 0.191752
\(204\) 0 0
\(205\) −4.26795 −0.298087
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −3.73205 −0.258151
\(210\) 0 0
\(211\) −22.3205 −1.53661 −0.768304 0.640086i \(-0.778899\pi\)
−0.768304 + 0.640086i \(0.778899\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 4.19615 0.286175
\(216\) 0 0
\(217\) 3.26795 0.221843
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −22.9282 −1.54232
\(222\) 0 0
\(223\) 4.00000 0.267860 0.133930 0.990991i \(-0.457240\pi\)
0.133930 + 0.990991i \(0.457240\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 5.66025 0.375684 0.187842 0.982199i \(-0.439851\pi\)
0.187842 + 0.982199i \(0.439851\pi\)
\(228\) 0 0
\(229\) −9.85641 −0.651330 −0.325665 0.945485i \(-0.605588\pi\)
−0.325665 + 0.945485i \(0.605588\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 4.73205 0.310007 0.155003 0.987914i \(-0.450461\pi\)
0.155003 + 0.987914i \(0.450461\pi\)
\(234\) 0 0
\(235\) −8.73205 −0.569616
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −8.53590 −0.552141 −0.276071 0.961137i \(-0.589032\pi\)
−0.276071 + 0.961137i \(0.589032\pi\)
\(240\) 0 0
\(241\) −10.4641 −0.674052 −0.337026 0.941495i \(-0.609421\pi\)
−0.337026 + 0.941495i \(0.609421\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −6.46410 −0.412976
\(246\) 0 0
\(247\) 5.46410 0.347672
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 27.4641 1.73352 0.866759 0.498727i \(-0.166199\pi\)
0.866759 + 0.498727i \(0.166199\pi\)
\(252\) 0 0
\(253\) −2.00000 −0.125739
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −5.32051 −0.331884 −0.165942 0.986135i \(-0.553066\pi\)
−0.165942 + 0.986135i \(0.553066\pi\)
\(258\) 0 0
\(259\) 7.85641 0.488173
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −15.4641 −0.953557 −0.476779 0.879023i \(-0.658196\pi\)
−0.476779 + 0.879023i \(0.658196\pi\)
\(264\) 0 0
\(265\) −1.26795 −0.0778895
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 3.73205 0.227547 0.113774 0.993507i \(-0.463706\pi\)
0.113774 + 0.993507i \(0.463706\pi\)
\(270\) 0 0
\(271\) 27.7128 1.68343 0.841717 0.539919i \(-0.181545\pi\)
0.841717 + 0.539919i \(0.181545\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 3.73205 0.225051
\(276\) 0 0
\(277\) 1.66025 0.0997550 0.0498775 0.998755i \(-0.484117\pi\)
0.0498775 + 0.998755i \(0.484117\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 2.39230 0.142713 0.0713565 0.997451i \(-0.477267\pi\)
0.0713565 + 0.997451i \(0.477267\pi\)
\(282\) 0 0
\(283\) −4.53590 −0.269631 −0.134816 0.990871i \(-0.543044\pi\)
−0.134816 + 0.990871i \(0.543044\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 3.12436 0.184425
\(288\) 0 0
\(289\) 0.607695 0.0357468
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −3.26795 −0.190916 −0.0954578 0.995433i \(-0.530432\pi\)
−0.0954578 + 0.995433i \(0.530432\pi\)
\(294\) 0 0
\(295\) 9.19615 0.535421
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 2.92820 0.169342
\(300\) 0 0
\(301\) −3.07180 −0.177055
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −1.07180 −0.0613709
\(306\) 0 0
\(307\) −30.4449 −1.73758 −0.868790 0.495181i \(-0.835102\pi\)
−0.868790 + 0.495181i \(0.835102\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 23.0526 1.30719 0.653595 0.756844i \(-0.273260\pi\)
0.653595 + 0.756844i \(0.273260\pi\)
\(312\) 0 0
\(313\) 28.7846 1.62700 0.813501 0.581563i \(-0.197559\pi\)
0.813501 + 0.581563i \(0.197559\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −25.5167 −1.43316 −0.716579 0.697506i \(-0.754293\pi\)
−0.716579 + 0.697506i \(0.754293\pi\)
\(318\) 0 0
\(319\) −13.9282 −0.779830
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −4.19615 −0.233480
\(324\) 0 0
\(325\) −5.46410 −0.303094
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 6.39230 0.352419
\(330\) 0 0
\(331\) 29.7846 1.63711 0.818555 0.574428i \(-0.194775\pi\)
0.818555 + 0.574428i \(0.194775\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 7.46410 0.407807
\(336\) 0 0
\(337\) −31.3205 −1.70614 −0.853068 0.521799i \(-0.825261\pi\)
−0.853068 + 0.521799i \(0.825261\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −16.6603 −0.902203
\(342\) 0 0
\(343\) 9.85641 0.532196
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −20.5885 −1.10525 −0.552623 0.833431i \(-0.686373\pi\)
−0.552623 + 0.833431i \(0.686373\pi\)
\(348\) 0 0
\(349\) 23.7846 1.27316 0.636580 0.771210i \(-0.280348\pi\)
0.636580 + 0.771210i \(0.280348\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −23.2679 −1.23843 −0.619214 0.785222i \(-0.712549\pi\)
−0.619214 + 0.785222i \(0.712549\pi\)
\(354\) 0 0
\(355\) −12.1244 −0.643494
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −18.8038 −0.992429 −0.496215 0.868200i \(-0.665277\pi\)
−0.496215 + 0.868200i \(0.665277\pi\)
\(360\) 0 0
\(361\) −18.0000 −0.947368
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −4.73205 −0.247687
\(366\) 0 0
\(367\) −37.3205 −1.94811 −0.974057 0.226301i \(-0.927337\pi\)
−0.974057 + 0.226301i \(0.927337\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0.928203 0.0481899
\(372\) 0 0
\(373\) 23.2679 1.20477 0.602384 0.798206i \(-0.294217\pi\)
0.602384 + 0.798206i \(0.294217\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 20.3923 1.05026
\(378\) 0 0
\(379\) −28.2487 −1.45104 −0.725519 0.688202i \(-0.758400\pi\)
−0.725519 + 0.688202i \(0.758400\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −23.3205 −1.19162 −0.595811 0.803125i \(-0.703169\pi\)
−0.595811 + 0.803125i \(0.703169\pi\)
\(384\) 0 0
\(385\) −2.73205 −0.139238
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 12.2487 0.621034 0.310517 0.950568i \(-0.399498\pi\)
0.310517 + 0.950568i \(0.399498\pi\)
\(390\) 0 0
\(391\) −2.24871 −0.113722
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 15.4641 0.778083
\(396\) 0 0
\(397\) 28.2487 1.41776 0.708881 0.705328i \(-0.249200\pi\)
0.708881 + 0.705328i \(0.249200\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −4.14359 −0.206921 −0.103461 0.994634i \(-0.532992\pi\)
−0.103461 + 0.994634i \(0.532992\pi\)
\(402\) 0 0
\(403\) 24.3923 1.21507
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −40.0526 −1.98533
\(408\) 0 0
\(409\) −4.78461 −0.236584 −0.118292 0.992979i \(-0.537742\pi\)
−0.118292 + 0.992979i \(0.537742\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −6.73205 −0.331263
\(414\) 0 0
\(415\) 13.1244 0.644249
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −23.3205 −1.13928 −0.569641 0.821894i \(-0.692918\pi\)
−0.569641 + 0.821894i \(0.692918\pi\)
\(420\) 0 0
\(421\) 39.9282 1.94598 0.972991 0.230844i \(-0.0741487\pi\)
0.972991 + 0.230844i \(0.0741487\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 4.19615 0.203543
\(426\) 0 0
\(427\) 0.784610 0.0379699
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −21.7321 −1.04680 −0.523398 0.852088i \(-0.675336\pi\)
−0.523398 + 0.852088i \(0.675336\pi\)
\(432\) 0 0
\(433\) 4.53590 0.217981 0.108991 0.994043i \(-0.465238\pi\)
0.108991 + 0.994043i \(0.465238\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0.535898 0.0256355
\(438\) 0 0
\(439\) −20.8564 −0.995422 −0.497711 0.867343i \(-0.665826\pi\)
−0.497711 + 0.867343i \(0.665826\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −9.12436 −0.433511 −0.216756 0.976226i \(-0.569547\pi\)
−0.216756 + 0.976226i \(0.569547\pi\)
\(444\) 0 0
\(445\) 5.19615 0.246321
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −41.4449 −1.95590 −0.977952 0.208830i \(-0.933035\pi\)
−0.977952 + 0.208830i \(0.933035\pi\)
\(450\) 0 0
\(451\) −15.9282 −0.750030
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 4.00000 0.187523
\(456\) 0 0
\(457\) 4.58846 0.214639 0.107319 0.994225i \(-0.465773\pi\)
0.107319 + 0.994225i \(0.465773\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 2.66025 0.123900 0.0619502 0.998079i \(-0.480268\pi\)
0.0619502 + 0.998079i \(0.480268\pi\)
\(462\) 0 0
\(463\) 22.3923 1.04066 0.520329 0.853966i \(-0.325809\pi\)
0.520329 + 0.853966i \(0.325809\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 11.5167 0.532927 0.266464 0.963845i \(-0.414145\pi\)
0.266464 + 0.963845i \(0.414145\pi\)
\(468\) 0 0
\(469\) −5.46410 −0.252309
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 15.6603 0.720059
\(474\) 0 0
\(475\) −1.00000 −0.0458831
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −1.33975 −0.0612146 −0.0306073 0.999531i \(-0.509744\pi\)
−0.0306073 + 0.999531i \(0.509744\pi\)
\(480\) 0 0
\(481\) 58.6410 2.67380
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0.196152 0.00890682
\(486\) 0 0
\(487\) −6.53590 −0.296170 −0.148085 0.988975i \(-0.547311\pi\)
−0.148085 + 0.988975i \(0.547311\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 18.8038 0.848606 0.424303 0.905520i \(-0.360519\pi\)
0.424303 + 0.905520i \(0.360519\pi\)
\(492\) 0 0
\(493\) −15.6603 −0.705302
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 8.87564 0.398127
\(498\) 0 0
\(499\) 31.9282 1.42930 0.714651 0.699481i \(-0.246585\pi\)
0.714651 + 0.699481i \(0.246585\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 16.3923 0.730897 0.365448 0.930832i \(-0.380916\pi\)
0.365448 + 0.930832i \(0.380916\pi\)
\(504\) 0 0
\(505\) −14.6603 −0.652373
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −27.8564 −1.23471 −0.617357 0.786683i \(-0.711796\pi\)
−0.617357 + 0.786683i \(0.711796\pi\)
\(510\) 0 0
\(511\) 3.46410 0.153243
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −2.39230 −0.105418
\(516\) 0 0
\(517\) −32.5885 −1.43324
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −32.2487 −1.41284 −0.706421 0.707792i \(-0.749691\pi\)
−0.706421 + 0.707792i \(0.749691\pi\)
\(522\) 0 0
\(523\) −20.3923 −0.891693 −0.445847 0.895109i \(-0.647097\pi\)
−0.445847 + 0.895109i \(0.647097\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −18.7321 −0.815981
\(528\) 0 0
\(529\) −22.7128 −0.987514
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 23.3205 1.01012
\(534\) 0 0
\(535\) −15.4641 −0.668571
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −24.1244 −1.03911
\(540\) 0 0
\(541\) −10.3205 −0.443713 −0.221857 0.975079i \(-0.571212\pi\)
−0.221857 + 0.975079i \(0.571212\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 5.92820 0.253936
\(546\) 0 0
\(547\) 0.784610 0.0335475 0.0167737 0.999859i \(-0.494661\pi\)
0.0167737 + 0.999859i \(0.494661\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 3.73205 0.158991
\(552\) 0 0
\(553\) −11.3205 −0.481397
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 29.4641 1.24843 0.624217 0.781251i \(-0.285418\pi\)
0.624217 + 0.781251i \(0.285418\pi\)
\(558\) 0 0
\(559\) −22.9282 −0.969760
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 25.9090 1.09193 0.545966 0.837807i \(-0.316163\pi\)
0.545966 + 0.837807i \(0.316163\pi\)
\(564\) 0 0
\(565\) −8.19615 −0.344815
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 45.7321 1.91719 0.958594 0.284777i \(-0.0919197\pi\)
0.958594 + 0.284777i \(0.0919197\pi\)
\(570\) 0 0
\(571\) −32.1769 −1.34656 −0.673281 0.739387i \(-0.735116\pi\)
−0.673281 + 0.739387i \(0.735116\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −0.535898 −0.0223485
\(576\) 0 0
\(577\) −6.87564 −0.286237 −0.143118 0.989706i \(-0.545713\pi\)
−0.143118 + 0.989706i \(0.545713\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −9.60770 −0.398594
\(582\) 0 0
\(583\) −4.73205 −0.195982
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −32.4449 −1.33914 −0.669571 0.742748i \(-0.733522\pi\)
−0.669571 + 0.742748i \(0.733522\pi\)
\(588\) 0 0
\(589\) 4.46410 0.183940
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −45.7128 −1.87720 −0.938600 0.345007i \(-0.887877\pi\)
−0.938600 + 0.345007i \(0.887877\pi\)
\(594\) 0 0
\(595\) −3.07180 −0.125931
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −1.48334 −0.0606076 −0.0303038 0.999541i \(-0.509647\pi\)
−0.0303038 + 0.999541i \(0.509647\pi\)
\(600\) 0 0
\(601\) −4.32051 −0.176237 −0.0881186 0.996110i \(-0.528085\pi\)
−0.0881186 + 0.996110i \(0.528085\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 2.92820 0.119048
\(606\) 0 0
\(607\) −32.1962 −1.30680 −0.653401 0.757012i \(-0.726658\pi\)
−0.653401 + 0.757012i \(0.726658\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 47.7128 1.93025
\(612\) 0 0
\(613\) 33.4641 1.35160 0.675801 0.737084i \(-0.263798\pi\)
0.675801 + 0.737084i \(0.263798\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 32.7846 1.31986 0.659929 0.751328i \(-0.270586\pi\)
0.659929 + 0.751328i \(0.270586\pi\)
\(618\) 0 0
\(619\) 28.9282 1.16272 0.581361 0.813646i \(-0.302520\pi\)
0.581361 + 0.813646i \(0.302520\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −3.80385 −0.152398
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −45.0333 −1.79560
\(630\) 0 0
\(631\) 24.1769 0.962468 0.481234 0.876592i \(-0.340189\pi\)
0.481234 + 0.876592i \(0.340189\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −11.6603 −0.462723
\(636\) 0 0
\(637\) 35.3205 1.39945
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −43.7321 −1.72731 −0.863656 0.504082i \(-0.831831\pi\)
−0.863656 + 0.504082i \(0.831831\pi\)
\(642\) 0 0
\(643\) −18.3397 −0.723249 −0.361624 0.932324i \(-0.617778\pi\)
−0.361624 + 0.932324i \(0.617778\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 26.1051 1.02630 0.513149 0.858300i \(-0.328479\pi\)
0.513149 + 0.858300i \(0.328479\pi\)
\(648\) 0 0
\(649\) 34.3205 1.34720
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 38.2487 1.49679 0.748394 0.663255i \(-0.230825\pi\)
0.748394 + 0.663255i \(0.230825\pi\)
\(654\) 0 0
\(655\) −7.73205 −0.302116
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 33.4641 1.30358 0.651788 0.758401i \(-0.274019\pi\)
0.651788 + 0.758401i \(0.274019\pi\)
\(660\) 0 0
\(661\) 47.1051 1.83218 0.916088 0.400976i \(-0.131329\pi\)
0.916088 + 0.400976i \(0.131329\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0.732051 0.0283877
\(666\) 0 0
\(667\) 2.00000 0.0774403
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −4.00000 −0.154418
\(672\) 0 0
\(673\) 24.2487 0.934719 0.467360 0.884067i \(-0.345205\pi\)
0.467360 + 0.884067i \(0.345205\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 37.7128 1.44942 0.724711 0.689053i \(-0.241973\pi\)
0.724711 + 0.689053i \(0.241973\pi\)
\(678\) 0 0
\(679\) −0.143594 −0.00551061
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −23.3205 −0.892334 −0.446167 0.894950i \(-0.647211\pi\)
−0.446167 + 0.894950i \(0.647211\pi\)
\(684\) 0 0
\(685\) −5.46410 −0.208773
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 6.92820 0.263944
\(690\) 0 0
\(691\) −5.21539 −0.198403 −0.0992014 0.995067i \(-0.531629\pi\)
−0.0992014 + 0.995067i \(0.531629\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 9.00000 0.341389
\(696\) 0 0
\(697\) −17.9090 −0.678350
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −35.7321 −1.34958 −0.674790 0.738009i \(-0.735766\pi\)
−0.674790 + 0.738009i \(0.735766\pi\)
\(702\) 0 0
\(703\) 10.7321 0.404767
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 10.7321 0.403620
\(708\) 0 0
\(709\) 17.4641 0.655878 0.327939 0.944699i \(-0.393646\pi\)
0.327939 + 0.944699i \(0.393646\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 2.39230 0.0895925
\(714\) 0 0
\(715\) −20.3923 −0.762629
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0.0192379 0.000717452 0 0.000358726 1.00000i \(-0.499886\pi\)
0.000358726 1.00000i \(0.499886\pi\)
\(720\) 0 0
\(721\) 1.75129 0.0652214
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −3.73205 −0.138605
\(726\) 0 0
\(727\) −17.4641 −0.647708 −0.323854 0.946107i \(-0.604979\pi\)
−0.323854 + 0.946107i \(0.604979\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 17.6077 0.651244
\(732\) 0 0
\(733\) 6.00000 0.221615 0.110808 0.993842i \(-0.464656\pi\)
0.110808 + 0.993842i \(0.464656\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 27.8564 1.02610
\(738\) 0 0
\(739\) −4.85641 −0.178646 −0.0893229 0.996003i \(-0.528470\pi\)
−0.0893229 + 0.996003i \(0.528470\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −26.4449 −0.970168 −0.485084 0.874468i \(-0.661211\pi\)
−0.485084 + 0.874468i \(0.661211\pi\)
\(744\) 0 0
\(745\) 8.00000 0.293097
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 11.3205 0.413642
\(750\) 0 0
\(751\) −51.7128 −1.88703 −0.943514 0.331334i \(-0.892501\pi\)
−0.943514 + 0.331334i \(0.892501\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 14.8564 0.540680
\(756\) 0 0
\(757\) −13.4641 −0.489361 −0.244681 0.969604i \(-0.578683\pi\)
−0.244681 + 0.969604i \(0.578683\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 10.9474 0.396844 0.198422 0.980117i \(-0.436418\pi\)
0.198422 + 0.980117i \(0.436418\pi\)
\(762\) 0 0
\(763\) −4.33975 −0.157109
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −50.2487 −1.81438
\(768\) 0 0
\(769\) 3.53590 0.127508 0.0637539 0.997966i \(-0.479693\pi\)
0.0637539 + 0.997966i \(0.479693\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 21.8038 0.784230 0.392115 0.919916i \(-0.371744\pi\)
0.392115 + 0.919916i \(0.371744\pi\)
\(774\) 0 0
\(775\) −4.46410 −0.160355
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 4.26795 0.152915
\(780\) 0 0
\(781\) −45.2487 −1.61913
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −18.0526 −0.644323
\(786\) 0 0
\(787\) 31.3731 1.11833 0.559165 0.829057i \(-0.311122\pi\)
0.559165 + 0.829057i \(0.311122\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 6.00000 0.213335
\(792\) 0 0
\(793\) 5.85641 0.207967
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 14.5359 0.514888 0.257444 0.966293i \(-0.417120\pi\)
0.257444 + 0.966293i \(0.417120\pi\)
\(798\) 0 0
\(799\) −36.6410 −1.29627
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −17.6603 −0.623217
\(804\) 0 0
\(805\) 0.392305 0.0138269
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −1.98076 −0.0696399 −0.0348199 0.999394i \(-0.511086\pi\)
−0.0348199 + 0.999394i \(0.511086\pi\)
\(810\) 0 0
\(811\) −13.7846 −0.484043 −0.242022 0.970271i \(-0.577810\pi\)
−0.242022 + 0.970271i \(0.577810\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −1.12436 −0.0393845
\(816\) 0 0
\(817\) −4.19615 −0.146805
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −23.5885 −0.823243 −0.411621 0.911355i \(-0.635037\pi\)
−0.411621 + 0.911355i \(0.635037\pi\)
\(822\) 0 0
\(823\) 12.1436 0.423299 0.211650 0.977346i \(-0.432116\pi\)
0.211650 + 0.977346i \(0.432116\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 44.1051 1.53369 0.766843 0.641835i \(-0.221827\pi\)
0.766843 + 0.641835i \(0.221827\pi\)
\(828\) 0 0
\(829\) 45.7846 1.59017 0.795083 0.606501i \(-0.207427\pi\)
0.795083 + 0.606501i \(0.207427\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −27.1244 −0.939803
\(834\) 0 0
\(835\) −10.7321 −0.371398
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −31.1962 −1.07701 −0.538505 0.842622i \(-0.681011\pi\)
−0.538505 + 0.842622i \(0.681011\pi\)
\(840\) 0 0
\(841\) −15.0718 −0.519717
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 16.8564 0.579878
\(846\) 0 0
\(847\) −2.14359 −0.0736547
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 5.75129 0.197152
\(852\) 0 0
\(853\) 1.41154 0.0483303 0.0241652 0.999708i \(-0.492307\pi\)
0.0241652 + 0.999708i \(0.492307\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 18.9282 0.646575 0.323288 0.946301i \(-0.395212\pi\)
0.323288 + 0.946301i \(0.395212\pi\)
\(858\) 0 0
\(859\) 46.9615 1.60231 0.801153 0.598459i \(-0.204220\pi\)
0.801153 + 0.598459i \(0.204220\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 19.5167 0.664355 0.332177 0.943217i \(-0.392217\pi\)
0.332177 + 0.943217i \(0.392217\pi\)
\(864\) 0 0
\(865\) 4.53590 0.154225
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 57.7128 1.95777
\(870\) 0 0
\(871\) −40.7846 −1.38193
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −0.732051 −0.0247478
\(876\) 0 0
\(877\) −50.2487 −1.69678 −0.848389 0.529373i \(-0.822427\pi\)
−0.848389 + 0.529373i \(0.822427\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 20.6603 0.696062 0.348031 0.937483i \(-0.386850\pi\)
0.348031 + 0.937483i \(0.386850\pi\)
\(882\) 0 0
\(883\) −29.1244 −0.980113 −0.490056 0.871691i \(-0.663024\pi\)
−0.490056 + 0.871691i \(0.663024\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −42.1962 −1.41681 −0.708404 0.705807i \(-0.750585\pi\)
−0.708404 + 0.705807i \(0.750585\pi\)
\(888\) 0 0
\(889\) 8.53590 0.286285
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 8.73205 0.292207
\(894\) 0 0
\(895\) −21.0526 −0.703709
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 16.6603 0.555651
\(900\) 0 0
\(901\) −5.32051 −0.177252
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −18.3205 −0.608994
\(906\) 0 0
\(907\) −31.8564 −1.05777 −0.528887 0.848692i \(-0.677391\pi\)
−0.528887 + 0.848692i \(0.677391\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −6.66025 −0.220664 −0.110332 0.993895i \(-0.535191\pi\)
−0.110332 + 0.993895i \(0.535191\pi\)
\(912\) 0 0
\(913\) 48.9808 1.62103
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 5.66025 0.186918
\(918\) 0 0
\(919\) 16.7128 0.551305 0.275652 0.961257i \(-0.411106\pi\)
0.275652 + 0.961257i \(0.411106\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 66.2487 2.18060
\(924\) 0 0
\(925\) −10.7321 −0.352868
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 29.9808 0.983637 0.491818 0.870698i \(-0.336332\pi\)
0.491818 + 0.870698i \(0.336332\pi\)
\(930\) 0 0
\(931\) 6.46410 0.211852
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 15.6603 0.512145
\(936\) 0 0
\(937\) 32.6410 1.06634 0.533168 0.846010i \(-0.321001\pi\)
0.533168 + 0.846010i \(0.321001\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 7.46410 0.243323 0.121661 0.992572i \(-0.461178\pi\)
0.121661 + 0.992572i \(0.461178\pi\)
\(942\) 0 0
\(943\) 2.28719 0.0744811
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 19.0718 0.619750 0.309875 0.950777i \(-0.399713\pi\)
0.309875 + 0.950777i \(0.399713\pi\)
\(948\) 0 0
\(949\) 25.8564 0.839334
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −39.0333 −1.26441 −0.632207 0.774800i \(-0.717851\pi\)
−0.632207 + 0.774800i \(0.717851\pi\)
\(954\) 0 0
\(955\) 8.26795 0.267545
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 4.00000 0.129167
\(960\) 0 0
\(961\) −11.0718 −0.357155
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −16.1962 −0.521373
\(966\) 0 0
\(967\) −1.01924 −0.0327765 −0.0163882 0.999866i \(-0.505217\pi\)
−0.0163882 + 0.999866i \(0.505217\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 39.1962 1.25786 0.628932 0.777460i \(-0.283492\pi\)
0.628932 + 0.777460i \(0.283492\pi\)
\(972\) 0 0
\(973\) −6.58846 −0.211216
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −20.3923 −0.652408 −0.326204 0.945299i \(-0.605770\pi\)
−0.326204 + 0.945299i \(0.605770\pi\)
\(978\) 0 0
\(979\) 19.3923 0.619781
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 5.66025 0.180534 0.0902670 0.995918i \(-0.471228\pi\)
0.0902670 + 0.995918i \(0.471228\pi\)
\(984\) 0 0
\(985\) 5.85641 0.186601
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −2.24871 −0.0715049
\(990\) 0 0
\(991\) 33.1051 1.05162 0.525809 0.850602i \(-0.323763\pi\)
0.525809 + 0.850602i \(0.323763\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 22.0000 0.697447
\(996\) 0 0
\(997\) −43.2679 −1.37031 −0.685155 0.728397i \(-0.740265\pi\)
−0.685155 + 0.728397i \(0.740265\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6480.2.a.bq.1.1 2
3.2 odd 2 6480.2.a.bg.1.1 2
4.3 odd 2 3240.2.a.l.1.2 yes 2
12.11 even 2 3240.2.a.g.1.2 2
36.7 odd 6 3240.2.q.bb.1081.1 4
36.11 even 6 3240.2.q.bf.1081.1 4
36.23 even 6 3240.2.q.bf.2161.1 4
36.31 odd 6 3240.2.q.bb.2161.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3240.2.a.g.1.2 2 12.11 even 2
3240.2.a.l.1.2 yes 2 4.3 odd 2
3240.2.q.bb.1081.1 4 36.7 odd 6
3240.2.q.bb.2161.1 4 36.31 odd 6
3240.2.q.bf.1081.1 4 36.11 even 6
3240.2.q.bf.2161.1 4 36.23 even 6
6480.2.a.bg.1.1 2 3.2 odd 2
6480.2.a.bq.1.1 2 1.1 even 1 trivial