Properties

Label 6480.2.a.bb.1.2
Level $6480$
Weight $2$
Character 6480.1
Self dual yes
Analytic conductor $51.743$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6480,2,Mod(1,6480)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6480, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6480.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6480 = 2^{4} \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6480.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(51.7430605098\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 810)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.73205\) of defining polynomial
Character \(\chi\) \(=\) 6480.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{5} -0.267949 q^{7} +3.46410 q^{11} +0.267949 q^{13} +3.46410 q^{17} -5.92820 q^{19} -6.46410 q^{23} +1.00000 q^{25} -6.92820 q^{29} +1.46410 q^{31} +0.267949 q^{35} +8.00000 q^{37} +5.19615 q^{41} -5.46410 q^{43} +0.464102 q^{47} -6.92820 q^{49} +5.53590 q^{53} -3.46410 q^{55} -8.66025 q^{59} +12.3923 q^{61} -0.267949 q^{65} -8.00000 q^{67} -6.00000 q^{71} -14.3923 q^{73} -0.928203 q^{77} +14.3923 q^{79} -15.4641 q^{83} -3.46410 q^{85} -12.0000 q^{89} -0.0717968 q^{91} +5.92820 q^{95} +14.9282 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{5} - 4 q^{7} + 4 q^{13} + 2 q^{19} - 6 q^{23} + 2 q^{25} - 4 q^{31} + 4 q^{35} + 16 q^{37} - 4 q^{43} - 6 q^{47} + 18 q^{53} + 4 q^{61} - 4 q^{65} - 16 q^{67} - 12 q^{71} - 8 q^{73} + 12 q^{77}+ \cdots + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −0.267949 −0.101275 −0.0506376 0.998717i \(-0.516125\pi\)
−0.0506376 + 0.998717i \(0.516125\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 3.46410 1.04447 0.522233 0.852803i \(-0.325099\pi\)
0.522233 + 0.852803i \(0.325099\pi\)
\(12\) 0 0
\(13\) 0.267949 0.0743157 0.0371579 0.999309i \(-0.488170\pi\)
0.0371579 + 0.999309i \(0.488170\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.46410 0.840168 0.420084 0.907485i \(-0.362001\pi\)
0.420084 + 0.907485i \(0.362001\pi\)
\(18\) 0 0
\(19\) −5.92820 −1.36002 −0.680012 0.733201i \(-0.738025\pi\)
−0.680012 + 0.733201i \(0.738025\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −6.46410 −1.34786 −0.673929 0.738796i \(-0.735395\pi\)
−0.673929 + 0.738796i \(0.735395\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −6.92820 −1.28654 −0.643268 0.765641i \(-0.722422\pi\)
−0.643268 + 0.765641i \(0.722422\pi\)
\(30\) 0 0
\(31\) 1.46410 0.262960 0.131480 0.991319i \(-0.458027\pi\)
0.131480 + 0.991319i \(0.458027\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0.267949 0.0452917
\(36\) 0 0
\(37\) 8.00000 1.31519 0.657596 0.753371i \(-0.271573\pi\)
0.657596 + 0.753371i \(0.271573\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 5.19615 0.811503 0.405751 0.913984i \(-0.367010\pi\)
0.405751 + 0.913984i \(0.367010\pi\)
\(42\) 0 0
\(43\) −5.46410 −0.833268 −0.416634 0.909074i \(-0.636790\pi\)
−0.416634 + 0.909074i \(0.636790\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0.464102 0.0676962 0.0338481 0.999427i \(-0.489224\pi\)
0.0338481 + 0.999427i \(0.489224\pi\)
\(48\) 0 0
\(49\) −6.92820 −0.989743
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 5.53590 0.760414 0.380207 0.924901i \(-0.375853\pi\)
0.380207 + 0.924901i \(0.375853\pi\)
\(54\) 0 0
\(55\) −3.46410 −0.467099
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −8.66025 −1.12747 −0.563735 0.825956i \(-0.690636\pi\)
−0.563735 + 0.825956i \(0.690636\pi\)
\(60\) 0 0
\(61\) 12.3923 1.58667 0.793336 0.608784i \(-0.208342\pi\)
0.793336 + 0.608784i \(0.208342\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −0.267949 −0.0332350
\(66\) 0 0
\(67\) −8.00000 −0.977356 −0.488678 0.872464i \(-0.662521\pi\)
−0.488678 + 0.872464i \(0.662521\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −6.00000 −0.712069 −0.356034 0.934473i \(-0.615871\pi\)
−0.356034 + 0.934473i \(0.615871\pi\)
\(72\) 0 0
\(73\) −14.3923 −1.68449 −0.842246 0.539093i \(-0.818767\pi\)
−0.842246 + 0.539093i \(0.818767\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −0.928203 −0.105779
\(78\) 0 0
\(79\) 14.3923 1.61926 0.809630 0.586940i \(-0.199668\pi\)
0.809630 + 0.586940i \(0.199668\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −15.4641 −1.69741 −0.848703 0.528870i \(-0.822616\pi\)
−0.848703 + 0.528870i \(0.822616\pi\)
\(84\) 0 0
\(85\) −3.46410 −0.375735
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −12.0000 −1.27200 −0.635999 0.771690i \(-0.719412\pi\)
−0.635999 + 0.771690i \(0.719412\pi\)
\(90\) 0 0
\(91\) −0.0717968 −0.00752635
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 5.92820 0.608221
\(96\) 0 0
\(97\) 14.9282 1.51573 0.757865 0.652412i \(-0.226243\pi\)
0.757865 + 0.652412i \(0.226243\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 2.53590 0.252331 0.126166 0.992009i \(-0.459733\pi\)
0.126166 + 0.992009i \(0.459733\pi\)
\(102\) 0 0
\(103\) 4.80385 0.473337 0.236669 0.971590i \(-0.423944\pi\)
0.236669 + 0.971590i \(0.423944\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −15.4641 −1.49497 −0.747486 0.664278i \(-0.768739\pi\)
−0.747486 + 0.664278i \(0.768739\pi\)
\(108\) 0 0
\(109\) 9.85641 0.944073 0.472036 0.881579i \(-0.343519\pi\)
0.472036 + 0.881579i \(0.343519\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −0.928203 −0.0873180 −0.0436590 0.999046i \(-0.513902\pi\)
−0.0436590 + 0.999046i \(0.513902\pi\)
\(114\) 0 0
\(115\) 6.46410 0.602781
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −0.928203 −0.0850883
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 4.80385 0.426273 0.213136 0.977022i \(-0.431632\pi\)
0.213136 + 0.977022i \(0.431632\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −10.2679 −0.897115 −0.448557 0.893754i \(-0.648062\pi\)
−0.448557 + 0.893754i \(0.648062\pi\)
\(132\) 0 0
\(133\) 1.58846 0.137737
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 10.3923 0.887875 0.443937 0.896058i \(-0.353581\pi\)
0.443937 + 0.896058i \(0.353581\pi\)
\(138\) 0 0
\(139\) 13.0000 1.10265 0.551323 0.834292i \(-0.314123\pi\)
0.551323 + 0.834292i \(0.314123\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0.928203 0.0776203
\(144\) 0 0
\(145\) 6.92820 0.575356
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −18.0000 −1.47462 −0.737309 0.675556i \(-0.763904\pi\)
−0.737309 + 0.675556i \(0.763904\pi\)
\(150\) 0 0
\(151\) 2.39230 0.194683 0.0973415 0.995251i \(-0.468966\pi\)
0.0973415 + 0.995251i \(0.468966\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −1.46410 −0.117599
\(156\) 0 0
\(157\) −10.1244 −0.808012 −0.404006 0.914756i \(-0.632382\pi\)
−0.404006 + 0.914756i \(0.632382\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 1.73205 0.136505
\(162\) 0 0
\(163\) 17.8564 1.39862 0.699311 0.714818i \(-0.253490\pi\)
0.699311 + 0.714818i \(0.253490\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 6.92820 0.536120 0.268060 0.963402i \(-0.413617\pi\)
0.268060 + 0.963402i \(0.413617\pi\)
\(168\) 0 0
\(169\) −12.9282 −0.994477
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 14.3205 1.08877 0.544384 0.838836i \(-0.316763\pi\)
0.544384 + 0.838836i \(0.316763\pi\)
\(174\) 0 0
\(175\) −0.267949 −0.0202551
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 12.1244 0.906217 0.453108 0.891455i \(-0.350315\pi\)
0.453108 + 0.891455i \(0.350315\pi\)
\(180\) 0 0
\(181\) −19.4641 −1.44676 −0.723378 0.690453i \(-0.757411\pi\)
−0.723378 + 0.690453i \(0.757411\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −8.00000 −0.588172
\(186\) 0 0
\(187\) 12.0000 0.877527
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −9.46410 −0.684798 −0.342399 0.939555i \(-0.611240\pi\)
−0.342399 + 0.939555i \(0.611240\pi\)
\(192\) 0 0
\(193\) −16.0000 −1.15171 −0.575853 0.817554i \(-0.695330\pi\)
−0.575853 + 0.817554i \(0.695330\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −18.4641 −1.31551 −0.657756 0.753231i \(-0.728494\pi\)
−0.657756 + 0.753231i \(0.728494\pi\)
\(198\) 0 0
\(199\) −26.2487 −1.86072 −0.930361 0.366645i \(-0.880506\pi\)
−0.930361 + 0.366645i \(0.880506\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 1.85641 0.130294
\(204\) 0 0
\(205\) −5.19615 −0.362915
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −20.5359 −1.42050
\(210\) 0 0
\(211\) −18.8564 −1.29813 −0.649064 0.760734i \(-0.724839\pi\)
−0.649064 + 0.760734i \(0.724839\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 5.46410 0.372649
\(216\) 0 0
\(217\) −0.392305 −0.0266314
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0.928203 0.0624377
\(222\) 0 0
\(223\) 19.4641 1.30341 0.651706 0.758471i \(-0.274053\pi\)
0.651706 + 0.758471i \(0.274053\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 4.39230 0.291528 0.145764 0.989319i \(-0.453436\pi\)
0.145764 + 0.989319i \(0.453436\pi\)
\(228\) 0 0
\(229\) −5.85641 −0.387002 −0.193501 0.981100i \(-0.561984\pi\)
−0.193501 + 0.981100i \(0.561984\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −12.0000 −0.786146 −0.393073 0.919507i \(-0.628588\pi\)
−0.393073 + 0.919507i \(0.628588\pi\)
\(234\) 0 0
\(235\) −0.464102 −0.0302747
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 15.4641 1.00029 0.500145 0.865942i \(-0.333280\pi\)
0.500145 + 0.865942i \(0.333280\pi\)
\(240\) 0 0
\(241\) −3.07180 −0.197872 −0.0989359 0.995094i \(-0.531544\pi\)
−0.0989359 + 0.995094i \(0.531544\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 6.92820 0.442627
\(246\) 0 0
\(247\) −1.58846 −0.101071
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −12.1244 −0.765283 −0.382641 0.923897i \(-0.624985\pi\)
−0.382641 + 0.923897i \(0.624985\pi\)
\(252\) 0 0
\(253\) −22.3923 −1.40779
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −4.14359 −0.258470 −0.129235 0.991614i \(-0.541252\pi\)
−0.129235 + 0.991614i \(0.541252\pi\)
\(258\) 0 0
\(259\) −2.14359 −0.133196
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −26.3205 −1.62299 −0.811496 0.584358i \(-0.801346\pi\)
−0.811496 + 0.584358i \(0.801346\pi\)
\(264\) 0 0
\(265\) −5.53590 −0.340068
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0.928203 0.0565935 0.0282968 0.999600i \(-0.490992\pi\)
0.0282968 + 0.999600i \(0.490992\pi\)
\(270\) 0 0
\(271\) −14.0000 −0.850439 −0.425220 0.905090i \(-0.639803\pi\)
−0.425220 + 0.905090i \(0.639803\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 3.46410 0.208893
\(276\) 0 0
\(277\) 15.7321 0.945247 0.472624 0.881264i \(-0.343307\pi\)
0.472624 + 0.881264i \(0.343307\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −31.0526 −1.85244 −0.926220 0.376983i \(-0.876962\pi\)
−0.926220 + 0.376983i \(0.876962\pi\)
\(282\) 0 0
\(283\) −31.3205 −1.86181 −0.930905 0.365260i \(-0.880980\pi\)
−0.930905 + 0.365260i \(0.880980\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −1.39230 −0.0821852
\(288\) 0 0
\(289\) −5.00000 −0.294118
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −13.3923 −0.782387 −0.391193 0.920308i \(-0.627938\pi\)
−0.391193 + 0.920308i \(0.627938\pi\)
\(294\) 0 0
\(295\) 8.66025 0.504219
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −1.73205 −0.100167
\(300\) 0 0
\(301\) 1.46410 0.0843894
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −12.3923 −0.709581
\(306\) 0 0
\(307\) 8.39230 0.478974 0.239487 0.970900i \(-0.423021\pi\)
0.239487 + 0.970900i \(0.423021\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −15.4641 −0.876889 −0.438444 0.898758i \(-0.644470\pi\)
−0.438444 + 0.898758i \(0.644470\pi\)
\(312\) 0 0
\(313\) 31.3205 1.77034 0.885170 0.465268i \(-0.154042\pi\)
0.885170 + 0.465268i \(0.154042\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −24.4641 −1.37404 −0.687020 0.726638i \(-0.741082\pi\)
−0.687020 + 0.726638i \(0.741082\pi\)
\(318\) 0 0
\(319\) −24.0000 −1.34374
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −20.5359 −1.14265
\(324\) 0 0
\(325\) 0.267949 0.0148631
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −0.124356 −0.00685595
\(330\) 0 0
\(331\) −8.00000 −0.439720 −0.219860 0.975531i \(-0.570560\pi\)
−0.219860 + 0.975531i \(0.570560\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 8.00000 0.437087
\(336\) 0 0
\(337\) 20.9282 1.14003 0.570016 0.821634i \(-0.306937\pi\)
0.570016 + 0.821634i \(0.306937\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 5.07180 0.274653
\(342\) 0 0
\(343\) 3.73205 0.201512
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −26.7846 −1.43787 −0.718937 0.695076i \(-0.755371\pi\)
−0.718937 + 0.695076i \(0.755371\pi\)
\(348\) 0 0
\(349\) 2.00000 0.107058 0.0535288 0.998566i \(-0.482953\pi\)
0.0535288 + 0.998566i \(0.482953\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 1.60770 0.0855690 0.0427845 0.999084i \(-0.486377\pi\)
0.0427845 + 0.999084i \(0.486377\pi\)
\(354\) 0 0
\(355\) 6.00000 0.318447
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 15.4641 0.816164 0.408082 0.912945i \(-0.366198\pi\)
0.408082 + 0.912945i \(0.366198\pi\)
\(360\) 0 0
\(361\) 16.1436 0.849663
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 14.3923 0.753328
\(366\) 0 0
\(367\) 14.3923 0.751272 0.375636 0.926767i \(-0.377424\pi\)
0.375636 + 0.926767i \(0.377424\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −1.48334 −0.0770111
\(372\) 0 0
\(373\) 2.92820 0.151617 0.0758083 0.997122i \(-0.475846\pi\)
0.0758083 + 0.997122i \(0.475846\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −1.85641 −0.0956098
\(378\) 0 0
\(379\) −9.14359 −0.469675 −0.234837 0.972035i \(-0.575456\pi\)
−0.234837 + 0.972035i \(0.575456\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −0.464102 −0.0237145 −0.0118572 0.999930i \(-0.503774\pi\)
−0.0118572 + 0.999930i \(0.503774\pi\)
\(384\) 0 0
\(385\) 0.928203 0.0473056
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −11.3205 −0.573973 −0.286986 0.957935i \(-0.592653\pi\)
−0.286986 + 0.957935i \(0.592653\pi\)
\(390\) 0 0
\(391\) −22.3923 −1.13243
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −14.3923 −0.724155
\(396\) 0 0
\(397\) −17.8564 −0.896187 −0.448094 0.893987i \(-0.647897\pi\)
−0.448094 + 0.893987i \(0.647897\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −8.41154 −0.420052 −0.210026 0.977696i \(-0.567355\pi\)
−0.210026 + 0.977696i \(0.567355\pi\)
\(402\) 0 0
\(403\) 0.392305 0.0195421
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 27.7128 1.37367
\(408\) 0 0
\(409\) −0.0717968 −0.00355012 −0.00177506 0.999998i \(-0.500565\pi\)
−0.00177506 + 0.999998i \(0.500565\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 2.32051 0.114185
\(414\) 0 0
\(415\) 15.4641 0.759103
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −3.46410 −0.169232 −0.0846162 0.996414i \(-0.526966\pi\)
−0.0846162 + 0.996414i \(0.526966\pi\)
\(420\) 0 0
\(421\) 30.3923 1.48123 0.740615 0.671929i \(-0.234534\pi\)
0.740615 + 0.671929i \(0.234534\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 3.46410 0.168034
\(426\) 0 0
\(427\) −3.32051 −0.160691
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 7.60770 0.366450 0.183225 0.983071i \(-0.441346\pi\)
0.183225 + 0.983071i \(0.441346\pi\)
\(432\) 0 0
\(433\) −10.9282 −0.525176 −0.262588 0.964908i \(-0.584576\pi\)
−0.262588 + 0.964908i \(0.584576\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 38.3205 1.83312
\(438\) 0 0
\(439\) 2.39230 0.114178 0.0570892 0.998369i \(-0.481818\pi\)
0.0570892 + 0.998369i \(0.481818\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 4.14359 0.196868 0.0984340 0.995144i \(-0.468617\pi\)
0.0984340 + 0.995144i \(0.468617\pi\)
\(444\) 0 0
\(445\) 12.0000 0.568855
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 32.9090 1.55307 0.776535 0.630074i \(-0.216975\pi\)
0.776535 + 0.630074i \(0.216975\pi\)
\(450\) 0 0
\(451\) 18.0000 0.847587
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0.0717968 0.00336588
\(456\) 0 0
\(457\) 0.392305 0.0183512 0.00917562 0.999958i \(-0.497079\pi\)
0.00917562 + 0.999958i \(0.497079\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −32.7846 −1.52693 −0.763466 0.645848i \(-0.776504\pi\)
−0.763466 + 0.645848i \(0.776504\pi\)
\(462\) 0 0
\(463\) 15.1962 0.706225 0.353113 0.935581i \(-0.385123\pi\)
0.353113 + 0.935581i \(0.385123\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −6.00000 −0.277647 −0.138823 0.990317i \(-0.544332\pi\)
−0.138823 + 0.990317i \(0.544332\pi\)
\(468\) 0 0
\(469\) 2.14359 0.0989820
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −18.9282 −0.870320
\(474\) 0 0
\(475\) −5.92820 −0.272005
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0.928203 0.0424107 0.0212053 0.999775i \(-0.493250\pi\)
0.0212053 + 0.999775i \(0.493250\pi\)
\(480\) 0 0
\(481\) 2.14359 0.0977395
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −14.9282 −0.677855
\(486\) 0 0
\(487\) −31.4449 −1.42490 −0.712451 0.701721i \(-0.752415\pi\)
−0.712451 + 0.701721i \(0.752415\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −12.1244 −0.547165 −0.273582 0.961849i \(-0.588209\pi\)
−0.273582 + 0.961849i \(0.588209\pi\)
\(492\) 0 0
\(493\) −24.0000 −1.08091
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1.60770 0.0721150
\(498\) 0 0
\(499\) −37.7846 −1.69147 −0.845736 0.533602i \(-0.820838\pi\)
−0.845736 + 0.533602i \(0.820838\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 18.9282 0.843967 0.421983 0.906604i \(-0.361334\pi\)
0.421983 + 0.906604i \(0.361334\pi\)
\(504\) 0 0
\(505\) −2.53590 −0.112846
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −18.0000 −0.797836 −0.398918 0.916987i \(-0.630614\pi\)
−0.398918 + 0.916987i \(0.630614\pi\)
\(510\) 0 0
\(511\) 3.85641 0.170597
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −4.80385 −0.211683
\(516\) 0 0
\(517\) 1.60770 0.0707064
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −6.80385 −0.298082 −0.149041 0.988831i \(-0.547619\pi\)
−0.149041 + 0.988831i \(0.547619\pi\)
\(522\) 0 0
\(523\) −2.00000 −0.0874539 −0.0437269 0.999044i \(-0.513923\pi\)
−0.0437269 + 0.999044i \(0.513923\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 5.07180 0.220931
\(528\) 0 0
\(529\) 18.7846 0.816722
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 1.39230 0.0603074
\(534\) 0 0
\(535\) 15.4641 0.668571
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −24.0000 −1.03375
\(540\) 0 0
\(541\) 13.0718 0.562000 0.281000 0.959708i \(-0.409334\pi\)
0.281000 + 0.959708i \(0.409334\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −9.85641 −0.422202
\(546\) 0 0
\(547\) 8.39230 0.358829 0.179415 0.983774i \(-0.442580\pi\)
0.179415 + 0.983774i \(0.442580\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 41.0718 1.74972
\(552\) 0 0
\(553\) −3.85641 −0.163991
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −40.1769 −1.70235 −0.851175 0.524882i \(-0.824110\pi\)
−0.851175 + 0.524882i \(0.824110\pi\)
\(558\) 0 0
\(559\) −1.46410 −0.0619249
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 13.8564 0.583978 0.291989 0.956422i \(-0.405683\pi\)
0.291989 + 0.956422i \(0.405683\pi\)
\(564\) 0 0
\(565\) 0.928203 0.0390498
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 12.1244 0.508279 0.254140 0.967168i \(-0.418208\pi\)
0.254140 + 0.967168i \(0.418208\pi\)
\(570\) 0 0
\(571\) −1.07180 −0.0448533 −0.0224266 0.999748i \(-0.507139\pi\)
−0.0224266 + 0.999748i \(0.507139\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −6.46410 −0.269572
\(576\) 0 0
\(577\) 16.7846 0.698752 0.349376 0.936983i \(-0.386394\pi\)
0.349376 + 0.936983i \(0.386394\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 4.14359 0.171905
\(582\) 0 0
\(583\) 19.1769 0.794227
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −1.60770 −0.0663567 −0.0331783 0.999449i \(-0.510563\pi\)
−0.0331783 + 0.999449i \(0.510563\pi\)
\(588\) 0 0
\(589\) −8.67949 −0.357632
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −3.46410 −0.142254 −0.0711268 0.997467i \(-0.522659\pi\)
−0.0711268 + 0.997467i \(0.522659\pi\)
\(594\) 0 0
\(595\) 0.928203 0.0380526
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −18.0000 −0.735460 −0.367730 0.929933i \(-0.619865\pi\)
−0.367730 + 0.929933i \(0.619865\pi\)
\(600\) 0 0
\(601\) −7.92820 −0.323398 −0.161699 0.986840i \(-0.551697\pi\)
−0.161699 + 0.986840i \(0.551697\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −1.00000 −0.0406558
\(606\) 0 0
\(607\) 35.1769 1.42779 0.713893 0.700254i \(-0.246930\pi\)
0.713893 + 0.700254i \(0.246930\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0.124356 0.00503089
\(612\) 0 0
\(613\) 39.9808 1.61481 0.807404 0.589999i \(-0.200872\pi\)
0.807404 + 0.589999i \(0.200872\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −1.60770 −0.0647234 −0.0323617 0.999476i \(-0.510303\pi\)
−0.0323617 + 0.999476i \(0.510303\pi\)
\(618\) 0 0
\(619\) −25.7846 −1.03637 −0.518185 0.855268i \(-0.673392\pi\)
−0.518185 + 0.855268i \(0.673392\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 3.21539 0.128822
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 27.7128 1.10498
\(630\) 0 0
\(631\) −35.7128 −1.42170 −0.710852 0.703341i \(-0.751691\pi\)
−0.710852 + 0.703341i \(0.751691\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −4.80385 −0.190635
\(636\) 0 0
\(637\) −1.85641 −0.0735535
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 44.7846 1.76889 0.884443 0.466648i \(-0.154539\pi\)
0.884443 + 0.466648i \(0.154539\pi\)
\(642\) 0 0
\(643\) 20.3923 0.804194 0.402097 0.915597i \(-0.368281\pi\)
0.402097 + 0.915597i \(0.368281\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −46.6410 −1.83365 −0.916824 0.399292i \(-0.869256\pi\)
−0.916824 + 0.399292i \(0.869256\pi\)
\(648\) 0 0
\(649\) −30.0000 −1.17760
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −0.928203 −0.0363234 −0.0181617 0.999835i \(-0.505781\pi\)
−0.0181617 + 0.999835i \(0.505781\pi\)
\(654\) 0 0
\(655\) 10.2679 0.401202
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −43.0526 −1.67709 −0.838545 0.544833i \(-0.816593\pi\)
−0.838545 + 0.544833i \(0.816593\pi\)
\(660\) 0 0
\(661\) −32.3923 −1.25991 −0.629957 0.776630i \(-0.716928\pi\)
−0.629957 + 0.776630i \(0.716928\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1.58846 −0.0615977
\(666\) 0 0
\(667\) 44.7846 1.73407
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 42.9282 1.65722
\(672\) 0 0
\(673\) −23.1769 −0.893404 −0.446702 0.894683i \(-0.647402\pi\)
−0.446702 + 0.894683i \(0.647402\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 33.2487 1.27785 0.638926 0.769268i \(-0.279379\pi\)
0.638926 + 0.769268i \(0.279379\pi\)
\(678\) 0 0
\(679\) −4.00000 −0.153506
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 33.7128 1.28998 0.644992 0.764189i \(-0.276860\pi\)
0.644992 + 0.764189i \(0.276860\pi\)
\(684\) 0 0
\(685\) −10.3923 −0.397070
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 1.48334 0.0565107
\(690\) 0 0
\(691\) −1.78461 −0.0678898 −0.0339449 0.999424i \(-0.510807\pi\)
−0.0339449 + 0.999424i \(0.510807\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −13.0000 −0.493118
\(696\) 0 0
\(697\) 18.0000 0.681799
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −6.67949 −0.252281 −0.126140 0.992012i \(-0.540259\pi\)
−0.126140 + 0.992012i \(0.540259\pi\)
\(702\) 0 0
\(703\) −47.4256 −1.78869
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −0.679492 −0.0255549
\(708\) 0 0
\(709\) 13.3205 0.500262 0.250131 0.968212i \(-0.419526\pi\)
0.250131 + 0.968212i \(0.419526\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −9.46410 −0.354433
\(714\) 0 0
\(715\) −0.928203 −0.0347128
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 47.5692 1.77403 0.887016 0.461738i \(-0.152774\pi\)
0.887016 + 0.461738i \(0.152774\pi\)
\(720\) 0 0
\(721\) −1.28719 −0.0479374
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −6.92820 −0.257307
\(726\) 0 0
\(727\) 39.1962 1.45370 0.726852 0.686794i \(-0.240982\pi\)
0.726852 + 0.686794i \(0.240982\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −18.9282 −0.700085
\(732\) 0 0
\(733\) −16.0000 −0.590973 −0.295487 0.955347i \(-0.595482\pi\)
−0.295487 + 0.955347i \(0.595482\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −27.7128 −1.02081
\(738\) 0 0
\(739\) 45.5692 1.67629 0.838145 0.545447i \(-0.183640\pi\)
0.838145 + 0.545447i \(0.183640\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 24.0000 0.880475 0.440237 0.897881i \(-0.354894\pi\)
0.440237 + 0.897881i \(0.354894\pi\)
\(744\) 0 0
\(745\) 18.0000 0.659469
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 4.14359 0.151404
\(750\) 0 0
\(751\) 18.7846 0.685460 0.342730 0.939434i \(-0.388648\pi\)
0.342730 + 0.939434i \(0.388648\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −2.39230 −0.0870649
\(756\) 0 0
\(757\) 19.1962 0.697696 0.348848 0.937179i \(-0.386573\pi\)
0.348848 + 0.937179i \(0.386573\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 10.2679 0.372213 0.186106 0.982530i \(-0.440413\pi\)
0.186106 + 0.982530i \(0.440413\pi\)
\(762\) 0 0
\(763\) −2.64102 −0.0956112
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −2.32051 −0.0837887
\(768\) 0 0
\(769\) −40.9282 −1.47591 −0.737954 0.674851i \(-0.764208\pi\)
−0.737954 + 0.674851i \(0.764208\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 11.0718 0.398225 0.199112 0.979977i \(-0.436194\pi\)
0.199112 + 0.979977i \(0.436194\pi\)
\(774\) 0 0
\(775\) 1.46410 0.0525921
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −30.8038 −1.10366
\(780\) 0 0
\(781\) −20.7846 −0.743732
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 10.1244 0.361354
\(786\) 0 0
\(787\) 34.0000 1.21197 0.605985 0.795476i \(-0.292779\pi\)
0.605985 + 0.795476i \(0.292779\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0.248711 0.00884316
\(792\) 0 0
\(793\) 3.32051 0.117915
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −43.8564 −1.55347 −0.776737 0.629825i \(-0.783126\pi\)
−0.776737 + 0.629825i \(0.783126\pi\)
\(798\) 0 0
\(799\) 1.60770 0.0568762
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −49.8564 −1.75939
\(804\) 0 0
\(805\) −1.73205 −0.0610468
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 20.4115 0.717632 0.358816 0.933408i \(-0.383181\pi\)
0.358816 + 0.933408i \(0.383181\pi\)
\(810\) 0 0
\(811\) 29.8564 1.04840 0.524200 0.851595i \(-0.324364\pi\)
0.524200 + 0.851595i \(0.324364\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −17.8564 −0.625483
\(816\) 0 0
\(817\) 32.3923 1.13326
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −6.67949 −0.233116 −0.116558 0.993184i \(-0.537186\pi\)
−0.116558 + 0.993184i \(0.537186\pi\)
\(822\) 0 0
\(823\) 9.32051 0.324892 0.162446 0.986717i \(-0.448062\pi\)
0.162446 + 0.986717i \(0.448062\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −20.1051 −0.699123 −0.349562 0.936913i \(-0.613670\pi\)
−0.349562 + 0.936913i \(0.613670\pi\)
\(828\) 0 0
\(829\) −45.5692 −1.58268 −0.791342 0.611373i \(-0.790617\pi\)
−0.791342 + 0.611373i \(0.790617\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −24.0000 −0.831551
\(834\) 0 0
\(835\) −6.92820 −0.239760
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −12.0000 −0.414286 −0.207143 0.978311i \(-0.566417\pi\)
−0.207143 + 0.978311i \(0.566417\pi\)
\(840\) 0 0
\(841\) 19.0000 0.655172
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 12.9282 0.444744
\(846\) 0 0
\(847\) −0.267949 −0.00920684
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −51.7128 −1.77269
\(852\) 0 0
\(853\) −48.7846 −1.67035 −0.835177 0.549982i \(-0.814635\pi\)
−0.835177 + 0.549982i \(0.814635\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 9.71281 0.331783 0.165892 0.986144i \(-0.446950\pi\)
0.165892 + 0.986144i \(0.446950\pi\)
\(858\) 0 0
\(859\) −11.2154 −0.382664 −0.191332 0.981525i \(-0.561281\pi\)
−0.191332 + 0.981525i \(0.561281\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 44.3205 1.50869 0.754344 0.656480i \(-0.227955\pi\)
0.754344 + 0.656480i \(0.227955\pi\)
\(864\) 0 0
\(865\) −14.3205 −0.486912
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 49.8564 1.69126
\(870\) 0 0
\(871\) −2.14359 −0.0726329
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0.267949 0.00905834
\(876\) 0 0
\(877\) 31.4449 1.06182 0.530909 0.847429i \(-0.321851\pi\)
0.530909 + 0.847429i \(0.321851\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 53.5692 1.80479 0.902396 0.430907i \(-0.141806\pi\)
0.902396 + 0.430907i \(0.141806\pi\)
\(882\) 0 0
\(883\) −16.5359 −0.556477 −0.278239 0.960512i \(-0.589751\pi\)
−0.278239 + 0.960512i \(0.589751\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 23.1051 0.775794 0.387897 0.921703i \(-0.373202\pi\)
0.387897 + 0.921703i \(0.373202\pi\)
\(888\) 0 0
\(889\) −1.28719 −0.0431709
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −2.75129 −0.0920684
\(894\) 0 0
\(895\) −12.1244 −0.405273
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −10.1436 −0.338308
\(900\) 0 0
\(901\) 19.1769 0.638876
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 19.4641 0.647009
\(906\) 0 0
\(907\) −55.5692 −1.84515 −0.922573 0.385823i \(-0.873918\pi\)
−0.922573 + 0.385823i \(0.873918\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −25.6077 −0.848421 −0.424210 0.905564i \(-0.639448\pi\)
−0.424210 + 0.905564i \(0.639448\pi\)
\(912\) 0 0
\(913\) −53.5692 −1.77288
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 2.75129 0.0908556
\(918\) 0 0
\(919\) 24.7846 0.817569 0.408784 0.912631i \(-0.365953\pi\)
0.408784 + 0.912631i \(0.365953\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −1.60770 −0.0529179
\(924\) 0 0
\(925\) 8.00000 0.263038
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 17.0718 0.560107 0.280054 0.959984i \(-0.409648\pi\)
0.280054 + 0.959984i \(0.409648\pi\)
\(930\) 0 0
\(931\) 41.0718 1.34607
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −12.0000 −0.392442
\(936\) 0 0
\(937\) 33.8564 1.10604 0.553020 0.833168i \(-0.313475\pi\)
0.553020 + 0.833168i \(0.313475\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −29.3205 −0.955821 −0.477911 0.878408i \(-0.658606\pi\)
−0.477911 + 0.878408i \(0.658606\pi\)
\(942\) 0 0
\(943\) −33.5885 −1.09379
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 21.4641 0.697490 0.348745 0.937218i \(-0.386608\pi\)
0.348745 + 0.937218i \(0.386608\pi\)
\(948\) 0 0
\(949\) −3.85641 −0.125184
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 30.2487 0.979852 0.489926 0.871764i \(-0.337024\pi\)
0.489926 + 0.871764i \(0.337024\pi\)
\(954\) 0 0
\(955\) 9.46410 0.306251
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −2.78461 −0.0899197
\(960\) 0 0
\(961\) −28.8564 −0.930852
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 16.0000 0.515058
\(966\) 0 0
\(967\) 14.3923 0.462825 0.231413 0.972856i \(-0.425665\pi\)
0.231413 + 0.972856i \(0.425665\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 43.3013 1.38960 0.694802 0.719201i \(-0.255492\pi\)
0.694802 + 0.719201i \(0.255492\pi\)
\(972\) 0 0
\(973\) −3.48334 −0.111671
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 42.0000 1.34370 0.671850 0.740688i \(-0.265500\pi\)
0.671850 + 0.740688i \(0.265500\pi\)
\(978\) 0 0
\(979\) −41.5692 −1.32856
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 60.4974 1.92957 0.964784 0.263043i \(-0.0847262\pi\)
0.964784 + 0.263043i \(0.0847262\pi\)
\(984\) 0 0
\(985\) 18.4641 0.588315
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 35.3205 1.12313
\(990\) 0 0
\(991\) −52.7846 −1.67676 −0.838379 0.545087i \(-0.816496\pi\)
−0.838379 + 0.545087i \(0.816496\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 26.2487 0.832140
\(996\) 0 0
\(997\) 7.19615 0.227904 0.113952 0.993486i \(-0.463649\pi\)
0.113952 + 0.993486i \(0.463649\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6480.2.a.bb.1.2 2
3.2 odd 2 6480.2.a.bj.1.2 2
4.3 odd 2 810.2.a.j.1.1 2
12.11 even 2 810.2.a.l.1.1 yes 2
20.3 even 4 4050.2.c.z.649.4 4
20.7 even 4 4050.2.c.z.649.1 4
20.19 odd 2 4050.2.a.bt.1.2 2
36.7 odd 6 810.2.e.n.271.2 4
36.11 even 6 810.2.e.m.271.2 4
36.23 even 6 810.2.e.m.541.2 4
36.31 odd 6 810.2.e.n.541.2 4
60.23 odd 4 4050.2.c.x.649.2 4
60.47 odd 4 4050.2.c.x.649.3 4
60.59 even 2 4050.2.a.bk.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
810.2.a.j.1.1 2 4.3 odd 2
810.2.a.l.1.1 yes 2 12.11 even 2
810.2.e.m.271.2 4 36.11 even 6
810.2.e.m.541.2 4 36.23 even 6
810.2.e.n.271.2 4 36.7 odd 6
810.2.e.n.541.2 4 36.31 odd 6
4050.2.a.bk.1.2 2 60.59 even 2
4050.2.a.bt.1.2 2 20.19 odd 2
4050.2.c.x.649.2 4 60.23 odd 4
4050.2.c.x.649.3 4 60.47 odd 4
4050.2.c.z.649.1 4 20.7 even 4
4050.2.c.z.649.4 4 20.3 even 4
6480.2.a.bb.1.2 2 1.1 even 1 trivial
6480.2.a.bj.1.2 2 3.2 odd 2