Properties

Label 6480.2.a.bb.1.1
Level $6480$
Weight $2$
Character 6480.1
Self dual yes
Analytic conductor $51.743$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6480,2,Mod(1,6480)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6480, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6480.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6480 = 2^{4} \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6480.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(51.7430605098\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 810)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.73205\) of defining polynomial
Character \(\chi\) \(=\) 6480.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{5} -3.73205 q^{7} -3.46410 q^{11} +3.73205 q^{13} -3.46410 q^{17} +7.92820 q^{19} +0.464102 q^{23} +1.00000 q^{25} +6.92820 q^{29} -5.46410 q^{31} +3.73205 q^{35} +8.00000 q^{37} -5.19615 q^{41} +1.46410 q^{43} -6.46410 q^{47} +6.92820 q^{49} +12.4641 q^{53} +3.46410 q^{55} +8.66025 q^{59} -8.39230 q^{61} -3.73205 q^{65} -8.00000 q^{67} -6.00000 q^{71} +6.39230 q^{73} +12.9282 q^{77} -6.39230 q^{79} -8.53590 q^{83} +3.46410 q^{85} -12.0000 q^{89} -13.9282 q^{91} -7.92820 q^{95} +1.07180 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{5} - 4 q^{7} + 4 q^{13} + 2 q^{19} - 6 q^{23} + 2 q^{25} - 4 q^{31} + 4 q^{35} + 16 q^{37} - 4 q^{43} - 6 q^{47} + 18 q^{53} + 4 q^{61} - 4 q^{65} - 16 q^{67} - 12 q^{71} - 8 q^{73} + 12 q^{77}+ \cdots + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −3.73205 −1.41058 −0.705291 0.708918i \(-0.749184\pi\)
−0.705291 + 0.708918i \(0.749184\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −3.46410 −1.04447 −0.522233 0.852803i \(-0.674901\pi\)
−0.522233 + 0.852803i \(0.674901\pi\)
\(12\) 0 0
\(13\) 3.73205 1.03508 0.517542 0.855658i \(-0.326847\pi\)
0.517542 + 0.855658i \(0.326847\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.46410 −0.840168 −0.420084 0.907485i \(-0.637999\pi\)
−0.420084 + 0.907485i \(0.637999\pi\)
\(18\) 0 0
\(19\) 7.92820 1.81885 0.909427 0.415863i \(-0.136520\pi\)
0.909427 + 0.415863i \(0.136520\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.464102 0.0967719 0.0483859 0.998829i \(-0.484592\pi\)
0.0483859 + 0.998829i \(0.484592\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 6.92820 1.28654 0.643268 0.765641i \(-0.277578\pi\)
0.643268 + 0.765641i \(0.277578\pi\)
\(30\) 0 0
\(31\) −5.46410 −0.981382 −0.490691 0.871334i \(-0.663256\pi\)
−0.490691 + 0.871334i \(0.663256\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 3.73205 0.630832
\(36\) 0 0
\(37\) 8.00000 1.31519 0.657596 0.753371i \(-0.271573\pi\)
0.657596 + 0.753371i \(0.271573\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −5.19615 −0.811503 −0.405751 0.913984i \(-0.632990\pi\)
−0.405751 + 0.913984i \(0.632990\pi\)
\(42\) 0 0
\(43\) 1.46410 0.223273 0.111637 0.993749i \(-0.464391\pi\)
0.111637 + 0.993749i \(0.464391\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −6.46410 −0.942886 −0.471443 0.881897i \(-0.656267\pi\)
−0.471443 + 0.881897i \(0.656267\pi\)
\(48\) 0 0
\(49\) 6.92820 0.989743
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 12.4641 1.71208 0.856038 0.516913i \(-0.172919\pi\)
0.856038 + 0.516913i \(0.172919\pi\)
\(54\) 0 0
\(55\) 3.46410 0.467099
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 8.66025 1.12747 0.563735 0.825956i \(-0.309364\pi\)
0.563735 + 0.825956i \(0.309364\pi\)
\(60\) 0 0
\(61\) −8.39230 −1.07452 −0.537262 0.843415i \(-0.680541\pi\)
−0.537262 + 0.843415i \(0.680541\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −3.73205 −0.462904
\(66\) 0 0
\(67\) −8.00000 −0.977356 −0.488678 0.872464i \(-0.662521\pi\)
−0.488678 + 0.872464i \(0.662521\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −6.00000 −0.712069 −0.356034 0.934473i \(-0.615871\pi\)
−0.356034 + 0.934473i \(0.615871\pi\)
\(72\) 0 0
\(73\) 6.39230 0.748163 0.374081 0.927396i \(-0.377958\pi\)
0.374081 + 0.927396i \(0.377958\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 12.9282 1.47331
\(78\) 0 0
\(79\) −6.39230 −0.719190 −0.359595 0.933108i \(-0.617085\pi\)
−0.359595 + 0.933108i \(0.617085\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −8.53590 −0.936937 −0.468468 0.883480i \(-0.655194\pi\)
−0.468468 + 0.883480i \(0.655194\pi\)
\(84\) 0 0
\(85\) 3.46410 0.375735
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −12.0000 −1.27200 −0.635999 0.771690i \(-0.719412\pi\)
−0.635999 + 0.771690i \(0.719412\pi\)
\(90\) 0 0
\(91\) −13.9282 −1.46007
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −7.92820 −0.813416
\(96\) 0 0
\(97\) 1.07180 0.108824 0.0544122 0.998519i \(-0.482671\pi\)
0.0544122 + 0.998519i \(0.482671\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 9.46410 0.941713 0.470857 0.882210i \(-0.343945\pi\)
0.470857 + 0.882210i \(0.343945\pi\)
\(102\) 0 0
\(103\) 15.1962 1.49732 0.748661 0.662953i \(-0.230697\pi\)
0.748661 + 0.662953i \(0.230697\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −8.53590 −0.825196 −0.412598 0.910913i \(-0.635379\pi\)
−0.412598 + 0.910913i \(0.635379\pi\)
\(108\) 0 0
\(109\) −17.8564 −1.71033 −0.855167 0.518353i \(-0.826545\pi\)
−0.855167 + 0.518353i \(0.826545\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 12.9282 1.21618 0.608092 0.793867i \(-0.291935\pi\)
0.608092 + 0.793867i \(0.291935\pi\)
\(114\) 0 0
\(115\) −0.464102 −0.0432777
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 12.9282 1.18513
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 15.1962 1.34844 0.674220 0.738530i \(-0.264480\pi\)
0.674220 + 0.738530i \(0.264480\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −13.7321 −1.19977 −0.599887 0.800084i \(-0.704788\pi\)
−0.599887 + 0.800084i \(0.704788\pi\)
\(132\) 0 0
\(133\) −29.5885 −2.56564
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −10.3923 −0.887875 −0.443937 0.896058i \(-0.646419\pi\)
−0.443937 + 0.896058i \(0.646419\pi\)
\(138\) 0 0
\(139\) 13.0000 1.10265 0.551323 0.834292i \(-0.314123\pi\)
0.551323 + 0.834292i \(0.314123\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −12.9282 −1.08111
\(144\) 0 0
\(145\) −6.92820 −0.575356
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −18.0000 −1.47462 −0.737309 0.675556i \(-0.763904\pi\)
−0.737309 + 0.675556i \(0.763904\pi\)
\(150\) 0 0
\(151\) −18.3923 −1.49674 −0.748372 0.663279i \(-0.769164\pi\)
−0.748372 + 0.663279i \(0.769164\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 5.46410 0.438887
\(156\) 0 0
\(157\) 14.1244 1.12725 0.563623 0.826032i \(-0.309407\pi\)
0.563623 + 0.826032i \(0.309407\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −1.73205 −0.136505
\(162\) 0 0
\(163\) −9.85641 −0.772013 −0.386007 0.922496i \(-0.626146\pi\)
−0.386007 + 0.922496i \(0.626146\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −6.92820 −0.536120 −0.268060 0.963402i \(-0.586383\pi\)
−0.268060 + 0.963402i \(0.586383\pi\)
\(168\) 0 0
\(169\) 0.928203 0.0714002
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −20.3205 −1.54494 −0.772470 0.635051i \(-0.780979\pi\)
−0.772470 + 0.635051i \(0.780979\pi\)
\(174\) 0 0
\(175\) −3.73205 −0.282117
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −12.1244 −0.906217 −0.453108 0.891455i \(-0.649685\pi\)
−0.453108 + 0.891455i \(0.649685\pi\)
\(180\) 0 0
\(181\) −12.5359 −0.931786 −0.465893 0.884841i \(-0.654267\pi\)
−0.465893 + 0.884841i \(0.654267\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −8.00000 −0.588172
\(186\) 0 0
\(187\) 12.0000 0.877527
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −2.53590 −0.183491 −0.0917456 0.995782i \(-0.529245\pi\)
−0.0917456 + 0.995782i \(0.529245\pi\)
\(192\) 0 0
\(193\) −16.0000 −1.15171 −0.575853 0.817554i \(-0.695330\pi\)
−0.575853 + 0.817554i \(0.695330\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −11.5359 −0.821899 −0.410949 0.911658i \(-0.634803\pi\)
−0.410949 + 0.911658i \(0.634803\pi\)
\(198\) 0 0
\(199\) 22.2487 1.57717 0.788585 0.614926i \(-0.210814\pi\)
0.788585 + 0.614926i \(0.210814\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −25.8564 −1.81476
\(204\) 0 0
\(205\) 5.19615 0.362915
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −27.4641 −1.89973
\(210\) 0 0
\(211\) 8.85641 0.609700 0.304850 0.952400i \(-0.401394\pi\)
0.304850 + 0.952400i \(0.401394\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −1.46410 −0.0998509
\(216\) 0 0
\(217\) 20.3923 1.38432
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −12.9282 −0.869645
\(222\) 0 0
\(223\) 12.5359 0.839466 0.419733 0.907648i \(-0.362124\pi\)
0.419733 + 0.907648i \(0.362124\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −16.3923 −1.08800 −0.543998 0.839087i \(-0.683090\pi\)
−0.543998 + 0.839087i \(0.683090\pi\)
\(228\) 0 0
\(229\) 21.8564 1.44431 0.722156 0.691730i \(-0.243151\pi\)
0.722156 + 0.691730i \(0.243151\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −12.0000 −0.786146 −0.393073 0.919507i \(-0.628588\pi\)
−0.393073 + 0.919507i \(0.628588\pi\)
\(234\) 0 0
\(235\) 6.46410 0.421671
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 8.53590 0.552141 0.276071 0.961137i \(-0.410968\pi\)
0.276071 + 0.961137i \(0.410968\pi\)
\(240\) 0 0
\(241\) −16.9282 −1.09044 −0.545221 0.838293i \(-0.683554\pi\)
−0.545221 + 0.838293i \(0.683554\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −6.92820 −0.442627
\(246\) 0 0
\(247\) 29.5885 1.88267
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 12.1244 0.765283 0.382641 0.923897i \(-0.375015\pi\)
0.382641 + 0.923897i \(0.375015\pi\)
\(252\) 0 0
\(253\) −1.60770 −0.101075
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −31.8564 −1.98715 −0.993574 0.113184i \(-0.963895\pi\)
−0.993574 + 0.113184i \(0.963895\pi\)
\(258\) 0 0
\(259\) −29.8564 −1.85519
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 8.32051 0.513065 0.256532 0.966536i \(-0.417420\pi\)
0.256532 + 0.966536i \(0.417420\pi\)
\(264\) 0 0
\(265\) −12.4641 −0.765664
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −12.9282 −0.788246 −0.394123 0.919058i \(-0.628952\pi\)
−0.394123 + 0.919058i \(0.628952\pi\)
\(270\) 0 0
\(271\) −14.0000 −0.850439 −0.425220 0.905090i \(-0.639803\pi\)
−0.425220 + 0.905090i \(0.639803\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −3.46410 −0.208893
\(276\) 0 0
\(277\) 12.2679 0.737110 0.368555 0.929606i \(-0.379853\pi\)
0.368555 + 0.929606i \(0.379853\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 7.05256 0.420720 0.210360 0.977624i \(-0.432536\pi\)
0.210360 + 0.977624i \(0.432536\pi\)
\(282\) 0 0
\(283\) 3.32051 0.197384 0.0986919 0.995118i \(-0.468534\pi\)
0.0986919 + 0.995118i \(0.468534\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 19.3923 1.14469
\(288\) 0 0
\(289\) −5.00000 −0.294118
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 7.39230 0.431863 0.215932 0.976409i \(-0.430721\pi\)
0.215932 + 0.976409i \(0.430721\pi\)
\(294\) 0 0
\(295\) −8.66025 −0.504219
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 1.73205 0.100167
\(300\) 0 0
\(301\) −5.46410 −0.314946
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 8.39230 0.480542
\(306\) 0 0
\(307\) −12.3923 −0.707266 −0.353633 0.935384i \(-0.615054\pi\)
−0.353633 + 0.935384i \(0.615054\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −8.53590 −0.484026 −0.242013 0.970273i \(-0.577808\pi\)
−0.242013 + 0.970273i \(0.577808\pi\)
\(312\) 0 0
\(313\) −3.32051 −0.187686 −0.0938431 0.995587i \(-0.529915\pi\)
−0.0938431 + 0.995587i \(0.529915\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −17.5359 −0.984914 −0.492457 0.870337i \(-0.663901\pi\)
−0.492457 + 0.870337i \(0.663901\pi\)
\(318\) 0 0
\(319\) −24.0000 −1.34374
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −27.4641 −1.52814
\(324\) 0 0
\(325\) 3.73205 0.207017
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 24.1244 1.33002
\(330\) 0 0
\(331\) −8.00000 −0.439720 −0.219860 0.975531i \(-0.570560\pi\)
−0.219860 + 0.975531i \(0.570560\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 8.00000 0.437087
\(336\) 0 0
\(337\) 7.07180 0.385225 0.192613 0.981275i \(-0.438304\pi\)
0.192613 + 0.981275i \(0.438304\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 18.9282 1.02502
\(342\) 0 0
\(343\) 0.267949 0.0144679
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 14.7846 0.793679 0.396840 0.917888i \(-0.370107\pi\)
0.396840 + 0.917888i \(0.370107\pi\)
\(348\) 0 0
\(349\) 2.00000 0.107058 0.0535288 0.998566i \(-0.482953\pi\)
0.0535288 + 0.998566i \(0.482953\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 22.3923 1.19182 0.595911 0.803050i \(-0.296791\pi\)
0.595911 + 0.803050i \(0.296791\pi\)
\(354\) 0 0
\(355\) 6.00000 0.318447
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 8.53590 0.450507 0.225254 0.974300i \(-0.427679\pi\)
0.225254 + 0.974300i \(0.427679\pi\)
\(360\) 0 0
\(361\) 43.8564 2.30823
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −6.39230 −0.334589
\(366\) 0 0
\(367\) −6.39230 −0.333676 −0.166838 0.985984i \(-0.553356\pi\)
−0.166838 + 0.985984i \(0.553356\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −46.5167 −2.41502
\(372\) 0 0
\(373\) −10.9282 −0.565841 −0.282920 0.959143i \(-0.591303\pi\)
−0.282920 + 0.959143i \(0.591303\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 25.8564 1.33167
\(378\) 0 0
\(379\) −36.8564 −1.89319 −0.946593 0.322430i \(-0.895500\pi\)
−0.946593 + 0.322430i \(0.895500\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 6.46410 0.330300 0.165150 0.986268i \(-0.447189\pi\)
0.165150 + 0.986268i \(0.447189\pi\)
\(384\) 0 0
\(385\) −12.9282 −0.658882
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 23.3205 1.18240 0.591198 0.806526i \(-0.298655\pi\)
0.591198 + 0.806526i \(0.298655\pi\)
\(390\) 0 0
\(391\) −1.60770 −0.0813046
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 6.39230 0.321632
\(396\) 0 0
\(397\) 9.85641 0.494679 0.247339 0.968929i \(-0.420444\pi\)
0.247339 + 0.968929i \(0.420444\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −39.5885 −1.97695 −0.988477 0.151374i \(-0.951630\pi\)
−0.988477 + 0.151374i \(0.951630\pi\)
\(402\) 0 0
\(403\) −20.3923 −1.01581
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −27.7128 −1.37367
\(408\) 0 0
\(409\) −13.9282 −0.688705 −0.344353 0.938840i \(-0.611902\pi\)
−0.344353 + 0.938840i \(0.611902\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −32.3205 −1.59039
\(414\) 0 0
\(415\) 8.53590 0.419011
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 3.46410 0.169232 0.0846162 0.996414i \(-0.473034\pi\)
0.0846162 + 0.996414i \(0.473034\pi\)
\(420\) 0 0
\(421\) 9.60770 0.468250 0.234125 0.972206i \(-0.424777\pi\)
0.234125 + 0.972206i \(0.424777\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −3.46410 −0.168034
\(426\) 0 0
\(427\) 31.3205 1.51571
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 28.3923 1.36761 0.683805 0.729665i \(-0.260324\pi\)
0.683805 + 0.729665i \(0.260324\pi\)
\(432\) 0 0
\(433\) 2.92820 0.140720 0.0703602 0.997522i \(-0.477585\pi\)
0.0703602 + 0.997522i \(0.477585\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 3.67949 0.176014
\(438\) 0 0
\(439\) −18.3923 −0.877817 −0.438908 0.898532i \(-0.644635\pi\)
−0.438908 + 0.898532i \(0.644635\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 31.8564 1.51354 0.756772 0.653679i \(-0.226775\pi\)
0.756772 + 0.653679i \(0.226775\pi\)
\(444\) 0 0
\(445\) 12.0000 0.568855
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −32.9090 −1.55307 −0.776535 0.630074i \(-0.783025\pi\)
−0.776535 + 0.630074i \(0.783025\pi\)
\(450\) 0 0
\(451\) 18.0000 0.847587
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 13.9282 0.652964
\(456\) 0 0
\(457\) −20.3923 −0.953912 −0.476956 0.878927i \(-0.658260\pi\)
−0.476956 + 0.878927i \(0.658260\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 8.78461 0.409140 0.204570 0.978852i \(-0.434420\pi\)
0.204570 + 0.978852i \(0.434420\pi\)
\(462\) 0 0
\(463\) 4.80385 0.223254 0.111627 0.993750i \(-0.464394\pi\)
0.111627 + 0.993750i \(0.464394\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −6.00000 −0.277647 −0.138823 0.990317i \(-0.544332\pi\)
−0.138823 + 0.990317i \(0.544332\pi\)
\(468\) 0 0
\(469\) 29.8564 1.37864
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −5.07180 −0.233201
\(474\) 0 0
\(475\) 7.92820 0.363771
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −12.9282 −0.590705 −0.295352 0.955388i \(-0.595437\pi\)
−0.295352 + 0.955388i \(0.595437\pi\)
\(480\) 0 0
\(481\) 29.8564 1.36133
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −1.07180 −0.0486678
\(486\) 0 0
\(487\) 27.4449 1.24365 0.621823 0.783158i \(-0.286392\pi\)
0.621823 + 0.783158i \(0.286392\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 12.1244 0.547165 0.273582 0.961849i \(-0.411791\pi\)
0.273582 + 0.961849i \(0.411791\pi\)
\(492\) 0 0
\(493\) −24.0000 −1.08091
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 22.3923 1.00443
\(498\) 0 0
\(499\) 3.78461 0.169422 0.0847112 0.996406i \(-0.473003\pi\)
0.0847112 + 0.996406i \(0.473003\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 5.07180 0.226140 0.113070 0.993587i \(-0.463932\pi\)
0.113070 + 0.993587i \(0.463932\pi\)
\(504\) 0 0
\(505\) −9.46410 −0.421147
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −18.0000 −0.797836 −0.398918 0.916987i \(-0.630614\pi\)
−0.398918 + 0.916987i \(0.630614\pi\)
\(510\) 0 0
\(511\) −23.8564 −1.05535
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −15.1962 −0.669622
\(516\) 0 0
\(517\) 22.3923 0.984812
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −17.1962 −0.753377 −0.376689 0.926340i \(-0.622937\pi\)
−0.376689 + 0.926340i \(0.622937\pi\)
\(522\) 0 0
\(523\) −2.00000 −0.0874539 −0.0437269 0.999044i \(-0.513923\pi\)
−0.0437269 + 0.999044i \(0.513923\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 18.9282 0.824525
\(528\) 0 0
\(529\) −22.7846 −0.990635
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −19.3923 −0.839974
\(534\) 0 0
\(535\) 8.53590 0.369039
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −24.0000 −1.03375
\(540\) 0 0
\(541\) 26.9282 1.15773 0.578867 0.815422i \(-0.303495\pi\)
0.578867 + 0.815422i \(0.303495\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 17.8564 0.764884
\(546\) 0 0
\(547\) −12.3923 −0.529857 −0.264928 0.964268i \(-0.585348\pi\)
−0.264928 + 0.964268i \(0.585348\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 54.9282 2.34002
\(552\) 0 0
\(553\) 23.8564 1.01448
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 22.1769 0.939666 0.469833 0.882755i \(-0.344314\pi\)
0.469833 + 0.882755i \(0.344314\pi\)
\(558\) 0 0
\(559\) 5.46410 0.231107
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −13.8564 −0.583978 −0.291989 0.956422i \(-0.594317\pi\)
−0.291989 + 0.956422i \(0.594317\pi\)
\(564\) 0 0
\(565\) −12.9282 −0.543894
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −12.1244 −0.508279 −0.254140 0.967168i \(-0.581792\pi\)
−0.254140 + 0.967168i \(0.581792\pi\)
\(570\) 0 0
\(571\) −14.9282 −0.624726 −0.312363 0.949963i \(-0.601120\pi\)
−0.312363 + 0.949963i \(0.601120\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0.464102 0.0193544
\(576\) 0 0
\(577\) −24.7846 −1.03180 −0.515898 0.856650i \(-0.672542\pi\)
−0.515898 + 0.856650i \(0.672542\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 31.8564 1.32163
\(582\) 0 0
\(583\) −43.1769 −1.78821
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −22.3923 −0.924229 −0.462115 0.886820i \(-0.652909\pi\)
−0.462115 + 0.886820i \(0.652909\pi\)
\(588\) 0 0
\(589\) −43.3205 −1.78499
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 3.46410 0.142254 0.0711268 0.997467i \(-0.477341\pi\)
0.0711268 + 0.997467i \(0.477341\pi\)
\(594\) 0 0
\(595\) −12.9282 −0.530005
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −18.0000 −0.735460 −0.367730 0.929933i \(-0.619865\pi\)
−0.367730 + 0.929933i \(0.619865\pi\)
\(600\) 0 0
\(601\) 5.92820 0.241816 0.120908 0.992664i \(-0.461419\pi\)
0.120908 + 0.992664i \(0.461419\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −1.00000 −0.0406558
\(606\) 0 0
\(607\) −27.1769 −1.10308 −0.551538 0.834149i \(-0.685959\pi\)
−0.551538 + 0.834149i \(0.685959\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −24.1244 −0.975967
\(612\) 0 0
\(613\) −11.9808 −0.483898 −0.241949 0.970289i \(-0.577787\pi\)
−0.241949 + 0.970289i \(0.577787\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −22.3923 −0.901480 −0.450740 0.892655i \(-0.648840\pi\)
−0.450740 + 0.892655i \(0.648840\pi\)
\(618\) 0 0
\(619\) 15.7846 0.634437 0.317219 0.948352i \(-0.397251\pi\)
0.317219 + 0.948352i \(0.397251\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 44.7846 1.79426
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −27.7128 −1.10498
\(630\) 0 0
\(631\) 19.7128 0.784755 0.392377 0.919804i \(-0.371653\pi\)
0.392377 + 0.919804i \(0.371653\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −15.1962 −0.603041
\(636\) 0 0
\(637\) 25.8564 1.02447
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 3.21539 0.127000 0.0635001 0.997982i \(-0.479774\pi\)
0.0635001 + 0.997982i \(0.479774\pi\)
\(642\) 0 0
\(643\) −0.392305 −0.0154710 −0.00773550 0.999970i \(-0.502462\pi\)
−0.00773550 + 0.999970i \(0.502462\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 22.6410 0.890110 0.445055 0.895503i \(-0.353184\pi\)
0.445055 + 0.895503i \(0.353184\pi\)
\(648\) 0 0
\(649\) −30.0000 −1.17760
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 12.9282 0.505920 0.252960 0.967477i \(-0.418596\pi\)
0.252960 + 0.967477i \(0.418596\pi\)
\(654\) 0 0
\(655\) 13.7321 0.536556
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −4.94744 −0.192725 −0.0963625 0.995346i \(-0.530721\pi\)
−0.0963625 + 0.995346i \(0.530721\pi\)
\(660\) 0 0
\(661\) −11.6077 −0.451487 −0.225744 0.974187i \(-0.572481\pi\)
−0.225744 + 0.974187i \(0.572481\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 29.5885 1.14739
\(666\) 0 0
\(667\) 3.21539 0.124500
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 29.0718 1.12230
\(672\) 0 0
\(673\) 39.1769 1.51016 0.755080 0.655633i \(-0.227598\pi\)
0.755080 + 0.655633i \(0.227598\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −15.2487 −0.586056 −0.293028 0.956104i \(-0.594663\pi\)
−0.293028 + 0.956104i \(0.594663\pi\)
\(678\) 0 0
\(679\) −4.00000 −0.153506
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −21.7128 −0.830818 −0.415409 0.909635i \(-0.636361\pi\)
−0.415409 + 0.909635i \(0.636361\pi\)
\(684\) 0 0
\(685\) 10.3923 0.397070
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 46.5167 1.77214
\(690\) 0 0
\(691\) 39.7846 1.51348 0.756739 0.653717i \(-0.226791\pi\)
0.756739 + 0.653717i \(0.226791\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −13.0000 −0.493118
\(696\) 0 0
\(697\) 18.0000 0.681799
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −41.3205 −1.56065 −0.780327 0.625372i \(-0.784947\pi\)
−0.780327 + 0.625372i \(0.784947\pi\)
\(702\) 0 0
\(703\) 63.4256 2.39214
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −35.3205 −1.32836
\(708\) 0 0
\(709\) −21.3205 −0.800708 −0.400354 0.916360i \(-0.631113\pi\)
−0.400354 + 0.916360i \(0.631113\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −2.53590 −0.0949701
\(714\) 0 0
\(715\) 12.9282 0.483487
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −35.5692 −1.32651 −0.663254 0.748394i \(-0.730825\pi\)
−0.663254 + 0.748394i \(0.730825\pi\)
\(720\) 0 0
\(721\) −56.7128 −2.11210
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 6.92820 0.257307
\(726\) 0 0
\(727\) 28.8038 1.06828 0.534138 0.845397i \(-0.320636\pi\)
0.534138 + 0.845397i \(0.320636\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −5.07180 −0.187587
\(732\) 0 0
\(733\) −16.0000 −0.590973 −0.295487 0.955347i \(-0.595482\pi\)
−0.295487 + 0.955347i \(0.595482\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 27.7128 1.02081
\(738\) 0 0
\(739\) −37.5692 −1.38201 −0.691003 0.722852i \(-0.742831\pi\)
−0.691003 + 0.722852i \(0.742831\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 24.0000 0.880475 0.440237 0.897881i \(-0.354894\pi\)
0.440237 + 0.897881i \(0.354894\pi\)
\(744\) 0 0
\(745\) 18.0000 0.659469
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 31.8564 1.16401
\(750\) 0 0
\(751\) −22.7846 −0.831422 −0.415711 0.909497i \(-0.636467\pi\)
−0.415711 + 0.909497i \(0.636467\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 18.3923 0.669365
\(756\) 0 0
\(757\) 8.80385 0.319981 0.159991 0.987119i \(-0.448854\pi\)
0.159991 + 0.987119i \(0.448854\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 13.7321 0.497786 0.248893 0.968531i \(-0.419933\pi\)
0.248893 + 0.968531i \(0.419933\pi\)
\(762\) 0 0
\(763\) 66.6410 2.41257
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 32.3205 1.16703
\(768\) 0 0
\(769\) −27.0718 −0.976234 −0.488117 0.872778i \(-0.662316\pi\)
−0.488117 + 0.872778i \(0.662316\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 24.9282 0.896605 0.448303 0.893882i \(-0.352029\pi\)
0.448303 + 0.893882i \(0.352029\pi\)
\(774\) 0 0
\(775\) −5.46410 −0.196276
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −41.1962 −1.47601
\(780\) 0 0
\(781\) 20.7846 0.743732
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −14.1244 −0.504120
\(786\) 0 0
\(787\) 34.0000 1.21197 0.605985 0.795476i \(-0.292779\pi\)
0.605985 + 0.795476i \(0.292779\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −48.2487 −1.71553
\(792\) 0 0
\(793\) −31.3205 −1.11222
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −16.1436 −0.571835 −0.285918 0.958254i \(-0.592298\pi\)
−0.285918 + 0.958254i \(0.592298\pi\)
\(798\) 0 0
\(799\) 22.3923 0.792183
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −22.1436 −0.781430
\(804\) 0 0
\(805\) 1.73205 0.0610468
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 51.5885 1.81375 0.906877 0.421396i \(-0.138460\pi\)
0.906877 + 0.421396i \(0.138460\pi\)
\(810\) 0 0
\(811\) 2.14359 0.0752717 0.0376359 0.999292i \(-0.488017\pi\)
0.0376359 + 0.999292i \(0.488017\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 9.85641 0.345255
\(816\) 0 0
\(817\) 11.6077 0.406102
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −41.3205 −1.44210 −0.721048 0.692885i \(-0.756339\pi\)
−0.721048 + 0.692885i \(0.756339\pi\)
\(822\) 0 0
\(823\) −25.3205 −0.882617 −0.441309 0.897355i \(-0.645486\pi\)
−0.441309 + 0.897355i \(0.645486\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 56.1051 1.95097 0.975483 0.220075i \(-0.0706301\pi\)
0.975483 + 0.220075i \(0.0706301\pi\)
\(828\) 0 0
\(829\) 37.5692 1.30483 0.652416 0.757861i \(-0.273755\pi\)
0.652416 + 0.757861i \(0.273755\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −24.0000 −0.831551
\(834\) 0 0
\(835\) 6.92820 0.239760
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −12.0000 −0.414286 −0.207143 0.978311i \(-0.566417\pi\)
−0.207143 + 0.978311i \(0.566417\pi\)
\(840\) 0 0
\(841\) 19.0000 0.655172
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −0.928203 −0.0319312
\(846\) 0 0
\(847\) −3.73205 −0.128235
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 3.71281 0.127274
\(852\) 0 0
\(853\) −7.21539 −0.247050 −0.123525 0.992341i \(-0.539420\pi\)
−0.123525 + 0.992341i \(0.539420\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −45.7128 −1.56152 −0.780760 0.624831i \(-0.785168\pi\)
−0.780760 + 0.624831i \(0.785168\pi\)
\(858\) 0 0
\(859\) −52.7846 −1.80099 −0.900494 0.434869i \(-0.856795\pi\)
−0.900494 + 0.434869i \(0.856795\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 9.67949 0.329494 0.164747 0.986336i \(-0.447319\pi\)
0.164747 + 0.986336i \(0.447319\pi\)
\(864\) 0 0
\(865\) 20.3205 0.690918
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 22.1436 0.751170
\(870\) 0 0
\(871\) −29.8564 −1.01165
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 3.73205 0.126166
\(876\) 0 0
\(877\) −27.4449 −0.926747 −0.463374 0.886163i \(-0.653361\pi\)
−0.463374 + 0.886163i \(0.653361\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −29.5692 −0.996212 −0.498106 0.867116i \(-0.665971\pi\)
−0.498106 + 0.867116i \(0.665971\pi\)
\(882\) 0 0
\(883\) −23.4641 −0.789630 −0.394815 0.918761i \(-0.629191\pi\)
−0.394815 + 0.918761i \(0.629191\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −53.1051 −1.78310 −0.891548 0.452927i \(-0.850380\pi\)
−0.891548 + 0.452927i \(0.850380\pi\)
\(888\) 0 0
\(889\) −56.7128 −1.90209
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −51.2487 −1.71497
\(894\) 0 0
\(895\) 12.1244 0.405273
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −37.8564 −1.26258
\(900\) 0 0
\(901\) −43.1769 −1.43843
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 12.5359 0.416707
\(906\) 0 0
\(907\) 27.5692 0.915421 0.457710 0.889101i \(-0.348670\pi\)
0.457710 + 0.889101i \(0.348670\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −46.3923 −1.53705 −0.768523 0.639822i \(-0.779008\pi\)
−0.768523 + 0.639822i \(0.779008\pi\)
\(912\) 0 0
\(913\) 29.5692 0.978598
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 51.2487 1.69238
\(918\) 0 0
\(919\) −16.7846 −0.553673 −0.276837 0.960917i \(-0.589286\pi\)
−0.276837 + 0.960917i \(0.589286\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −22.3923 −0.737052
\(924\) 0 0
\(925\) 8.00000 0.263038
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 30.9282 1.01472 0.507361 0.861734i \(-0.330621\pi\)
0.507361 + 0.861734i \(0.330621\pi\)
\(930\) 0 0
\(931\) 54.9282 1.80020
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −12.0000 −0.392442
\(936\) 0 0
\(937\) 6.14359 0.200702 0.100351 0.994952i \(-0.468003\pi\)
0.100351 + 0.994952i \(0.468003\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 5.32051 0.173444 0.0867218 0.996233i \(-0.472361\pi\)
0.0867218 + 0.996233i \(0.472361\pi\)
\(942\) 0 0
\(943\) −2.41154 −0.0785306
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 14.5359 0.472353 0.236177 0.971710i \(-0.424106\pi\)
0.236177 + 0.971710i \(0.424106\pi\)
\(948\) 0 0
\(949\) 23.8564 0.774412
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −18.2487 −0.591134 −0.295567 0.955322i \(-0.595509\pi\)
−0.295567 + 0.955322i \(0.595509\pi\)
\(954\) 0 0
\(955\) 2.53590 0.0820597
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 38.7846 1.25242
\(960\) 0 0
\(961\) −1.14359 −0.0368901
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 16.0000 0.515058
\(966\) 0 0
\(967\) −6.39230 −0.205563 −0.102781 0.994704i \(-0.532774\pi\)
−0.102781 + 0.994704i \(0.532774\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −43.3013 −1.38960 −0.694802 0.719201i \(-0.744508\pi\)
−0.694802 + 0.719201i \(0.744508\pi\)
\(972\) 0 0
\(973\) −48.5167 −1.55537
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 42.0000 1.34370 0.671850 0.740688i \(-0.265500\pi\)
0.671850 + 0.740688i \(0.265500\pi\)
\(978\) 0 0
\(979\) 41.5692 1.32856
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −36.4974 −1.16409 −0.582043 0.813158i \(-0.697747\pi\)
−0.582043 + 0.813158i \(0.697747\pi\)
\(984\) 0 0
\(985\) 11.5359 0.367564
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0.679492 0.0216066
\(990\) 0 0
\(991\) −11.2154 −0.356269 −0.178134 0.984006i \(-0.557006\pi\)
−0.178134 + 0.984006i \(0.557006\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −22.2487 −0.705332
\(996\) 0 0
\(997\) −3.19615 −0.101223 −0.0506116 0.998718i \(-0.516117\pi\)
−0.0506116 + 0.998718i \(0.516117\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6480.2.a.bb.1.1 2
3.2 odd 2 6480.2.a.bj.1.1 2
4.3 odd 2 810.2.a.j.1.2 2
12.11 even 2 810.2.a.l.1.2 yes 2
20.3 even 4 4050.2.c.z.649.3 4
20.7 even 4 4050.2.c.z.649.2 4
20.19 odd 2 4050.2.a.bt.1.1 2
36.7 odd 6 810.2.e.n.271.1 4
36.11 even 6 810.2.e.m.271.1 4
36.23 even 6 810.2.e.m.541.1 4
36.31 odd 6 810.2.e.n.541.1 4
60.23 odd 4 4050.2.c.x.649.1 4
60.47 odd 4 4050.2.c.x.649.4 4
60.59 even 2 4050.2.a.bk.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
810.2.a.j.1.2 2 4.3 odd 2
810.2.a.l.1.2 yes 2 12.11 even 2
810.2.e.m.271.1 4 36.11 even 6
810.2.e.m.541.1 4 36.23 even 6
810.2.e.n.271.1 4 36.7 odd 6
810.2.e.n.541.1 4 36.31 odd 6
4050.2.a.bk.1.1 2 60.59 even 2
4050.2.a.bt.1.1 2 20.19 odd 2
4050.2.c.x.649.1 4 60.23 odd 4
4050.2.c.x.649.4 4 60.47 odd 4
4050.2.c.z.649.2 4 20.7 even 4
4050.2.c.z.649.3 4 20.3 even 4
6480.2.a.bb.1.1 2 1.1 even 1 trivial
6480.2.a.bj.1.1 2 3.2 odd 2