Properties

Label 6480.2.a.ba.1.1
Level $6480$
Weight $2$
Character 6480.1
Self dual yes
Analytic conductor $51.743$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6480,2,Mod(1,6480)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6480, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6480.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6480 = 2^{4} \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6480.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(51.7430605098\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 360)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.73205\) of defining polynomial
Character \(\chi\) \(=\) 6480.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{5} -3.73205 q^{7} -5.46410 q^{11} +1.46410 q^{13} +7.46410 q^{17} +2.00000 q^{19} -0.267949 q^{23} +1.00000 q^{25} +8.46410 q^{29} +2.00000 q^{31} +3.73205 q^{35} -10.3923 q^{37} -3.92820 q^{41} +11.4641 q^{43} -3.73205 q^{47} +6.92820 q^{49} +6.00000 q^{53} +5.46410 q^{55} +6.39230 q^{59} -1.53590 q^{61} -1.46410 q^{65} -9.73205 q^{67} -2.53590 q^{71} -6.92820 q^{73} +20.3923 q^{77} -8.53590 q^{79} +2.80385 q^{83} -7.46410 q^{85} +3.92820 q^{89} -5.46410 q^{91} -2.00000 q^{95} +4.92820 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{5} - 4 q^{7} - 4 q^{11} - 4 q^{13} + 8 q^{17} + 4 q^{19} - 4 q^{23} + 2 q^{25} + 10 q^{29} + 4 q^{31} + 4 q^{35} + 6 q^{41} + 16 q^{43} - 4 q^{47} + 12 q^{53} + 4 q^{55} - 8 q^{59} - 10 q^{61}+ \cdots - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −3.73205 −1.41058 −0.705291 0.708918i \(-0.749184\pi\)
−0.705291 + 0.708918i \(0.749184\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −5.46410 −1.64749 −0.823744 0.566961i \(-0.808119\pi\)
−0.823744 + 0.566961i \(0.808119\pi\)
\(12\) 0 0
\(13\) 1.46410 0.406069 0.203034 0.979172i \(-0.434920\pi\)
0.203034 + 0.979172i \(0.434920\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 7.46410 1.81031 0.905155 0.425081i \(-0.139754\pi\)
0.905155 + 0.425081i \(0.139754\pi\)
\(18\) 0 0
\(19\) 2.00000 0.458831 0.229416 0.973329i \(-0.426318\pi\)
0.229416 + 0.973329i \(0.426318\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −0.267949 −0.0558713 −0.0279356 0.999610i \(-0.508893\pi\)
−0.0279356 + 0.999610i \(0.508893\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 8.46410 1.57174 0.785872 0.618389i \(-0.212214\pi\)
0.785872 + 0.618389i \(0.212214\pi\)
\(30\) 0 0
\(31\) 2.00000 0.359211 0.179605 0.983739i \(-0.442518\pi\)
0.179605 + 0.983739i \(0.442518\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 3.73205 0.630832
\(36\) 0 0
\(37\) −10.3923 −1.70848 −0.854242 0.519875i \(-0.825978\pi\)
−0.854242 + 0.519875i \(0.825978\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −3.92820 −0.613482 −0.306741 0.951793i \(-0.599239\pi\)
−0.306741 + 0.951793i \(0.599239\pi\)
\(42\) 0 0
\(43\) 11.4641 1.74826 0.874130 0.485693i \(-0.161433\pi\)
0.874130 + 0.485693i \(0.161433\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −3.73205 −0.544376 −0.272188 0.962244i \(-0.587747\pi\)
−0.272188 + 0.962244i \(0.587747\pi\)
\(48\) 0 0
\(49\) 6.92820 0.989743
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) 0 0
\(55\) 5.46410 0.736779
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 6.39230 0.832207 0.416104 0.909317i \(-0.363395\pi\)
0.416104 + 0.909317i \(0.363395\pi\)
\(60\) 0 0
\(61\) −1.53590 −0.196652 −0.0983258 0.995154i \(-0.531349\pi\)
−0.0983258 + 0.995154i \(0.531349\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.46410 −0.181599
\(66\) 0 0
\(67\) −9.73205 −1.18896 −0.594480 0.804111i \(-0.702642\pi\)
−0.594480 + 0.804111i \(0.702642\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −2.53590 −0.300956 −0.150478 0.988613i \(-0.548081\pi\)
−0.150478 + 0.988613i \(0.548081\pi\)
\(72\) 0 0
\(73\) −6.92820 −0.810885 −0.405442 0.914121i \(-0.632883\pi\)
−0.405442 + 0.914121i \(0.632883\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 20.3923 2.32392
\(78\) 0 0
\(79\) −8.53590 −0.960364 −0.480182 0.877169i \(-0.659429\pi\)
−0.480182 + 0.877169i \(0.659429\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 2.80385 0.307762 0.153881 0.988089i \(-0.450823\pi\)
0.153881 + 0.988089i \(0.450823\pi\)
\(84\) 0 0
\(85\) −7.46410 −0.809595
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 3.92820 0.416389 0.208194 0.978087i \(-0.433241\pi\)
0.208194 + 0.978087i \(0.433241\pi\)
\(90\) 0 0
\(91\) −5.46410 −0.572793
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −2.00000 −0.205196
\(96\) 0 0
\(97\) 4.92820 0.500383 0.250192 0.968196i \(-0.419506\pi\)
0.250192 + 0.968196i \(0.419506\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −12.9282 −1.28640 −0.643202 0.765696i \(-0.722395\pi\)
−0.643202 + 0.765696i \(0.722395\pi\)
\(102\) 0 0
\(103\) 6.39230 0.629853 0.314926 0.949116i \(-0.398020\pi\)
0.314926 + 0.949116i \(0.398020\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 5.19615 0.502331 0.251166 0.967944i \(-0.419186\pi\)
0.251166 + 0.967944i \(0.419186\pi\)
\(108\) 0 0
\(109\) 3.39230 0.324924 0.162462 0.986715i \(-0.448057\pi\)
0.162462 + 0.986715i \(0.448057\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −13.8564 −1.30350 −0.651751 0.758433i \(-0.725965\pi\)
−0.651751 + 0.758433i \(0.725965\pi\)
\(114\) 0 0
\(115\) 0.267949 0.0249864
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −27.8564 −2.55359
\(120\) 0 0
\(121\) 18.8564 1.71422
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −19.7321 −1.75094 −0.875468 0.483276i \(-0.839447\pi\)
−0.875468 + 0.483276i \(0.839447\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −3.46410 −0.302660 −0.151330 0.988483i \(-0.548356\pi\)
−0.151330 + 0.988483i \(0.548356\pi\)
\(132\) 0 0
\(133\) −7.46410 −0.647220
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −5.85641 −0.500347 −0.250173 0.968201i \(-0.580488\pi\)
−0.250173 + 0.968201i \(0.580488\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −8.00000 −0.668994
\(144\) 0 0
\(145\) −8.46410 −0.702905
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 4.46410 0.365713 0.182857 0.983140i \(-0.441466\pi\)
0.182857 + 0.983140i \(0.441466\pi\)
\(150\) 0 0
\(151\) 1.46410 0.119147 0.0595734 0.998224i \(-0.481026\pi\)
0.0595734 + 0.998224i \(0.481026\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −2.00000 −0.160644
\(156\) 0 0
\(157\) −8.92820 −0.712548 −0.356274 0.934381i \(-0.615953\pi\)
−0.356274 + 0.934381i \(0.615953\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 1.00000 0.0788110
\(162\) 0 0
\(163\) −21.3205 −1.66995 −0.834976 0.550287i \(-0.814518\pi\)
−0.834976 + 0.550287i \(0.814518\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −9.58846 −0.741977 −0.370989 0.928637i \(-0.620981\pi\)
−0.370989 + 0.928637i \(0.620981\pi\)
\(168\) 0 0
\(169\) −10.8564 −0.835108
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 22.9282 1.74320 0.871600 0.490219i \(-0.163083\pi\)
0.871600 + 0.490219i \(0.163083\pi\)
\(174\) 0 0
\(175\) −3.73205 −0.282117
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −6.53590 −0.488516 −0.244258 0.969710i \(-0.578544\pi\)
−0.244258 + 0.969710i \(0.578544\pi\)
\(180\) 0 0
\(181\) −16.4641 −1.22377 −0.611884 0.790948i \(-0.709588\pi\)
−0.611884 + 0.790948i \(0.709588\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 10.3923 0.764057
\(186\) 0 0
\(187\) −40.7846 −2.98247
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −3.07180 −0.222267 −0.111134 0.993805i \(-0.535448\pi\)
−0.111134 + 0.993805i \(0.535448\pi\)
\(192\) 0 0
\(193\) −10.5359 −0.758391 −0.379195 0.925317i \(-0.623799\pi\)
−0.379195 + 0.925317i \(0.623799\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1.07180 0.0763624 0.0381812 0.999271i \(-0.487844\pi\)
0.0381812 + 0.999271i \(0.487844\pi\)
\(198\) 0 0
\(199\) −20.9282 −1.48356 −0.741780 0.670643i \(-0.766018\pi\)
−0.741780 + 0.670643i \(0.766018\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −31.5885 −2.21708
\(204\) 0 0
\(205\) 3.92820 0.274358
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −10.9282 −0.755920
\(210\) 0 0
\(211\) 20.3923 1.40386 0.701932 0.712244i \(-0.252321\pi\)
0.701932 + 0.712244i \(0.252321\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −11.4641 −0.781845
\(216\) 0 0
\(217\) −7.46410 −0.506696
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 10.9282 0.735111
\(222\) 0 0
\(223\) −5.33975 −0.357576 −0.178788 0.983888i \(-0.557218\pi\)
−0.178788 + 0.983888i \(0.557218\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 24.2487 1.60944 0.804722 0.593652i \(-0.202314\pi\)
0.804722 + 0.593652i \(0.202314\pi\)
\(228\) 0 0
\(229\) −23.2487 −1.53632 −0.768159 0.640259i \(-0.778827\pi\)
−0.768159 + 0.640259i \(0.778827\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 10.3923 0.680823 0.340411 0.940277i \(-0.389434\pi\)
0.340411 + 0.940277i \(0.389434\pi\)
\(234\) 0 0
\(235\) 3.73205 0.243452
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 20.7846 1.34444 0.672222 0.740349i \(-0.265340\pi\)
0.672222 + 0.740349i \(0.265340\pi\)
\(240\) 0 0
\(241\) −19.9282 −1.28369 −0.641844 0.766835i \(-0.721830\pi\)
−0.641844 + 0.766835i \(0.721830\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −6.92820 −0.442627
\(246\) 0 0
\(247\) 2.92820 0.186317
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −19.8564 −1.25333 −0.626663 0.779291i \(-0.715580\pi\)
−0.626663 + 0.779291i \(0.715580\pi\)
\(252\) 0 0
\(253\) 1.46410 0.0920473
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 12.9282 0.806439 0.403220 0.915103i \(-0.367891\pi\)
0.403220 + 0.915103i \(0.367891\pi\)
\(258\) 0 0
\(259\) 38.7846 2.40996
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −1.60770 −0.0991347 −0.0495674 0.998771i \(-0.515784\pi\)
−0.0495674 + 0.998771i \(0.515784\pi\)
\(264\) 0 0
\(265\) −6.00000 −0.368577
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −9.39230 −0.572659 −0.286329 0.958131i \(-0.592435\pi\)
−0.286329 + 0.958131i \(0.592435\pi\)
\(270\) 0 0
\(271\) −7.85641 −0.477243 −0.238621 0.971113i \(-0.576695\pi\)
−0.238621 + 0.971113i \(0.576695\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −5.46410 −0.329498
\(276\) 0 0
\(277\) 6.39230 0.384076 0.192038 0.981387i \(-0.438490\pi\)
0.192038 + 0.981387i \(0.438490\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 12.8564 0.766949 0.383474 0.923551i \(-0.374727\pi\)
0.383474 + 0.923551i \(0.374727\pi\)
\(282\) 0 0
\(283\) −18.2679 −1.08592 −0.542958 0.839760i \(-0.682696\pi\)
−0.542958 + 0.839760i \(0.682696\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 14.6603 0.865367
\(288\) 0 0
\(289\) 38.7128 2.27722
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −0.535898 −0.0313075 −0.0156538 0.999877i \(-0.504983\pi\)
−0.0156538 + 0.999877i \(0.504983\pi\)
\(294\) 0 0
\(295\) −6.39230 −0.372174
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −0.392305 −0.0226876
\(300\) 0 0
\(301\) −42.7846 −2.46606
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 1.53590 0.0879453
\(306\) 0 0
\(307\) 20.1244 1.14856 0.574279 0.818660i \(-0.305283\pi\)
0.574279 + 0.818660i \(0.305283\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −16.9282 −0.959910 −0.479955 0.877293i \(-0.659347\pi\)
−0.479955 + 0.877293i \(0.659347\pi\)
\(312\) 0 0
\(313\) −8.39230 −0.474361 −0.237181 0.971466i \(-0.576223\pi\)
−0.237181 + 0.971466i \(0.576223\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 9.46410 0.531557 0.265778 0.964034i \(-0.414371\pi\)
0.265778 + 0.964034i \(0.414371\pi\)
\(318\) 0 0
\(319\) −46.2487 −2.58943
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 14.9282 0.830627
\(324\) 0 0
\(325\) 1.46410 0.0812137
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 13.9282 0.767887
\(330\) 0 0
\(331\) −3.46410 −0.190404 −0.0952021 0.995458i \(-0.530350\pi\)
−0.0952021 + 0.995458i \(0.530350\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 9.73205 0.531719
\(336\) 0 0
\(337\) 22.9282 1.24898 0.624489 0.781033i \(-0.285307\pi\)
0.624489 + 0.781033i \(0.285307\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −10.9282 −0.591795
\(342\) 0 0
\(343\) 0.267949 0.0144679
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −2.39230 −0.128426 −0.0642128 0.997936i \(-0.520454\pi\)
−0.0642128 + 0.997936i \(0.520454\pi\)
\(348\) 0 0
\(349\) −6.46410 −0.346015 −0.173008 0.984920i \(-0.555349\pi\)
−0.173008 + 0.984920i \(0.555349\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 5.85641 0.311705 0.155853 0.987780i \(-0.450188\pi\)
0.155853 + 0.987780i \(0.450188\pi\)
\(354\) 0 0
\(355\) 2.53590 0.134592
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −0.928203 −0.0489887 −0.0244943 0.999700i \(-0.507798\pi\)
−0.0244943 + 0.999700i \(0.507798\pi\)
\(360\) 0 0
\(361\) −15.0000 −0.789474
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 6.92820 0.362639
\(366\) 0 0
\(367\) −6.39230 −0.333676 −0.166838 0.985984i \(-0.553356\pi\)
−0.166838 + 0.985984i \(0.553356\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −22.3923 −1.16255
\(372\) 0 0
\(373\) 4.92820 0.255173 0.127586 0.991827i \(-0.459277\pi\)
0.127586 + 0.991827i \(0.459277\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 12.3923 0.638236
\(378\) 0 0
\(379\) 27.1769 1.39598 0.697992 0.716105i \(-0.254077\pi\)
0.697992 + 0.716105i \(0.254077\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 3.46410 0.177007 0.0885037 0.996076i \(-0.471792\pi\)
0.0885037 + 0.996076i \(0.471792\pi\)
\(384\) 0 0
\(385\) −20.3923 −1.03929
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −30.4641 −1.54459 −0.772296 0.635263i \(-0.780892\pi\)
−0.772296 + 0.635263i \(0.780892\pi\)
\(390\) 0 0
\(391\) −2.00000 −0.101144
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 8.53590 0.429488
\(396\) 0 0
\(397\) 10.0000 0.501886 0.250943 0.968002i \(-0.419259\pi\)
0.250943 + 0.968002i \(0.419259\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −26.7846 −1.33756 −0.668780 0.743461i \(-0.733183\pi\)
−0.668780 + 0.743461i \(0.733183\pi\)
\(402\) 0 0
\(403\) 2.92820 0.145864
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 56.7846 2.81471
\(408\) 0 0
\(409\) −8.92820 −0.441471 −0.220736 0.975334i \(-0.570846\pi\)
−0.220736 + 0.975334i \(0.570846\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −23.8564 −1.17390
\(414\) 0 0
\(415\) −2.80385 −0.137635
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 18.2487 0.891508 0.445754 0.895156i \(-0.352936\pi\)
0.445754 + 0.895156i \(0.352936\pi\)
\(420\) 0 0
\(421\) −23.0718 −1.12445 −0.562225 0.826984i \(-0.690055\pi\)
−0.562225 + 0.826984i \(0.690055\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 7.46410 0.362062
\(426\) 0 0
\(427\) 5.73205 0.277393
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 11.4641 0.552206 0.276103 0.961128i \(-0.410957\pi\)
0.276103 + 0.961128i \(0.410957\pi\)
\(432\) 0 0
\(433\) −19.4641 −0.935385 −0.467693 0.883891i \(-0.654915\pi\)
−0.467693 + 0.883891i \(0.654915\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −0.535898 −0.0256355
\(438\) 0 0
\(439\) −34.9282 −1.66703 −0.833516 0.552495i \(-0.813676\pi\)
−0.833516 + 0.552495i \(0.813676\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 10.5167 0.499662 0.249831 0.968290i \(-0.419625\pi\)
0.249831 + 0.968290i \(0.419625\pi\)
\(444\) 0 0
\(445\) −3.92820 −0.186215
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 31.8564 1.50340 0.751698 0.659507i \(-0.229235\pi\)
0.751698 + 0.659507i \(0.229235\pi\)
\(450\) 0 0
\(451\) 21.4641 1.01071
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 5.46410 0.256161
\(456\) 0 0
\(457\) 26.3923 1.23458 0.617290 0.786736i \(-0.288231\pi\)
0.617290 + 0.786736i \(0.288231\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 25.3923 1.18264 0.591319 0.806438i \(-0.298608\pi\)
0.591319 + 0.806438i \(0.298608\pi\)
\(462\) 0 0
\(463\) −3.46410 −0.160990 −0.0804952 0.996755i \(-0.525650\pi\)
−0.0804952 + 0.996755i \(0.525650\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 9.60770 0.444591 0.222296 0.974979i \(-0.428645\pi\)
0.222296 + 0.974979i \(0.428645\pi\)
\(468\) 0 0
\(469\) 36.3205 1.67713
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −62.6410 −2.88024
\(474\) 0 0
\(475\) 2.00000 0.0917663
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −6.39230 −0.292072 −0.146036 0.989279i \(-0.546652\pi\)
−0.146036 + 0.989279i \(0.546652\pi\)
\(480\) 0 0
\(481\) −15.2154 −0.693762
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −4.92820 −0.223778
\(486\) 0 0
\(487\) 8.24871 0.373785 0.186892 0.982380i \(-0.440158\pi\)
0.186892 + 0.982380i \(0.440158\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −1.85641 −0.0837785 −0.0418892 0.999122i \(-0.513338\pi\)
−0.0418892 + 0.999122i \(0.513338\pi\)
\(492\) 0 0
\(493\) 63.1769 2.84535
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 9.46410 0.424523
\(498\) 0 0
\(499\) −9.85641 −0.441233 −0.220617 0.975361i \(-0.570807\pi\)
−0.220617 + 0.975361i \(0.570807\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −6.12436 −0.273072 −0.136536 0.990635i \(-0.543597\pi\)
−0.136536 + 0.990635i \(0.543597\pi\)
\(504\) 0 0
\(505\) 12.9282 0.575297
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −41.3923 −1.83468 −0.917341 0.398103i \(-0.869669\pi\)
−0.917341 + 0.398103i \(0.869669\pi\)
\(510\) 0 0
\(511\) 25.8564 1.14382
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −6.39230 −0.281679
\(516\) 0 0
\(517\) 20.3923 0.896853
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −13.0000 −0.569540 −0.284770 0.958596i \(-0.591917\pi\)
−0.284770 + 0.958596i \(0.591917\pi\)
\(522\) 0 0
\(523\) −21.1962 −0.926843 −0.463422 0.886138i \(-0.653378\pi\)
−0.463422 + 0.886138i \(0.653378\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 14.9282 0.650283
\(528\) 0 0
\(529\) −22.9282 −0.996878
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −5.75129 −0.249116
\(534\) 0 0
\(535\) −5.19615 −0.224649
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −37.8564 −1.63059
\(540\) 0 0
\(541\) −39.3923 −1.69361 −0.846804 0.531905i \(-0.821476\pi\)
−0.846804 + 0.531905i \(0.821476\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −3.39230 −0.145310
\(546\) 0 0
\(547\) 5.98076 0.255719 0.127859 0.991792i \(-0.459189\pi\)
0.127859 + 0.991792i \(0.459189\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 16.9282 0.721166
\(552\) 0 0
\(553\) 31.8564 1.35467
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −36.6410 −1.55253 −0.776265 0.630407i \(-0.782888\pi\)
−0.776265 + 0.630407i \(0.782888\pi\)
\(558\) 0 0
\(559\) 16.7846 0.709913
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 43.5885 1.83703 0.918517 0.395381i \(-0.129387\pi\)
0.918517 + 0.395381i \(0.129387\pi\)
\(564\) 0 0
\(565\) 13.8564 0.582943
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 10.0000 0.419222 0.209611 0.977785i \(-0.432780\pi\)
0.209611 + 0.977785i \(0.432780\pi\)
\(570\) 0 0
\(571\) −0.784610 −0.0328349 −0.0164174 0.999865i \(-0.505226\pi\)
−0.0164174 + 0.999865i \(0.505226\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −0.267949 −0.0111743
\(576\) 0 0
\(577\) 19.0718 0.793969 0.396985 0.917825i \(-0.370057\pi\)
0.396985 + 0.917825i \(0.370057\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −10.4641 −0.434124
\(582\) 0 0
\(583\) −32.7846 −1.35780
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −39.5885 −1.63399 −0.816995 0.576644i \(-0.804362\pi\)
−0.816995 + 0.576644i \(0.804362\pi\)
\(588\) 0 0
\(589\) 4.00000 0.164817
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −32.5359 −1.33609 −0.668045 0.744121i \(-0.732868\pi\)
−0.668045 + 0.744121i \(0.732868\pi\)
\(594\) 0 0
\(595\) 27.8564 1.14200
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −22.3923 −0.914925 −0.457462 0.889229i \(-0.651242\pi\)
−0.457462 + 0.889229i \(0.651242\pi\)
\(600\) 0 0
\(601\) −10.7846 −0.439913 −0.219957 0.975510i \(-0.570592\pi\)
−0.219957 + 0.975510i \(0.570592\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −18.8564 −0.766622
\(606\) 0 0
\(607\) −43.7321 −1.77503 −0.887515 0.460780i \(-0.847570\pi\)
−0.887515 + 0.460780i \(0.847570\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −5.46410 −0.221054
\(612\) 0 0
\(613\) 1.60770 0.0649342 0.0324671 0.999473i \(-0.489664\pi\)
0.0324671 + 0.999473i \(0.489664\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 17.0718 0.687285 0.343642 0.939101i \(-0.388339\pi\)
0.343642 + 0.939101i \(0.388339\pi\)
\(618\) 0 0
\(619\) −17.7128 −0.711938 −0.355969 0.934498i \(-0.615849\pi\)
−0.355969 + 0.934498i \(0.615849\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −14.6603 −0.587351
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −77.5692 −3.09289
\(630\) 0 0
\(631\) 23.7128 0.943992 0.471996 0.881601i \(-0.343534\pi\)
0.471996 + 0.881601i \(0.343534\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 19.7321 0.783043
\(636\) 0 0
\(637\) 10.1436 0.401904
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −7.14359 −0.282155 −0.141077 0.989999i \(-0.545057\pi\)
−0.141077 + 0.989999i \(0.545057\pi\)
\(642\) 0 0
\(643\) 37.7321 1.48801 0.744003 0.668176i \(-0.232925\pi\)
0.744003 + 0.668176i \(0.232925\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −28.5167 −1.12111 −0.560553 0.828119i \(-0.689411\pi\)
−0.560553 + 0.828119i \(0.689411\pi\)
\(648\) 0 0
\(649\) −34.9282 −1.37105
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 24.5359 0.960164 0.480082 0.877224i \(-0.340607\pi\)
0.480082 + 0.877224i \(0.340607\pi\)
\(654\) 0 0
\(655\) 3.46410 0.135354
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −20.7846 −0.809653 −0.404827 0.914393i \(-0.632668\pi\)
−0.404827 + 0.914393i \(0.632668\pi\)
\(660\) 0 0
\(661\) −33.7128 −1.31128 −0.655638 0.755075i \(-0.727600\pi\)
−0.655638 + 0.755075i \(0.727600\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 7.46410 0.289445
\(666\) 0 0
\(667\) −2.26795 −0.0878153
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 8.39230 0.323981
\(672\) 0 0
\(673\) −47.3205 −1.82407 −0.912036 0.410111i \(-0.865490\pi\)
−0.912036 + 0.410111i \(0.865490\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 45.1769 1.73629 0.868145 0.496311i \(-0.165312\pi\)
0.868145 + 0.496311i \(0.165312\pi\)
\(678\) 0 0
\(679\) −18.3923 −0.705832
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −1.60770 −0.0615167 −0.0307584 0.999527i \(-0.509792\pi\)
−0.0307584 + 0.999527i \(0.509792\pi\)
\(684\) 0 0
\(685\) 5.85641 0.223762
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 8.78461 0.334667
\(690\) 0 0
\(691\) 29.6077 1.12633 0.563165 0.826345i \(-0.309584\pi\)
0.563165 + 0.826345i \(0.309584\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −29.3205 −1.11059
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 38.1769 1.44192 0.720961 0.692976i \(-0.243701\pi\)
0.720961 + 0.692976i \(0.243701\pi\)
\(702\) 0 0
\(703\) −20.7846 −0.783906
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 48.2487 1.81458
\(708\) 0 0
\(709\) −5.39230 −0.202512 −0.101256 0.994860i \(-0.532286\pi\)
−0.101256 + 0.994860i \(0.532286\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −0.535898 −0.0200696
\(714\) 0 0
\(715\) 8.00000 0.299183
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −1.32051 −0.0492466 −0.0246233 0.999697i \(-0.507839\pi\)
−0.0246233 + 0.999697i \(0.507839\pi\)
\(720\) 0 0
\(721\) −23.8564 −0.888459
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 8.46410 0.314349
\(726\) 0 0
\(727\) 35.9808 1.33445 0.667226 0.744855i \(-0.267481\pi\)
0.667226 + 0.744855i \(0.267481\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 85.5692 3.16489
\(732\) 0 0
\(733\) 43.8564 1.61987 0.809937 0.586517i \(-0.199501\pi\)
0.809937 + 0.586517i \(0.199501\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 53.1769 1.95880
\(738\) 0 0
\(739\) −48.2487 −1.77486 −0.887429 0.460945i \(-0.847511\pi\)
−0.887429 + 0.460945i \(0.847511\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −45.8372 −1.68160 −0.840801 0.541344i \(-0.817916\pi\)
−0.840801 + 0.541344i \(0.817916\pi\)
\(744\) 0 0
\(745\) −4.46410 −0.163552
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −19.3923 −0.708579
\(750\) 0 0
\(751\) 4.39230 0.160277 0.0801387 0.996784i \(-0.474464\pi\)
0.0801387 + 0.996784i \(0.474464\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −1.46410 −0.0532841
\(756\) 0 0
\(757\) 0.392305 0.0142586 0.00712928 0.999975i \(-0.497731\pi\)
0.00712928 + 0.999975i \(0.497731\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −21.0000 −0.761249 −0.380625 0.924730i \(-0.624291\pi\)
−0.380625 + 0.924730i \(0.624291\pi\)
\(762\) 0 0
\(763\) −12.6603 −0.458332
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 9.35898 0.337933
\(768\) 0 0
\(769\) −7.78461 −0.280720 −0.140360 0.990101i \(-0.544826\pi\)
−0.140360 + 0.990101i \(0.544826\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 32.7846 1.17918 0.589590 0.807703i \(-0.299289\pi\)
0.589590 + 0.807703i \(0.299289\pi\)
\(774\) 0 0
\(775\) 2.00000 0.0718421
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −7.85641 −0.281485
\(780\) 0 0
\(781\) 13.8564 0.495821
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 8.92820 0.318661
\(786\) 0 0
\(787\) 33.3205 1.18775 0.593874 0.804558i \(-0.297598\pi\)
0.593874 + 0.804558i \(0.297598\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 51.7128 1.83870
\(792\) 0 0
\(793\) −2.24871 −0.0798541
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −28.3923 −1.00571 −0.502854 0.864372i \(-0.667716\pi\)
−0.502854 + 0.864372i \(0.667716\pi\)
\(798\) 0 0
\(799\) −27.8564 −0.985489
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 37.8564 1.33592
\(804\) 0 0
\(805\) −1.00000 −0.0352454
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −35.0718 −1.23306 −0.616529 0.787332i \(-0.711462\pi\)
−0.616529 + 0.787332i \(0.711462\pi\)
\(810\) 0 0
\(811\) 29.6077 1.03967 0.519833 0.854268i \(-0.325994\pi\)
0.519833 + 0.854268i \(0.325994\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 21.3205 0.746825
\(816\) 0 0
\(817\) 22.9282 0.802156
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −25.2487 −0.881186 −0.440593 0.897707i \(-0.645232\pi\)
−0.440593 + 0.897707i \(0.645232\pi\)
\(822\) 0 0
\(823\) −20.2679 −0.706496 −0.353248 0.935530i \(-0.614923\pi\)
−0.353248 + 0.935530i \(0.614923\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 55.0526 1.91437 0.957183 0.289485i \(-0.0934841\pi\)
0.957183 + 0.289485i \(0.0934841\pi\)
\(828\) 0 0
\(829\) −9.39230 −0.326208 −0.163104 0.986609i \(-0.552151\pi\)
−0.163104 + 0.986609i \(0.552151\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 51.7128 1.79174
\(834\) 0 0
\(835\) 9.58846 0.331822
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −8.14359 −0.281148 −0.140574 0.990070i \(-0.544895\pi\)
−0.140574 + 0.990070i \(0.544895\pi\)
\(840\) 0 0
\(841\) 42.6410 1.47038
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 10.8564 0.373472
\(846\) 0 0
\(847\) −70.3731 −2.41805
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 2.78461 0.0954552
\(852\) 0 0
\(853\) −42.5359 −1.45640 −0.728201 0.685364i \(-0.759643\pi\)
−0.728201 + 0.685364i \(0.759643\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −30.2487 −1.03328 −0.516638 0.856204i \(-0.672817\pi\)
−0.516638 + 0.856204i \(0.672817\pi\)
\(858\) 0 0
\(859\) −0.392305 −0.0133853 −0.00669263 0.999978i \(-0.502130\pi\)
−0.00669263 + 0.999978i \(0.502130\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −9.33975 −0.317929 −0.158964 0.987284i \(-0.550815\pi\)
−0.158964 + 0.987284i \(0.550815\pi\)
\(864\) 0 0
\(865\) −22.9282 −0.779582
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 46.6410 1.58219
\(870\) 0 0
\(871\) −14.2487 −0.482799
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 3.73205 0.126166
\(876\) 0 0
\(877\) 32.3923 1.09381 0.546905 0.837195i \(-0.315806\pi\)
0.546905 + 0.837195i \(0.315806\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −31.6410 −1.06601 −0.533006 0.846111i \(-0.678938\pi\)
−0.533006 + 0.846111i \(0.678938\pi\)
\(882\) 0 0
\(883\) −1.19615 −0.0402537 −0.0201269 0.999797i \(-0.506407\pi\)
−0.0201269 + 0.999797i \(0.506407\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −25.3205 −0.850179 −0.425090 0.905151i \(-0.639757\pi\)
−0.425090 + 0.905151i \(0.639757\pi\)
\(888\) 0 0
\(889\) 73.6410 2.46984
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −7.46410 −0.249777
\(894\) 0 0
\(895\) 6.53590 0.218471
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 16.9282 0.564587
\(900\) 0 0
\(901\) 44.7846 1.49199
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 16.4641 0.547285
\(906\) 0 0
\(907\) 10.2679 0.340942 0.170471 0.985363i \(-0.445471\pi\)
0.170471 + 0.985363i \(0.445471\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 19.4641 0.644874 0.322437 0.946591i \(-0.395498\pi\)
0.322437 + 0.946591i \(0.395498\pi\)
\(912\) 0 0
\(913\) −15.3205 −0.507035
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 12.9282 0.426927
\(918\) 0 0
\(919\) 38.3923 1.26645 0.633223 0.773970i \(-0.281732\pi\)
0.633223 + 0.773970i \(0.281732\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −3.71281 −0.122209
\(924\) 0 0
\(925\) −10.3923 −0.341697
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −44.6410 −1.46462 −0.732312 0.680969i \(-0.761559\pi\)
−0.732312 + 0.680969i \(0.761559\pi\)
\(930\) 0 0
\(931\) 13.8564 0.454125
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 40.7846 1.33380
\(936\) 0 0
\(937\) 43.7128 1.42804 0.714018 0.700128i \(-0.246874\pi\)
0.714018 + 0.700128i \(0.246874\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −2.60770 −0.0850084 −0.0425042 0.999096i \(-0.513534\pi\)
−0.0425042 + 0.999096i \(0.513534\pi\)
\(942\) 0 0
\(943\) 1.05256 0.0342760
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −30.5167 −0.991658 −0.495829 0.868420i \(-0.665136\pi\)
−0.495829 + 0.868420i \(0.665136\pi\)
\(948\) 0 0
\(949\) −10.1436 −0.329275
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 19.6077 0.635156 0.317578 0.948232i \(-0.397131\pi\)
0.317578 + 0.948232i \(0.397131\pi\)
\(954\) 0 0
\(955\) 3.07180 0.0994010
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 21.8564 0.705780
\(960\) 0 0
\(961\) −27.0000 −0.870968
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 10.5359 0.339163
\(966\) 0 0
\(967\) −38.6603 −1.24323 −0.621615 0.783323i \(-0.713523\pi\)
−0.621615 + 0.783323i \(0.713523\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 29.7128 0.953530 0.476765 0.879031i \(-0.341809\pi\)
0.476765 + 0.879031i \(0.341809\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −45.1769 −1.44534 −0.722669 0.691195i \(-0.757085\pi\)
−0.722669 + 0.691195i \(0.757085\pi\)
\(978\) 0 0
\(979\) −21.4641 −0.685996
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 4.51666 0.144059 0.0720295 0.997402i \(-0.477052\pi\)
0.0720295 + 0.997402i \(0.477052\pi\)
\(984\) 0 0
\(985\) −1.07180 −0.0341503
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −3.07180 −0.0976775
\(990\) 0 0
\(991\) −53.0333 −1.68466 −0.842329 0.538963i \(-0.818816\pi\)
−0.842329 + 0.538963i \(0.818816\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 20.9282 0.663469
\(996\) 0 0
\(997\) −35.5692 −1.12649 −0.563244 0.826290i \(-0.690447\pi\)
−0.563244 + 0.826290i \(0.690447\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6480.2.a.ba.1.1 2
3.2 odd 2 6480.2.a.bk.1.1 2
4.3 odd 2 3240.2.a.k.1.2 2
9.2 odd 6 2160.2.q.h.1441.2 4
9.4 even 3 720.2.q.h.241.2 4
9.5 odd 6 2160.2.q.h.721.2 4
9.7 even 3 720.2.q.h.481.2 4
12.11 even 2 3240.2.a.p.1.2 2
36.7 odd 6 360.2.q.b.121.1 4
36.11 even 6 1080.2.q.b.361.1 4
36.23 even 6 1080.2.q.b.721.1 4
36.31 odd 6 360.2.q.b.241.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
360.2.q.b.121.1 4 36.7 odd 6
360.2.q.b.241.1 yes 4 36.31 odd 6
720.2.q.h.241.2 4 9.4 even 3
720.2.q.h.481.2 4 9.7 even 3
1080.2.q.b.361.1 4 36.11 even 6
1080.2.q.b.721.1 4 36.23 even 6
2160.2.q.h.721.2 4 9.5 odd 6
2160.2.q.h.1441.2 4 9.2 odd 6
3240.2.a.k.1.2 2 4.3 odd 2
3240.2.a.p.1.2 2 12.11 even 2
6480.2.a.ba.1.1 2 1.1 even 1 trivial
6480.2.a.bk.1.1 2 3.2 odd 2