Properties

Label 6480.2.a.ba
Level $6480$
Weight $2$
Character orbit 6480.a
Self dual yes
Analytic conductor $51.743$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6480,2,Mod(1,6480)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6480, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6480.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6480 = 2^{4} \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6480.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(51.7430605098\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 360)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{3}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{5} + (\beta - 2) q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q - q^{5} + (\beta - 2) q^{7} + (2 \beta - 2) q^{11} + ( - 2 \beta - 2) q^{13} + ( - 2 \beta + 4) q^{17} + 2 q^{19} + ( - \beta - 2) q^{23} + q^{25} + ( - 2 \beta + 5) q^{29} + 2 q^{31} + ( - \beta + 2) q^{35} + 6 \beta q^{37} + (4 \beta + 3) q^{41} + ( - 2 \beta + 8) q^{43} + (\beta - 2) q^{47} - 4 \beta q^{49} + 6 q^{53} + ( - 2 \beta + 2) q^{55} + ( - 6 \beta - 4) q^{59} + ( - 2 \beta - 5) q^{61} + (2 \beta + 2) q^{65} + (\beta - 8) q^{67} + ( - 2 \beta - 6) q^{71} + 4 \beta q^{73} + ( - 6 \beta + 10) q^{77} + ( - 2 \beta - 12) q^{79} + (3 \beta + 8) q^{83} + (2 \beta - 4) q^{85} + ( - 4 \beta - 3) q^{89} + (2 \beta - 2) q^{91} - 2 q^{95} + ( - 4 \beta - 2) q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{5} - 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{5} - 4 q^{7} - 4 q^{11} - 4 q^{13} + 8 q^{17} + 4 q^{19} - 4 q^{23} + 2 q^{25} + 10 q^{29} + 4 q^{31} + 4 q^{35} + 6 q^{41} + 16 q^{43} - 4 q^{47} + 12 q^{53} + 4 q^{55} - 8 q^{59} - 10 q^{61} + 4 q^{65} - 16 q^{67} - 12 q^{71} + 20 q^{77} - 24 q^{79} + 16 q^{83} - 8 q^{85} - 6 q^{89} - 4 q^{91} - 4 q^{95} - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.73205
1.73205
0 0 0 −1.00000 0 −3.73205 0 0 0
1.2 0 0 0 −1.00000 0 −0.267949 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6480.2.a.ba 2
3.b odd 2 1 6480.2.a.bk 2
4.b odd 2 1 3240.2.a.k 2
9.c even 3 2 720.2.q.h 4
9.d odd 6 2 2160.2.q.h 4
12.b even 2 1 3240.2.a.p 2
36.f odd 6 2 360.2.q.b 4
36.h even 6 2 1080.2.q.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
360.2.q.b 4 36.f odd 6 2
720.2.q.h 4 9.c even 3 2
1080.2.q.b 4 36.h even 6 2
2160.2.q.h 4 9.d odd 6 2
3240.2.a.k 2 4.b odd 2 1
3240.2.a.p 2 12.b even 2 1
6480.2.a.ba 2 1.a even 1 1 trivial
6480.2.a.bk 2 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6480))\):

\( T_{7}^{2} + 4T_{7} + 1 \) Copy content Toggle raw display
\( T_{11}^{2} + 4T_{11} - 8 \) Copy content Toggle raw display
\( T_{13}^{2} + 4T_{13} - 8 \) Copy content Toggle raw display
\( T_{17}^{2} - 8T_{17} + 4 \) Copy content Toggle raw display
\( T_{19} - 2 \) Copy content Toggle raw display
\( T_{23}^{2} + 4T_{23} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( (T + 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 4T + 1 \) Copy content Toggle raw display
$11$ \( T^{2} + 4T - 8 \) Copy content Toggle raw display
$13$ \( T^{2} + 4T - 8 \) Copy content Toggle raw display
$17$ \( T^{2} - 8T + 4 \) Copy content Toggle raw display
$19$ \( (T - 2)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 4T + 1 \) Copy content Toggle raw display
$29$ \( T^{2} - 10T + 13 \) Copy content Toggle raw display
$31$ \( (T - 2)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} - 108 \) Copy content Toggle raw display
$41$ \( T^{2} - 6T - 39 \) Copy content Toggle raw display
$43$ \( T^{2} - 16T + 52 \) Copy content Toggle raw display
$47$ \( T^{2} + 4T + 1 \) Copy content Toggle raw display
$53$ \( (T - 6)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 8T - 92 \) Copy content Toggle raw display
$61$ \( T^{2} + 10T + 13 \) Copy content Toggle raw display
$67$ \( T^{2} + 16T + 61 \) Copy content Toggle raw display
$71$ \( T^{2} + 12T + 24 \) Copy content Toggle raw display
$73$ \( T^{2} - 48 \) Copy content Toggle raw display
$79$ \( T^{2} + 24T + 132 \) Copy content Toggle raw display
$83$ \( T^{2} - 16T + 37 \) Copy content Toggle raw display
$89$ \( T^{2} + 6T - 39 \) Copy content Toggle raw display
$97$ \( T^{2} + 4T - 44 \) Copy content Toggle raw display
show more
show less